1
|
Rath D, Pattnaik G, Kar B, Padhy GK, Patro CS, Bhukta P. Antidiabetic potency of glimepiride and naringin: an in silico and in vitro investigation. J Biomol Struct Dyn 2024:1-12. [PMID: 39731535 DOI: 10.1080/07391102.2024.2442759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 12/30/2024]
Abstract
Glimepiride (GLM) is one of the potential antidiabetic drugs used in clinics for a long time. It is currently used in combination with metformin along with other drugs, but has shown various complications in patients from long-term use. Thus, the hypothesis is to use a lower dose of GLM with a non-toxic class of flavonoid, naringin (NARN), for better therapy with minimal side-effects. Initially, we assessed the binding efficacy of GLM and NARN against nine putative target enzymes using AutoDock 4.2 software. We also analysed the drug chemistry, drug-ability, and cytotoxicity, as well as performed molecular dynamic (MD) simulation at 100 ns with individual and combination states using GROMACS-2022 software. Both candidates showed higher binding efficacy, especially against the AKT-serine/threonine kinase-1 (AKT1) target enzyme (-11.85 kcal/mol), and demonstrated higher stability and compatibility with AKT1 from MD-simulation (based on RMSD, Rg, RMSF, and H-bond plots) in combination than individual form. The in vitro cytotoxicity with human embryonic kidney (HEK-293) cells suggested 100 µg/mL (observed 80% of the cell viability) as a non-toxic dose for further study. Alpha-amylase, alpha-glucosidase, and DPP-IV inhibition assays revealed that both GLM and NARN inhibited up to 60% at 100 µg/mL in a concentration-dependent manner. At the end, selecting a lower dose of GLM and a higher dose of NARN (2:8 v/v ratio) showed up to 87% inhibition at 100 µg/mL. Both in silico and in vitro studies suggest that the investigated formulation could be a potential and non-toxic dose for diabetics.
Collapse
Affiliation(s)
- Deepankar Rath
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Gopal Krishna Padhy
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Chandra Sekhar Patro
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Pallishree Bhukta
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| |
Collapse
|
2
|
Mahadi TM, Yagi S, Nilofar, Caprioli G, Piatti D, Ricciutelli M, Uba AI, Ponniya SKM, Eltigani SM, Zengin G. Assessing the Chemical Profile and Biological Potentials of Tamarix aphylla (L.) H.Karst. and Tamarix senegalensis DC. by In Vitro, In Silico, and Network Methodologies. Appl Biochem Biotechnol 2024; 196:7762-7791. [PMID: 38558274 DOI: 10.1007/s12010-024-04924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The present study aimed to investigate the chemical profile, antioxidant, and enzyme inhibition properties of extracts from fruits and aerial parts (leaves and twigs) of Tamarix aphylla and T. senegalensis. Hexane, dichloromethane, ethyl acetate (EtOAc), and methanol extracts were prepared sequentially by maceration. Results revealed that EtOAc extracts of T. senegalensis and T. aphylla fruits contained the highest total phenolic content (113.74 and 111.21 mg GAE/g) while that of T. senegalensis (38.47 mg RE/g) recorded the highest total flavonoids content. Among the quantified compounds; ellagic, gallic, 3-hydroxybenzoic, caffeic, syringic, p-coumaric acids, isorhamnetin, procyanidin B2, and kaempferol were the most abundant compounds in the two species. EtOAc extracts of the two organs of T. senegalensis in addition to MeOH extract of T. aphylla aerial parts displayed the highest chelating power (21.00-21.30 mg EDTAE/g, p > 0.05). The highest anti-AChE (3.11 mg GALAE/g) and anti-BChE (3.62 mg GALAE/g) activities were recorded from the hexane and EtOAc extracts of T. senegalensis aerial parts and fruits, respectively. EtOAc extracts of the fruits of the two species exerted the highest anti-tyrosinase (anti-Tyr) activity (99.44 and 98.65 mg KAE/g, p > 0.05). Also, the EtOAc extracts of the both organs of the two species exhibited highest anti-glucosidase activity (0.88-0.90 mmol ACAE/g, p > 0.05) while the best anti-α-amylase activity was recorded from the dichloromethane extract of T. senegalensis fruits (0.74 mmol ACAE/g). In this study, network pharmacology was employed to examine the connection between compounds from Tamarix and their potential effectiveness against Alzheimer's disease. The compounds demonstrated potential interactions with pivotal genes including APP, GSK3B, and CDK5, indicating a therapeutic potential. Molecular docking was carried out to understand the binding mode and interaction of the compounds with the target enzymes. Key interactions observed, such as H-bonds, promoted the binding, and weaker ones, such as van der Waals attractions, reinforced it. These findings suggest that these two Tamarix species possess bioactive properties with health-promoting effects.
