1
|
Liu X, Zhang Y, Qi X, Zhao D, Rao H, Zhao X, Li Y, Liu J, Qin Z, Hao J, Liu X. Advances of microbial xylanases in the application of flour industries: A comprehensive review. Int J Biol Macromol 2024; 282:137205. [PMID: 39489265 DOI: 10.1016/j.ijbiomac.2024.137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Microbial xylanase has a wide range of applications, and many researchers favoring its utilization as an alternative to improve flour products. Wheat flour is the main raw material of flour products, although the content of arabinoxylan is not high in flour products, but it has a great influence on the quality of flour products, microbial xylanase can act on wheat arabinoxylan, so as to play the role of flour product improvement. This review carries out a description of the research progress on the application of xylanases in flour products in terms of xylanase properties, different families of xylanases and improvement mechanisms of xylanases in flour products. According to the properties of various microbial sources of xylanases, the suitable xylanase can be added to flour products, and the effect of xylanase towards wheat arabinoxylan in flour can be used to improve the quality of flour products. The molecular modification based on the properties of xylanase and the crystal structure of different families of xylanase and their substrate specificity toward wheat arabinoxylan are discussed. The article reviews the information about microbial xylanases in order to achieve better results in flour products and to provide a theoretical basis for their industrial application.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yuxi Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xiaoya Qi
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Dandan Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Huan Rao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xia Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing 100083, People's Republic of China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No. 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Jianxiong Hao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| | - Xueqiang Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
2
|
Aktayeva S, Khassenov B. High keratinase and other types of hydrolase activity of the new strain of Bacillus paralicheniformis. PLoS One 2024; 19:e0312679. [PMID: 39453952 PMCID: PMC11508186 DOI: 10.1371/journal.pone.0312679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/11/2024] [Indexed: 10/27/2024] Open
Abstract
Keratinases, a subclass of proteases, are used to degrade keratin thereby forming peptones and free amino acids. Bacillus paralicheniformis strain T7 was isolated from soil and exhibited high keratinase, protease, collagenase, amylase, xylanase, lipase, and phosphatase activities. Keratinases of the strain showed maximum activity at 70°C and pH 9.0 as well as high thermal stability. A mass-spectrometric analysis identified seven peptidases with molecular masses of 26.8-154.8 kDa in the secretory proteome. These peptidases are members of S8 and S41 serine peptidase families and of M14, M42, and M55 metallopeptidase families. Additionally, α-amylase (55.2 kDa), alkaline phosphatase (59.8 kDa), and esterase (26.8 kDa) were detected. The strong keratinolytic properties of the strain were confirmed by degradation of chicken and goose feathers, which got completely hydrolyzed within 4 days. Submerged fermentation by strain B. paralicheniformis T7 was carried out in a pilot bioreactor, where the highest keratinase production was noted after 19 h of cultivation. After the fermentation, in the culture fluid, the keratinase activity toward keratin azure was 63.6 ± 5.8 U/mL. The protease activity against azocasein was 715.7 ± 40.2 U/mL. The possibility of obtaining enzyme preparations in liquid and powder form was demonstrated, and their comparative characteristics are given. In the concentrate, the keratinase, protease, α-amylase, phosphatase, and esterase/lipase activities were 2,656.7 ± 170.4, 29,886.7 ± 642.9, 176.1 ± 16.3, 23.9 ± 1.8, and 510.9 ± 12.2 U/mL, respectively. In the lyophilizate, these activities were 57,733.3 ± 8,911.4, 567,066.7 ± 4,822.2, 2,823.0 ± 266.8, 364.2 ± 74.8, and 17,618.0 ± 610.3 U/g, respectively. In the preparation obtained by air flow drying at 55°C, these activities were 53,466.7 ± 757.2, 585,333.3 ± 4,277.1, 2,395.8 ± 893.7, 416.7 ± 52.4, and 15,328.1 ± 528.6 U/g, respectively. The results show high potential of B. paralicheniformis strain T7 as a producer of keratinases and other enzymes for applications in agricultural raw materials and technologies for processing of keratin-containing animal waste.
