1
|
Albertini R, Colucci ME, Viani I, Capobianco E, Serpentino M, Coluccia A, Mohieldin Mahgoub Ibrahim M, Zoni R, Affanni P, Veronesi L, Pasquarella C. Study on the Effectiveness of a Copper Electrostatic Filtration System "Aerok 1.0" for Air Disinfection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1200. [PMID: 39338083 PMCID: PMC11431324 DOI: 10.3390/ijerph21091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Bioaerosols can represent a danger to health. During SARS-CoV-2 pandemic, portable devices were used in different environments and considered a valuable prevention tool. This study has evaluated the effectiveness of the air treatment device "AEROK 1.0®" in reducing microbial, particulate, and pollen airborne contamination indoors, during normal activity. METHODS In an administrative room, airborne microbial contamination was measured using active (DUOSAS 360 and MD8) and passive sampling; a particle counter was used to evaluate particle concentrations; a Hirst-type pollen trap was used to assess airborne pollen and Alternaria spores. Statistical analysis was performed using SPSS 26.0; p values < 0.05 were considered statistically significant. RESULTS The airborne bacterial contamination assessed by the two different samplers decreased by 56% and 69%, respectively. The airborne bacterial contamination assessed by passive sampling decreased by 44%. For fungi, the reduction was 39% by active sampling. Airborne particles (diameters ≥ 1.0, 2.0 μm) and the ratio of indoor/outdoor concentrations of total pollen and Alternaria spp. spores significantly decreased. CONCLUSIONS The results highlight the effectiveness of AEROK 1.0® in reducing airborne contamination. The approach carried out represents a contribution to the definition of a standardized model for evaluating the effectiveness of devices to be used for air disinfection.
Collapse
Affiliation(s)
- Roberto Albertini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- Geriatric-Rehabilitation Department, University Hospital-Azienda Ospedaliero-Universitaria di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Maria Eugenia Colucci
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Isabella Viani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Emanuela Capobianco
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Michele Serpentino
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Alessia Coluccia
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | | | - Roberta Zoni
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Paola Affanni
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Licia Veronesi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Cesira Pasquarella
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
2
|
Zhang Q, Wang Y, Hou Y, Zhao Q, Yang L, Zhang Y, Zhou L. Metabarcode insights into the airborne fungal diversity in the indoor and outdoor environments in archives from Yunnan, Southwestern China. Braz J Microbiol 2024; 55:1601-1618. [PMID: 38587763 PMCID: PMC11153435 DOI: 10.1007/s42770-024-01323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
Monitoring dynamics of airborne fungal species and controlling of harmful ones are of vital importance to conservation of cultural relics. However, the evaluation of air quality and the community structure characteristics of microorganisms, especially fungi, in the atmosphere of archives is in a stage of continuous exploration though more than 4,000 archives were constructed in China. Seventy-two air samples were collected in this study under different spatial and weather conditions from the archives of Kunming Medical University, located in the Kunming metropolitan area, Yunnan province, southwestern China. A total of 22 airborne fungal classes, 160 genera and 699 ASVs were identified, the species diversity is on the rise with the strengthening of air circulation with the outside space, and thus the intensive energy metabolism and activity were found in the spaces with window and sunny weather, except for the higher lipid synthesis of indoor samples than that of outdoor ones. Furthermore, there were significant differences in fungal community composition and abundance between sunny and rainy weathers. A considerable number of species have been identified as indicator in various environmental and weather conditions of the archives, and temperature and humidity were thought to have significant correlations with the abundance of these species. Meanwhile, Cladosporium and Alternaria were the dominant genera here, which may pose a threat to the health of archive professionals. Therefore, monitoring and controlling the growth of these fungal species is crucial for both conservation of paper records and health of archive professionals.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650032, China
| | - Yuan Wang
- Archives of Kunming Medical University, Kunming, 650500, China
| | - Yutong Hou
- The School of Health, Fujian Medical University, Fuzhou, 350100, China
| | - Qingxue Zhao
- School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Liu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650032, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650032, China.