Collapse
Affiliation(s)
- Tawsol M Mahadi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Medicinal and Aromatic Plants and Traditional Medicine and Research Institute, National Center for Research, Khartoum, Sudan
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan.
- Université de Lorraine, INRAE, LAE, Nancy, F-54000, France.
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, Chieti, 66100, Italy
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, Camerino, 62032, Italy
| | - Diletta Piatti
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, Camerino, 62032, Italy
| | - Massimo Ricciutelli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, Camerino, 62032, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | | | - Sayadat M Eltigani
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Gökhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey.
| |
Collapse
|
3
|
Chatman CC, Olson EG, Freedman AJ, Dittoe DK, Ricke SC, Majumder ELW. Co-exposure to polyethylene fiber and Salmonella enterica serovar Typhimurium alters microbiome and metabolome of in vitro chicken cecal mesocosms. Appl Environ Microbiol 2024; 90:e0091524. [PMID: 38984844 PMCID: PMC11337840 DOI: 10.1128/aem.00915-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 07/11/2024] Open
Abstract
Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations, including in animal gastrointestinal tracts, where there could be an interaction with Salmonella enterica serovar Typhimurium, one of the commonly isolated serovars from processed chicken. However, there is limited knowledge on how gut microbiomes are affected by microplastics and if an effect would be exacerbated by the presence of a pathogen. In this study, we aimed to determine if acute exposure to microplastics in vitro altered the gut microbiome membership and activity. The microbiota response to a 24 h co-exposure to Salmonella enterica serovar Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared with other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal mesocosm. IMPORTANCE Researching the exposome, a summation of exposure to one's lifespan, will aid in determining the environmental factors that contribute to disease states. There is an emerging concern that microplastic-pathogen interactions in the gastrointestinal tract of broiler chickens may lead to an increase in Salmonella infection across flocks and eventually increased incidence of human salmonellosis cases. In this research article, we elucidated the effects of acute co-exposure to polyethylene microplastics and Salmonella enterica serovar Typhimurium on the ceca microbial community in vitro. Salmonella presence caused strong shifts in the cecal metabolome but not the microbiome. The inverse was true for polyethylene fiber. Polyethylene powder had almost no effect. The co-exposure had worse effects than either alone. This demonstrates that exposure effects to the gut microbial community are contaminant-specific. When combined, the interactions between exposures exacerbate changes to the gut environment, necessitating future experiments studying low-dose chronic exposure effects with in vivo model systems.