Collapse
Affiliation(s)
- Saniya Aktayeva
- Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, Astana, Kazakhstan
| | - Bekbolat Khassenov
- Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
3
|
Aktayeva S, Khassenov B. New Bacillus paralicheniformis strain with high proteolytic and keratinolytic activity. Sci Rep 2024; 14:22621. [PMID: 39349615 PMCID: PMC11444040 DOI: 10.1038/s41598-024-73468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Bacillus paralicheniformis T7, which exhibits high proteolytic and keratinolytic activities, was isolated from soil in Kazakhstan. Its secreted proteases were thermostable and alkaline, demonstrating maximum activity at 70 °C and pH 9.0. The proteases and keratinases of this strain were sensitive to Ni2+, Co2+, Mn2+, and Cd2+, with Cu2+, Co2+ and Cd2+ negatively affecting keratinolytic activity, and Fe3+ ions have a strong inhibitory effect on proteolytic and keratinolytic activity. Seven proteases were identified in the enzymatic extract of B. paralicheniformis T7: four from the serine peptidase family and three from the metallopeptidase family. The proteases hydrolyzed 1 mg of casein, hemoglobin, gelatin, ovalbumin, bovine serum albumin, or keratin within 15 s to 30 min. The high keratinolytic activity of this strain was confirmed through the degradation of chicken feathers, horns, hooves, wool, and cattle hide. Chicken feathers were hydrolyzed in 4 days, and the degrees of hydrolysis for cattle hide, wool, hoof, and horn after 7 days of cultivation were 97.2, 34.5, 29.6, and 3.6%, respectively. During submerged fermentation with feather medium in a laboratory bioreactor, the strain secreted enzymes with 249.20 ± 7.88 U/mL protease activity after 24 h. Thus, B. paralicheniformis T7 can be used to produce proteolytic and keratinolytic enzymes for application in processing proteinaceous raw materials and keratinous animal waste.
Collapse
Affiliation(s)
- Saniya Aktayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, 010000, Astana, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, 2 Kanysh Satpayev Street, 010008, Astana, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, 010000, Astana, Kazakhstan.
| |
Collapse
|
4
|
Molina MA, Cazzaniga A, Sgroppo SC, Milde LB, Zapata PD, Fonseca MI. Bioengineered xylanase from Misiones Argentina rainforest: A bakery enhancement approach. J Food Sci 2024; 89:2124-2136. [PMID: 38462841 DOI: 10.1111/1750-3841.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
In this study, we pursued the heterologous expression of the xylanase gene from Trichoderma atroviride, a native fungus in the province of Misiones, and used it to enhance the textural properties of baked goods through varying enzymatic concentrations. This marks the inaugural exploration into its functionality in the context of bread production. The recombinant xylanase exhibited improved activity, reaching 36,292 U L-1, achieved by supplementing the culture medium with dextrose. Following the optimization of recombinant xylanase concentration, promising results emerged, notably reducing hardness and chewiness parameters of bread significantly. Our findings underscore the potential of this native fungal enzyme for industrial processes, offering a sustainable and efficient means to enhance the quality of baked goods with broad implications for the food industry. No prior research has been documented on the heterologous expression of the xylanase gene derived from T. atroviride, from the Misiones rainforest, expressed in Kluyveromyces lactis. PRACTICAL APPLICATION: This research, focusing on the isolation and cloning of xylanase enzyme from Trichoderma atroviride, a native fungus in the province of Misiones, offers a valuable tool for improving the texture of bakery products. By optimizing enzyme concentrations, our findings present a practical approach for the food industry, offering a viable solution to improve the overall quality and consumer satisfaction of bakery products.
Collapse
Affiliation(s)
- Melisa A Molina
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Amanda Cazzaniga
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Sonia C Sgroppo
- Laboratorio de Tecnología Química (FaCENA - IQUIBA - CONICET), Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Laura B Milde
- Departmento de Química, Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Pedro D Zapata
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Maria I Fonseca
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Tai H, Guo Q, Zhao J, Liu Y, Yu H, Liu Y, Qu Y, Du G, Li R. A thermostable xylanase hydrolyzes several polysaccharides from Bacillus altitudinis JYY-02 showing promise for industrial applications. Carbohydr Res 2024; 538:109080. [PMID: 38513464 DOI: 10.1016/j.carres.2024.109080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Polysaccharides have attracted immense attention as the largest source of bioactive compounds. Its bioavailability and bioactivity can be improved by utilizing degradation enzymes to reduce their molecular weight and viscosity. In this study, a 654 bp gene encoding xylanase was screened from the genome of Bacillus altitudinis JYY-02 and overexpressed in Escherichia coli Rosetta (DE3). The recombinant xylanase with a molecular weight of 27.98 kDa was purified (11.7-fold) using Ni-NTA affinity chromatography, with a 43.6% final yield. Through molecular docking, Glu, Arg, Tyr, and Trp were found to be the main amino acids involved in the interaction between xylanase and xylobiose. The effects of pH, temperature, metal ions, and substrates on xylanase activity were determined, and the results showed that the highest catalytic activity was displayed at pH 6.5, 50 °C temperature, with Cu2+ as an activator and xylan as the substrate. The Km (substrate concentration that yields a half-maximal velocity) and Vmax (maximum velocity) of recombinant xylanase were 6.876 mg/mL and 10984.183 μmol/mg∙pr/min, respectively. The recombinant xylanase was thermostable, with 85% and 39% of the enzymatic activity retained after 1 h at 60 °C and 1 h at 90 °C, respectively. The recombinant xylanase demonstrated a significant clarifying effect on fruit juices.