| | - Lu Zhou
- Archives of Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
3
|
Lee S, Ryu SH, Sul WJ, Kim S, Kim D, Seo S. Association of exposure to indoor molds and dampness with allergic diseases at water-damaged dwellings in Korea. Sci Rep 2024; 14:135. [PMID: 38167981 PMCID: PMC10762174 DOI: 10.1038/s41598-023-50226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
This study aims to characterize levels of molds, bacteria, and environmental pollutants, identify the associations between indoor mold and dampness exposures and childhood allergic diseases, including asthma, allergic rhinitis, atopic dermatitis, using three different exposure assessment tools. A total of 50 children with their parents who registered in Seoul and Gyeonggi-do in Korea participated in this study. We collated the information on demographic and housing characteristics, environmental conditions, and lifestyle factors using the Korean version of the International Study of Asthma and Allergies in Childhood questionnaire. We also collected environmental monitoring samples of airborne molds and bacteria, total volatile organic compounds, formaldehyde, and particulate matter less than 10 µm. We evaluated and determined water damage, hidden dampness, and mold growth in dwellings using an infrared (IR) thermal camera and field inspection. Univariate and multivariate regression analyses were performed to evaluate the associations between prevalent allergic diseases and exposure to indoor mold and dampness. Indoor mold and bacterial levels were related to the presence of water damage in dwellings, and the mean levels of indoor molds (93.4 ± 73.5 CFU/m3) and bacteria (221.5 ± 124.2 CFU/m3) in water-damaged homes were significantly higher than those for molds (82.0 ± 58.7 CFU/m3) and for bacteria (152.7 ± 82.1 CFU/m3) in non-damaged dwellings (p < 0.05). The crude odds ratios (ORs) of atopic dermatitis were associated with < 6th floor (OR = 3.80), and higher indoor mold (OR = 6.42) and bacterial levels (OR = 6.00). The crude ORs of allergic diseases, defined as a group of cases who ever suffered from two out of three allergic diseases, e.g., asthma and allergic rhinitis, and allergic rhinitis were also increased by 3.8 and 9.3 times as large, respectively, with water damage (+) determined by IR camera (p < 0.05). The adjusted OR of allergic rhinitis was significantly elevated by 10.4 times in the water-damaged dwellings after adjusting age, sex, and secondhand smoke. Therefore, a longitudinal study is needed to characterize dominant mold species using DNA/RNA-based sequencing techniques and identify a causal relationship between mold exposure and allergic diseases in the future.
Collapse
Affiliation(s)
- Seokwon Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Seung-Hun Ryu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Seunghyun Kim
- Allergy Immunology Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dohyeong Kim
- School of Economic, Political and Policy Sciences, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - SungChul Seo
- Department of Nano, Chemical and Biological Engineering, College of Engineering, Seokyeong University, Seoul, 02173, Republic of Korea.
| |
Collapse
|
4
|
Siddique A, Al-Shamlan MYM, Al-Romaihi HE, Khwaja HA. Beyond the outdoors: indoor air quality guidelines and standards - challenges, inequalities, and the path forward. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 0:reveh-2023-0150. [PMID: 38148484 DOI: 10.1515/reveh-2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
In the last few decades, indoor air quality (IAQ) has become a major threat to public health. It is the fifth leading cause of premature death globally. It has been estimated that people spend ∼90 % of their time in an indoor environment. Consequently, IAQ has significant health effects. Although IAQ-related standards and guidelines, policies, and monitoring plans have been developed in a few countries, there remain several global inequalities and challenges. This review paper aims to comprehensively synthesize the current status of widely accepted IAQ guidelines and standards. It analyzes their global implementation and effectiveness to offer insights into challenges and disparities in IAQ policies and practices. However, the complexity of domestic environments and the diversity of international standards impede effective implementation. This manuscript evaluates international, national, and regional IAQ guidelines, emphasizing similarities and differences. In addition, it highlights knowledge gaps and challenges, urging the international scientific community, policymakers, and stakeholders to collaborate to advance IAQ standards and guidelines. The analysis evaluates the efficacy of guidelines, identifies deficiencies, and offers recommendations for the future of domestic air quality standards.