Collapse
Affiliation(s)
- Chamia C. Chatman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elena G. Olson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Allison J. Freedman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Steven C. Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erica L-W. Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Benjamin MAZ, Mohd Mokhtar RA, Iqbal M, Abdullah A, Azizah R, Sulistyorini L, Mahfudh N, Zakaria ZA. Medicinal plants of Southeast Asia with anti-α-glucosidase activity as potential source for type-2 diabetes mellitus treatment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118239. [PMID: 38657877 DOI: 10.1016/j.jep.2024.118239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus, a widespread chronic illness, affects millions worldwide, and its incidence is increasing alarmingly, especially in developing nations. Current pharmacological treatments can be costly and have undesirable side effects. To address this, medicinal plants with antidiabetic effects, particularly targeting α-glucosidase for controlling hyperglycaemia in type-2 diabetes mellitus (T2DM), hold promise for drug development with reduced toxicity and adverse reactions. AIM OF THIS REVIEW This review aims to succinctly collect information about medicinal plant extracts that exhibit antidiabetic potential through α-glucosidase inhibition using acarbose as a standard reference in Southeast Asia. The characteristics of this inhibition are based on in vitro studies. MATERIALS AND METHODS Relevant information on medicinal plants in Southeast Asia, along with α-glucosidase inhibition studies using acarbose as a positive control, was gathered from various scientific databases, including Scopus, PubMed, Web of Science, and Google Scholar. RESULTS About 49 papers were found from specific counties in Southeast Asia demonstrated notable α-glucosidase inhibitory potential of their medicinal plants, with several plant extracts showcasing activity comparable to or surpassing that of acarbose. Notably, 19 active constituents were identified for their α-glucosidase inhibitory effects. CONCLUSIONS The findings underscore the antidiabetic potential of the tested medicinal plant extracts, indicating their promise as alternative treatments for T2DM. This review can aid in the development of potent therapeutic medicines with increased effectiveness and safety for the treatment of T2DM.
Collapse
Affiliation(s)
- Mohammad Amil Zulhilmi Benjamin
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Ruzaidi Azli Mohd Mokhtar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Mohammad Iqbal
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Azmahani Abdullah
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Kuala Nerus, Terengganu, Malaysia
| | - Roro Azizah
- Department of Environmental Health, Faculty of Public Health, Universitas Airlangga Kampus C, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Kota Surabaya, Jawa Timur, 60115, Indonesia
| | - Lilis Sulistyorini
- Department of Environmental Health, Faculty of Public Health, Universitas Airlangga Kampus C, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Kota Surabaya, Jawa Timur, 60115, Indonesia
| | - Nurkhasanah Mahfudh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. Dr. Soepomo Sh, Warungboto, Kec. Umbulharjo, Kota Yogyakarta, Daerah Istimewa Yogyakarta, 55164, Indonesia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia; Department of Environmental Health, Faculty of Public Health, Universitas Airlangga Kampus C, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Kec. Mulyorejo, Kota Surabaya, Jawa Timur, 60115, Indonesia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. Dr. Soepomo Sh, Warungboto, Kec. Umbulharjo, Kota Yogyakarta, Daerah Istimewa Yogyakarta, 55164, Indonesia.
| |
Collapse
|
5
|
Sarkar A, Chakrabarti A, Bhaumik S, Debnath B, Singh SS, Ghosh R, Zaki MEA, Al-Hussain SA, Debnath S. Parkia javanica Edible Pods Reveal Potential as an Anti-Diabetic Agent: UHPLC-QTOF-MS/MS-Based Chemical Profiling, In Silico, In Vitro, In Vivo, and Oxidative Stress Studies. Pharmaceuticals (Basel) 2024; 17:968. [PMID: 39065816 PMCID: PMC11280426 DOI: 10.3390/ph17070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
According to the World Health Organization, over 422 million people worldwide have diabetes, with the majority residing in low- and middle-income countries. Diabetes causes 1.5 million fatalities a year. The number of diabetes cases and its prevalence have progressively increased over the last few decades. This study aims to determine the phytochemicals in the edible part of Perkia javanica, predict their α-glucosidase inhibitory potential, one of the promising targets for diabetes, and then carry out in vitro and in vivo studies. The phytochemicals present in the n-butanol fraction of the methanol extract of P. javanica pods were analyzed using UHPLC-QTOF-MS/MS (Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry). The UHPLC-QTOF analysis revealed the presence of 79 different compounds in the n-butanol fraction. Among these, six compounds demonstrated excellent binding affinities with α-glucosidase, surpassing the performance of two standard inhibitors, Miglitol and Voglibose. In vitro α-glucosidase inhibitory activities were assessed by the n-butanol fraction, followed by in vivo studies. According to the in vitro study, the inhibitory efficiency against α-glucosidase was determined to have an IC50 value of 261.9 µg/mL. The in vivo findings revealed a significant reduction in blood glucose levels in Swiss albino mice treated with the same extract, decreasing from 462.66 mg/dL to 228.66 mg/dL. Additionally, the extract significantly increased the activity of the enzymes catalase and superoxide dismutase (SOD) and decreased the amount of malondialdehyde (MDA) in the liver and kidney tissue. The predicted physicochemical parameters indicated that most of the compounds would be excreted from the body after inhibition in the small intestine without being absorbed. Considering the low cost and wide availability of raw materials, P. javanica pods can serve as a good food supplement that may help prevent type 2 diabetes management.