Collapse
Affiliation(s)
- Hongzheng Tai
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Jiamin Zhao
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Yandong Liu
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Hao Yu
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Yili Liu
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Yifan Qu
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China.
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
6
|
Kiribayeva A, Silayev D, Akishev Z, Baltin K, Aktayeva S, Ramankulov Y, Khassenov B. An impact of N-glycosylation on biochemical properties of a recombinant α-amylase from Bacillus licheniformis. Heliyon 2024; 10:e28064. [PMID: 38515717 PMCID: PMC10956057 DOI: 10.1016/j.heliyon.2024.e28064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Amylases are enzymes that are known to hydrolyze starch. High efficiency of amylolytic enzymes allows them to compete in the industry with the technology of chemical hydrolysis of starch. A Bacillus licheniformis strain with high amylolytic activity was isolated from soil and designated as T5. The gene encoding α-amylase from B. licheniformis T5 was successfully expressed in both Escherichia coli (rAmyT5-E) and Pichia pastoris (as rAmyT5-P). According to the study, the recombinant α-amylases rAmyT5-E and rAmyT5-P exhibited the highest activity at pH 6.0 and temperatures of 70 and 80 °C, respectively. Over 80% of the rAmyT5-E enzyme activity was preserved following incubation within the pH range of 5-9; the same was true for rAmyT5-P after incubation at pH 6-9. N-glycosylation reduced the thermal and pH stability of the enzyme. The specific activity and catalytic efficiency of the recombinant AmyT5 α-amylase were also diminished by N-glycosylation.
Collapse
Affiliation(s)
- Assel Kiribayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Dmitriy Silayev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Zhiger Akishev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Kairat Baltin
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Saniya Aktayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| |
Collapse
|
7
|
Yao Q, Xu J, Tang N, Chen W, Gu Q, Li H. Screening, cloning, immobilization and application prospects of a novel β-glucosidase from the soil metagenome. ENVIRONMENTAL RESEARCH 2024; 244:117676. [PMID: 37996002 DOI: 10.1016/j.envres.2023.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
The soil environment for straw return is a rich and valuable library containing many microorganisms and proteins. In this study, we aimed to screen a high-quality β-glucosidase (BGL) from the soil metagenomic library and to overcome the limitation of the low extraction rate of resveratrol in Polygonum cuspidatum. This includes the construction of a soil metagenomic library, screening of BGL, bioinformatics analysis, cloning, expression, immobilization, enzymatic property analysis, and application for the transformation of polydatin. The results showed that the soil metagenomic library of straw return was successfully constructed, and a novel BGL was screened. The identified 1356 bp long BGL belonged to the glycoside hydrolase 1 (GH1) family and was named Bgl1356. After successful cloning and expression of Bgl1356, it was immobilized using chitosan. The optimum temperature of immobilized Bgl1356 was 50 °C, and the pH was 5. It exhibited good tolerance for various metal ions (CO2+, Ni2+, Cu2+, Mn2+, Na2+, Ca2+, and Ag+) and organic solvents (DMSO, Triton-X-10, and ethanol). Enzymatic kinetics assays showed that Bgl1356 had good affinity for the substrate, and the specific enzyme activity was 234.03 U/mg. The conversion rate of polydatin by immobilized Bgl1356 was 95.70 ± 1.08%, facilitating the production of high amounts of resveratrol. Thus, this paper reports a novel temperature-, organic solvent-, and metal ion-tolerant BGL that has good application prospects in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qian Yao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| | - Jin Xu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| | - Nan Tang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Weiji Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Quliang Gu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - He Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Tran DM, Huynh TU, Nguyen TH, Do TO, Nguyen AD. Data on gene cloning, expression, purification, and characterization of the glycoside hydrolase family 11 from Bacillus velezensis. Data Brief 2024; 52:109834. [PMID: 38370019 PMCID: PMC10873866 DOI: 10.1016/j.dib.2023.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 02/20/2024] Open