Collapse
Affiliation(s)
- Azhar Siddique
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Ar-Rayyan, Qatar
| | - Maryam Y M Al-Shamlan
- Health Protection and Communicable Disease Control Department, Ministry of Public Health (MoPH), Doha, Qatar
- College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hamad E Al-Romaihi
- Health Protection and Communicable Disease Control Department, Ministry of Public Health (MoPH), Doha, Qatar
| | - Haider A Khwaja
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
5
|
Somorin YM, O'Connor GM. Assessment of microbial contamination in laser materials processing laboratories used for prototyping of biomedical devices. Access Microbiol 2023; 5:000494.v3. [PMID: 38188238 PMCID: PMC10765054 DOI: 10.1099/acmi.0.000494.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/02/2023] [Indexed: 01/09/2024] Open
Abstract
Microbial contamination of medical devices during pilot production can be a significant barrier as the laboratory environment is a source of contamination. There is limited information on microbial contaminants in laser laboratories and environments involved in the pilot production of medical devices. This study aimed to determine the bioburden and microbial contaminants present in three laser laboratories - an ISO class 7 clean room, a pilot line facility and a standard laser laboratory. Microbiological air sampling was by passive air sampling using settle plates and the identity of isolates was confirmed by DNA sequencing. Particulate matter was analysed using a portable optical particle counter. Twenty bacterial and 16 fungal genera were isolated, with the genera Staphylococcus and Micrococcus being predominant. Most isolates are associated with skin, mouth, or upper respiratory tract. There was no significant correlation between microbial count and PM2.5 concentration in the three laboratories. There were low levels but diverse microbial population in the laser-processing environments. Pathogenic bacteria such as Acinetobacter baumannii and Candida parapsilosis were isolated in those environments. These results provide data that will be useful for developing a contamination control plan for controlling microbial contamination and facilitating advanced manufacturing of laser-based pilot production of medical devices.
Collapse
Affiliation(s)
- Yinka M. Somorin
- National Centre for Laser Applications (NCLA), School of Natural Sciences, University of Galway, Galway, Ireland
- Irish Photonic Integration Centre (IPIC), Tyndall National Institute, Cork, Ireland
| | - Gerard M. O'Connor
- National Centre for Laser Applications (NCLA), School of Natural Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Chawla H, Anand P, Garg K, Bhagat N, Varmani SG, Bansal T, McBain AJ, Marwah RG. A comprehensive review of microbial contamination in the indoor environment: sources, sampling, health risks, and mitigation strategies. Front Public Health 2023; 11:1285393. [PMID: 38074709 PMCID: PMC10701447 DOI: 10.3389/fpubh.2023.1285393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
The quality of the indoor environment significantly impacts human health and productivity, especially given the amount of time individuals spend indoors globally. While chemical pollutants have been a focus of indoor air quality research, microbial contaminants also have a significant bearing on indoor air quality. This review provides a comprehensive overview of microbial contamination in built environments, covering sources, sampling strategies, and analysis methods. Microbial contamination has various origins, including human occupants, pets, and the outdoor environment. Sampling strategies for indoor microbial contamination include air, surface, and dust sampling, and various analysis methods are used to assess microbial diversity and complexity in indoor environments. The review also discusses the health risks associated with microbial contaminants, including bacteria, fungi, and viruses, and their products in indoor air, highlighting the need for evidence-based studies that can relate to specific health conditions. The importance of indoor air quality is emphasized from the perspective of the COVID-19 pandemic. A section of the review highlights the knowledge gap related to microbiological burden in indoor environments in developing countries, using India as a representative example. Finally, potential mitigation strategies to improve microbiological indoor air quality are briefly reviewed.
Collapse
Affiliation(s)
- Hitikk Chawla
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Purnima Anand
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Kritika Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeru Bhagat
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Shivani G. Varmani
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Tanu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ruchi Gulati Marwah
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Kumar P, Singh AB, Arora T, Singh S, Singh R. Critical review on emerging health effects associated with the indoor air quality and its sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162163. [PMID: 36781134 DOI: 10.1016/j.scitotenv.2023.162163] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Indoor air quality (IAQ) is one of the fundamental elements affecting people's health and well-being. Currently, there is a lack of awareness among people about the quantification, identification, and possible health effects of IAQ. Airborne pollutants such as volatile organic compounds (VOCs), particulate matter (PM), sulfur dioxide (SO2), carbon monoxide (CO), nitrous oxide (NO), polycyclic aromatic hydrocarbons (PAHs) microbial spores, pollen, allergens, etc. primarily contribute to IAQ deterioration. This review discusses the sources of major indoor air pollutants, molecular toxicity mechanisms, and their effects on cardiovascular, ocular, neurological, women, and foetal health. Additionally, contemporary strategies and sustainable methods for regulating and reducing pollutant concentrations are emphasized, and current initiatives to address and enhance IAQ are explored, along with their unique advantages and potentials. Due to their longer exposure times and particular physical characteristics, women and children are more at risk for poor indoor air quality. By triggering many toxicity mechanisms, including oxidative stress, DNA methylation, epigenetic modifications, and gene activation, indoor air pollution can cause a range of health issues. Low birth weight, acute lower respiratory tract infections, Sick building syndromes (SBS), and early death are more prevalent in exposed residents. On the other hand, the main causes of incapacity and early mortality are lung cancer, chronic obstructive pulmonary disease, and cardiovascular disorders. It's crucial to acknowledge anticipated research needs and implemented efficient interventions and policies to lower health hazards.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 52, India