Collapse
Affiliation(s)
- Alekhya Sarkar
- Department of Forestry and Biodiversity, Tripura University, Suryamaninagar 799022, India; (A.S.); (B.D.)
| | - Arjita Chakrabarti
- Department of Zoology, Tripura University, Suryamaninagar 799022, India; (A.C.); (S.S.S.)
| | - Samhita Bhaumik
- Department of Chemistry, Women’s College, Agartala 799001, India;
| | - Bimal Debnath
- Department of Forestry and Biodiversity, Tripura University, Suryamaninagar 799022, India; (A.S.); (B.D.)
| | - Shiv Shankar Singh
- Department of Zoology, Tripura University, Suryamaninagar 799022, India; (A.C.); (S.S.S.)
| | - Rajat Ghosh
- In Silico Drug Design Lab., Department of Pharmacy, Tripura University, Suryamaninagar 799022, India;
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia;
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia;
| | - Sudhan Debnath
- Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur 799114, India
| |
Collapse
|
6
|
Pan X, Olatunji OJ, Basit A, Sripetthong S, Nalinbenjapun S, Ovatlarnporn C. Insights into the phytochemical profiling, antidiabetic and antioxidant potentials of Lepionurus sylvestris Blume extract in fructose/streptozotocin-induced diabetic rats. Front Pharmacol 2024; 15:1424346. [PMID: 39070783 PMCID: PMC11272583 DOI: 10.3389/fphar.2024.1424346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
In this study, the antidiabetic activities of Lepionurus sylvestris Blume extract (LSB) in rats was investigated. The in vitro antidiabetic properties of LSB was evaluated using α-amylase, α-glucosidase and DPP-IV inhibitory assays, while the antioxidant assay was analysed using DPPH, ABTS and FRAP assays. Type 2 diabetes was with high-fructose/streptozotocin, and the diabetic animals were treated with LSB for 5 weeks. At the end of the experiment, the effects of LSB were evaluated via insulin level, lipid profile and hepatorenal function biomarkers. The level of oxido-inflammatory parameters, histopathology and insulin immunohistochemical staining in the pancreas was evaluated. Diabetic rats manifested significant increases in the blood glucose level, food/water intake, lipid profiles, hepatorenal function biomarkers, as well as a marked decreases in the body weight and serum insulin levels. Histopathological and insulin immunohistochemical examination also revealed decreased pancreatic beta cells and insulin positive cells, respectively. These alterations were associated with significant increases in malondialdehyde, TNF-α and IL-1β, in addition to significant declines in GSH, SOD and CAT activities. LSB significantly reduced blood glucose level, glucose intolerance, serum lipids, restored altered hepatorenal and pancreatic functions in the treated diabetic rats. Further, LSB showed antioxidant and anti-inflammatory activities by reducing malondialdehyde, TNF-α, IL-1β, and increasing antioxidant enzymes activities in the pancreatic tissues. A total of 77 secondary metabolites were tentatively identified in the UPLC-Q-TOF-MS analysis of LSB. Overall, these findings provides insight into the potentials of LSB as an antidiabetic agent which may be associated to the plethora bioactive compounds in the plant.