Abstract
Bacillus velezensis RB.IBE29 is a chitinolytic bacterium originally isolated from the rhizospheric soil of black pepper grown in Vietnam. This bacterium is a strong biocontrol agent against plant pathogens and possesses a novel chitinase system. Genome sequences available in CAZy database revealed B. velezensis possesses one gene encoding xylanase belonging to glycoside hydrolase family 11; however, this enzyme has yet to be un-experimentally characterized. In this work, xyA gene was isolated from the genomic DNA of strain RB.IBE29 and cloned in Escherichia coli DH5α cells using the pUC19 vector. Sequencing analysis showed that the ORF of xyA contains 642 bp and encodes the deduced xylanase with 213 aa and 23.27 kDa. The domain structure of the enzyme has a signal peptide and a family 11 catalytic domain. xyA (without peptide sequence) was successfully expressed in E. coli BL21-CodonPlus (DE3)-RIPL cells using the pColdII vector and purified using the HisTrap FF column. Purified recombinant xylanase degraded xylan substrates, had the highest hydrolytic activity at 55°C in 20 mM sodium phosphate buffer (pH 6.0), and MgCl2, CoCl2, and MnCl2 enhanced the enzymatic activity. Nucleotide sequence of xyA was submitted to the DDBJ/GenBank/EMBL under accession number LC779040. This is the first data on the gene cloning, expression, purification, and characterization of the glycoside hydrolase family 11 from B. velezensis.
Collapse
Affiliation(s)
- Dinh Minh Tran
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Viet Nam
| | - To Uyen Huynh
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Viet Nam
| | - Thi Huyen Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Viet Nam
| | - Tu Oanh Do
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Viet Nam
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000, Viet Nam
| |
Collapse
|
10
|
Rai R, Samanta D, Goh KM, Chadha BS, Sani RK. Biochemical unravelling of the endoxylanase activity in a bifunctional GH39 enzyme cloned and expressed from thermophilic Geobacillus sp. WSUCF1. Int J Biol Macromol 2024; 257:128679. [PMID: 38072346 DOI: 10.1016/j.ijbiomac.2023.128679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
The glycoside hydrolase family 39 (GH39) proteins are renowned for their extremophilic and multifunctional enzymatic properties, yet the molecular mechanisms underpinning these unique characteristics continue to be an active subject of research. In this study, we introduce WsuXyn, a GH39 protein with a molecular weight of 58 kDa, originating from the thermophilic Geobacillus sp. WSUCF1. Previously reported for its exceptional thermostable β-xylosidase activity, WsuXyn has recently demonstrated a significant endoxylanase activity (3752 U·mg-1) against beechwood xylan, indicating towards its bifunctional nature. Physicochemical characterization revealed that WsuXyn exhibits optimal endoxylanase activity at 70 °C and pH 7.0. Thermal stability assessments revealed that the enzyme is resilient to elevated temperatures, with a half-life of 168 h. Key kinetic parameters highlight the exceptional catalytic efficiency and strong affinity of the protein for xylan substrate. Moreover, WsuXyn-mediated hydrolysis of beechwood xylan has achieved 77 % xylan conversion, with xylose as the primary product. Structural analysis, amalgamated with docking simulations, has revealed strong binding forces between xylotetraose and the protein, with key amino acid residues, including Glu278, Tyr230, Glu160, Gly202, Cys201, Glu324, and Tyr283, playing pivotal roles in these interactions. Therefore, WsuXyn holds a strong promise for biodegradation and value-added product generation through lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Rohit Rai
- Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara 144411, India.
| | - Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia
| | | | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; BuG ReMeDEE consortium and Composite and Nanocomposite Advanced Manufacturing Centre/Biomaterials (CNAM/Bio), Rapid City, SD 57701, USA.