| | - A B Singh
- Institute of Genomics and Integrative Biology (IGIB), Mall Road Campus, Delhi 07, India
| | - Taruna Arora
- Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India; Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 52, India; Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
8
|
Gordon Holzheimer R. Moisture damage and fungal contamination in buildings are a massive health threat - a surgeon's perspective. Cent Eur J Public Health 2023; 31:63-68. [PMID: 37086423 DOI: 10.21101/cejph.a7504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 02/20/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVES Indoor air toxicity is of major public health concern due to the increase in humidity-induced indoor mould exposure and associated health changes. The objective is to present evidence for the causality of health threats and indoor mould exposure. METHODS PubMed search on the following keywords: dampness, mould, indoor air quality, public health, dampness, and mould hypersensitivity syndrome, sick building syndrome, and building-related illness as well as information from the health authorities of Bavaria and North Rhine-Westphalia, the Center of Disease Control (CDC), World Health Organisation (WHO), and guidelines of professional societies. RESULTS The guidelines of professional societies published in 2017 are decisive for the assessment of the impact of mould pollution caused by moisture damage on human health and for official regulations in Germany. Until 2017, a causal connection between moisture damage and mould exposure could usually only be established for pulmonary diseases. The health risk of fungal components is apparent as documented in the fungal priority pathogens list (FPPL) of the WHO. Since 2017, studies, especially in Scandinavia, have proved causality between moisture and mould exposure not only for pulmonary diseases but also for extrapulmonary diseases and symptoms. This was made possible by new test methods for determining the toxicity of fungal components in indoor air. Environmental medical syndromes, e.g., dampness and mould hypersensitivity syndrome (DMHS), sick building syndrome (SBS), building-related symptoms (BRS), and building-related illness (BRI), and fungal pathogens, e.g., Aspergillus fumigatus, pose a major threat to public health. CONCLUSION There is evidence for the causality of moisture-induced indoor moulds and severe health threats in these buildings. According to these findings, it is no longer justifiable to ignore or trivialize the mould contamination induced by moisture damage and its effects on pulmonary and extrapulmonary diseases. The health and economic implications of these attitudes are clear.
Collapse
|
9
|
Taushiba A, Dwivedi S, Zehra F, Shukla PN, Lawrence AJ. Assessment of indoor air quality and their inter-association in hospitals of northern India-a cross-sectional study. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:1023-1036. [PMID: 37213469 PMCID: PMC9985081 DOI: 10.1007/s11869-023-01321-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/01/2023] [Indexed: 05/23/2023]
Abstract
This study was commenced to evaluate the indoor and outdoor air quality concentrations of PM2.5, sub-micron particles (PM>2.5, PM1.0-2.5, PM0.50 -1.0, PM0.25-0.50, and PM<0.25), heavy metals, and microbial contaminants along with their identification in three different hospitals of Lucknow City. The study was conducted from February 2022 to April 2022 in hospitals situated in the commercial, residential, and industrial belts of the city. The indoor concentration trend of particulate matter as observed during the study suggested that most of the highest concentrations belonged to the hospital situated in an industrial area. The highest obtained indoor and outdoor concentrations for PM1.0-2.5, PM0.50-1.0, PM0.25-0.50, and PM<0.25 are 40.44 µg/m3, 56.08 µg/m3, 67.20 µg/m3, 74.50 µg/m3, 61.9 µg/m3, 79.3 µg/m3, 82.0 µg/m3, and 93.9 µg/m3, respectively, which belonged to hospital C situated in the industrial belt. However, for PM>2.5, the highest indoor concentration obtained belonged to hospital B, i.e., 30.7 µg/m3, which is situated in the residential belt of the city. Regarding PM2.5, the highest indoor and outdoor concentrations obtained are 149.41 µg/m3 and 227.45 µg/m3, which were recorded at hospital A and hospital C, respectively. The present study also observed that a high bacterial load of 1389.21 CFU/m3 is recorded in hospital B, and the fungi load was highest in hospital C with 786.34 CFU/m3. Henceforth, the present study offers thorough information on the various air pollutants in a crucial indoor setting, which will further aid the researchers in the field to identify and mitigate the same more precisely.
Collapse
Affiliation(s)
- Anam Taushiba
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
- Department of Environmental Science, Integral University, Lucknow, India
| | - Samridhi Dwivedi
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Farheen Zehra
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Pashupati Nath Shukla
- Department of Pharmacology & Microbial Technology, National Botanical Research Institute, Lucknow, India
| | | |
Collapse
|