Collapse
Affiliation(s)
- Xianzhu Pan
- Department of Pathology and Pathophysiology, Anhui Medical College, Hefei, China
| | | | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Sirinporn Nalinbenjapun
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
7
|
Dalmagro M, Donadel G, Moraes Pinc M, Becker Viana AP, Klein EJ, da Silva EA, Cassemiro NS, Silva DB, Gasparotto Junior A, de Almeida Canoff JR, Lourenço ELB, Hoscheid J. Exploring antioxidant and α-glucosidase inhibition in Eugenia L. extracts: a comprehensive phytochemical study. Nat Prod Res 2024:1-7. [PMID: 38738742 DOI: 10.1080/14786419.2024.2352868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
This study analysed extracts obtained from the leaves of Eugenia uniflora, E. involucrata, and E. myrcianthes to determine their chemical composition, antioxidative properties, and α-glucosidase inhibitory capacity. By using liquid chromatography with a diode array detector, we identified chlorogenic acids, flavonoids, tannins, proanthocyanidins, saponins, and triterpenes in the extracts. The antioxidant activities of the extracts were found to be directly related to their total phenolic, flavonoid content and enzyme inhibition. The E. uniflora aqueous extract showed significant inhibition of α-glucosidase (IC50 0.98 µg mL-1), indicating its potential as a non-competitive inhibitor for managing Diabetes Mellitus. This study contributes to the existing knowledge on the chemical and biological aspects of Eugenia genus.
Collapse
Affiliation(s)
- Mariana Dalmagro
- Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil
| | - Guilherme Donadel
- Postgraduate Program in Animal Science with an Emphasis on Bioactive Products, University of Paraná, Umuarama, Brazil
| | - Mariana Moraes Pinc
- Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil
| | | | - Elissandro Jair Klein
- Graduate Program in Chemical and Biotechnological Processes (PPGQB), Federal University of Technology Paraná, Toledo, Paraná, Brazil
| | - Edson Antônio da Silva
- Postgraduate Program in Chemical Engineering, State University of Western Paraná, Toledo, Brazil
| | - Nadla Soares Cassemiro
- Natural Products Laboratory and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Denise Brentan Silva
- Natural Products Laboratory and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Arquimedes Gasparotto Junior
- Faculty of Health Sciences, Laboratory of Cardiovascular Pharmacology (LaFaC), Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | - Emerson Luiz Botelho Lourenço
- Postgraduate Program in Animal Science with an Emphasis on Bioactive Products, University of Paraná, Umuarama, Brazil
| | - Jaqueline Hoscheid
- Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil
| |
Collapse
|
8
|
Li F, Xie W, Ding X, Xu K, Fu X. Phytochemical and pharmacological properties of the genus Tamarix: a comprehensive review. Arch Pharm Res 2024; 47:410-441. [PMID: 38750332 DOI: 10.1007/s12272-024-01498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/02/2024] [Indexed: 06/20/2024]
Abstract
The genus Tamarix in the Tamaricaceae family consists of more than 100 species of halophyte plants worldwide that are mainly used to improve saline-alkali land and for coastal windbreaks, sand fixation, and afforestation in arid areas. A considerable number of species in this genus are also used as traditional medicines to treat various human diseases, especially in Asian and African countries. This review presents a comprehensive summary of 655 naturally occurring compounds derived from the genus Tamarix, categorized into flavonoids (18.0%), phenols (13.9%), tannins (9.3%), terpenoids (10.5%), essential oils (31.0%), and others (17.3%). The investigation revealed that the crude extracts and phytochemicals of this genus exhibited significant therapeutic potential, including anti-inflammatory, anti-Alzheimer, anticancer, antidiabetic, antibacterial, and antifungal activities. Six species of Tamarix have anticancer effects by causing cancer cell death, inducing autophagy, and stopping cell division. Seven species from the same genus have the potential for treating diabetes by inhibiting α-glycosidase activity, suppressing human islet amyloid polypeptide, regulating blood glucose levels, and modulating autophagy or inflammation. The focus on antibacterial and antidiabetic effects is due to the presence of volatile oil and flavonoid components. Extensive research has been conducted on the biological activity of 30 constituents, including 15 flavonoids, 5 phenols, 3 terpenoids, 1 tannin, and 6 others. Therefore, future research should thoroughly study the mechanisms of action of these and similar compounds. This is the most comprehensive review of the phytochemistry and pharmacological properties of Tamarix species, with a critical assessment of the current state of knowledge.
Collapse
Affiliation(s)
- Fangjie Li
- Research Institute for Marine Traditional Chinese Medicine, The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China
| | - Wenli Xie
- Research Institute for Marine Traditional Chinese Medicine, The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China
| | - Xianrui Ding
- Research Institute for Marine Traditional Chinese Medicine, The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China
| | - Kuo Xu
- Research Institute for Marine Traditional Chinese Medicine, The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China.
- Chun'an First People's Hospital, Hangzhou, 311700, China.
| | - Xianjun Fu
- Research Institute for Marine Traditional Chinese Medicine, The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China.
| |
Collapse
|
9
|
Zolotova D, Teterovska R, Bandere D, Lauberte L, Niedra S. Antidiabetic Properties of the Root Extracts of Dandelion ( Taraxacum officinale) and Burdock ( Arctium lappa). PLANTS (BASEL, SWITZERLAND) 2024; 13:1021. [PMID: 38611548 PMCID: PMC11013470 DOI: 10.3390/plants13071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Several preclinical studies suggest the potential of edible plants in controlling blood sugar levels and stabilizing diet. The goals of the study were to examine, analyze, and describe whether there are chemical compounds in dandelion and burdock roots that could have antidiabetic properties. The 70% ethyl alcohol and lyophilizate extracts (AE and LE, respectively), were used, and analyses were carried out on their total polysaccharide (TP), total phenolic content (TPC), tannin, and inulin. The antioxidant activity of extracts was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay, and hypoglycemic properties were based on α-amylase activity. Liquid chromatography-mass spectrometry was used for the tentative identification of the chemical components. Qualitative techniques confirmed the presence of inulin in both roots. Analysis of TPC, tannin content, DPPH assay, and α-amylase activity revealed higher values for burdock compared to dandelion. However, dandelion exhibited higher TP content. Burdock contained a small amount of tannin, whereas the tannin content in dandelion was insignificant. All LE consistently exhibited higher values in all analyses and assays for all roots compared to AE. Despite burdock root showing overall better results, it is uncertain whether these plants can be recommended as antidiabetic agents without in vivo studies.
Collapse
Affiliation(s)
- Daria Zolotova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
| | - Renāte Teterovska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
- Department of Pharmaceuticals, Red Cross Medical College, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rīga Stradiņš University, LV-1007 Riga, Latvia; (R.T.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia; (L.L.); (S.N.)
| | - Santa Niedra
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, LV-1007 Riga, Latvia; (L.L.); (S.N.)
| |
Collapse
|
10
|
Magwaza SN, Erukainure OL, Olofinsan K, Meriga B, Islam MS. Evaluation of the antidiabetic, antiobesity and antioxidant potential of Anthophycus longifolius ((Turner) Kützing). SCIENTIFIC AFRICAN 2024; 23:e02051. [DOI: 10.1016/j.sciaf.2023.e02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
|
11
|
Metabolomics-Based Profiling via a Chemometric Approach to Investigate the Antidiabetic Property of Different Parts and Origins of Pistacia lentiscus L. Metabolites 2023; 13:metabo13020275. [PMID: 36837894 PMCID: PMC9960292 DOI: 10.3390/metabo13020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Pistacia lentiscus L. is a medicinal plant that grows spontaneously throughout the Mediterranean basin and is traditionally used to treat diseases, including diabetes. The aim of this work consists of the evaluation of the α-glucosidase inhibitory effect (i.e., antidiabetic activity in vitro) of different extracts from the leaves, stem barks and fruits of P. lentiscus harvested on mountains and the littoral of Tizi-Ouzou in Algeria. Metabolomic profiling combined with a chemometric approach highlighted the variation of the antidiabetic properties of P. lentiscus according to the plant's part and origin. A multiblock OPLS analysis showed that the metabolites most involved in α-glucosidase inhibition activity were mainly found in the stem bark extracts. The highest inhibitory activity was found for the stem bark extracts, with averaged inhibition percentage values of 84.7% and 69.9% for the harvested samples from the littoral and mountain, respectively. On the other hand, the fruit extracts showed a lower effect (13.6%) at both locations. The UHPLC-ESI-HRMS characterization of the metabolites most likely responsible for the α-glucosidase-inhibitory activity allowed the identification of six compounds: epigallocatechin(4a>8)epigallocatechin (two isomers), (epi)gallocatechin-3'-O-galloyl-(epi)gallocatechin (two isomers), 3,5-O-digalloylquinic acid and dihydroxy benzoic acid pentoside.
Collapse
|
12
|
UPLC-ESI-QTOF-MS Profiling of Phenolic Compounds from Eriocephalus africanus: In Vitro Antioxidant, Antidiabetic, and Anti-Inflammatory Potentials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248912. [PMID: 36558046 PMCID: PMC9782900 DOI: 10.3390/molecules27248912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
The present study investigated phenolic compounds, antioxidant, antidiabetic, and the anti-inflammatory potentials of methanolic and chloroform extracts of Eriocephalus africanus. The methanolic extract included, polyphenols (112 ± 2.81 mg gallic acid equivalent (GAE)/g), flavonols (76.12 ± 7.95 mg quercetin equivalents (QE)/g); antioxidant capacity (Ferric Reducing Antioxidant Power (FRAP) (752.64 ± 89.0 μmol of ascorbic acid equivalents (AAE) per g dry weight (µmol AAE/g), 2,2-dyphenyl-1-picrylhydrazyl (DPPH) (812.18 ± 51.12 Trolox equivalents per gram of dry mass of plant extracts (μmol TE/g), TEAC (631.63 ± 17.42 µmol TE/g)), while the chloroform extract included polyphenols (39.93 ± 1.36 mg GAE/g), flavonols (44.81 ± 3.74 mg QE/g); antioxidant capacity, DPPH (58.70 ± 5.18 µmol TE/g), TEAC (118.63 ± 3.74 µmol TE/g) and FRAP (107.10 ± 2.41 µmol AAE/g). The phytochemicals profiling performed by UPLC-ESI-QTOF-MS revealed some important polyphenols, predominantly flavonoids, that could be responsible for the antioxidant capacity and biological effects. Both extracts demonstrated a dose-dependent manner of the alpha-glucosidase inhibition with an IC50 between 125 and 250 μg/mL for methanolic extract, while the chloroform extract was at 250 μg/mL. In the L6 myoblasts and C3A hepatocytes, the methanolic extract slightly increased the utilization of glucose, and both extracts exhibited a dose-dependent increase in the glucose uptake in both cell types without significantly increasing the cytotoxicity. Furthermore, both extracts exhibited an anti-inflammatory potential and the findings from the present study could serve as a baseline for further research in the development of pharmaceutical agents.
Collapse
|
13
|
UPLC-ESI-QTOF-MS phenolic compounds identification and quantification from ethanolic extract of: In vitro antioxidant and antidiabetic potentials. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|