| |
Collapse
|
11
|
Düzel A, Bora B, Özgen GÖ, Evran S. Selection of DNA aptamers for the aptamer-assisted magnetic capture of the purified xylanase from Aspergillus niger. Int J Biol Macromol 2024; 257:128540. [PMID: 38061523 DOI: 10.1016/j.ijbiomac.2023.128540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Xylanases are a group of enzymes that catalyze the hydrolysis of xylan. Xylanases have wide industrial applications, and they can produced by various organisms. In this study, we aimed to develop aptamers for the capture of xylanase produced by a wild-type Aspergillus niger strain. Xylanase was produced by Aspergillus niger in a 5-liter stirred-tank bioreactor and then purified by column chromatography. Magnetic bead-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) was performed to select DNA aptamers specific to the purified xylanase. After nine rounds of selection, next-generation sequencing (NGS) analysis was performed. Four aptamers, namely AXYL-1, AXYL-2, AXYL-3, and AXYL-4, were identified for further characterization. The binding properties of the selected aptamers were characterized by fluorescence quenching (FQ) analysis and an enzyme-linked aptamer assay (ELAA). The Kd values were found to be in the low μM range. Then, each aptamer was immobilized on streptavidin-coated magnetic particles, and the recovery ratio of xylanase was determined. Although AXYL-1 wasn't effective, AXYL-2, AXYL-3, and AXYL-4 were proven to capture the xylanase. The maximum recovery rate of xylanase was found to be approximately 54 %.
Collapse
Affiliation(s)
- Ahmet Düzel
- Department of Bioengineering, Faculty of Engineering and Architecture, Sinop University, 57000 Sinop, Türkiye.
| | - Burhan Bora
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Türkiye
| | - Gaye Öngen Özgen
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Türkiye
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Türkiye
| |
Collapse
|
12
|
Mussakhmetov A, Kiribayeva A, Daniyarov A, Bulashev A, Kairov U, Khassenov B. Genome sequence and assembly of the amylolytic Bacillus licheniformis T5 strain isolated from Kazakhstan soil. BMC Genom Data 2024; 25:3. [PMID: 38166625 PMCID: PMC10759562 DOI: 10.1186/s12863-023-01177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVES The data presented in this study were collected with the aim of obtaining the complete genomes of specific strains of Bacillus bacteria, namely, Bacillus licheniformis T5. This strain was chosen based on its enzymatic activities, particularly amylolytic activity. In this study, nanopore sequencing technology was employed to obtain the genome sequences of this strain. It is important to note that these data represent a focused objective within a larger research context, which involves exploring the biochemical features of promising Bacilli strains and investigating the relationship between enzymatic activity, phenotypic features, and the microorganism's genome. DATA DESCRIPTION In this study, the whole-genome sequence was obtained from one Bacillus strain, Bacillus licheniformis T5, isolated from soil samples in Kazakhstan. Sample preparation and genomic DNA library construction were performed according to the Ligation sequencing gDNA kit (SQK-LSK109) protocol and NEBNext module. The prepared library was sequenced on a MinION instrument (Oxford Nanopore Technologies nanopore sequencer with a maximum throughput of up to 30 billion nucleotides per run and no limit on read length), using a flow cell for nanopore sequencing FLO-MIN106D. The genome de novo assembly was performed using the long sequencing reads generated by MinION Oxford Nanopore platform. Finally, one circular contig was obtained harboring a length of 4,247,430 bp with 46.16% G + C content and the mean contig 428X coverage. B. licheniformis T5 genome assembly annotation revealed 5391 protein-coding sequences, 81 tRNAs, 51 repeat regions, 24 rRNAs, 3 virulence factors and 53 antibiotic resistance genes. This sequence encompasses the complete genetic information of the strain, including genes, regulatory elements, and noncoding regions. The data reveal important insights into the genetic characteristics, phenotypic traits, and enzymatic activity of this Bacillus strain. The findings of this study have particular value to researchers interested in microbial biology, biotechnology, and antimicrobial studies. The genomic sequence offers a foundation for understanding the genetic basis of traits such as endospore formation, alkaline tolerance, temperature range for growth, nutrient utilization, and enzymatic activities. These insights can contribute to the development of novel biotechnological applications, such as the production of enzymes for industrial purposes. Overall, this study provides valuable insights into the genetic characteristics, phenotypic traits, and enzymatic activities of the Bacillus licheniformis T5 strain. The acquired genomic sequences contribute to a better understanding of this strain and have implications for various research fields, such as microbiology, biotechnology, and antimicrobial studies.
Collapse
Affiliation(s)
- Arman Mussakhmetov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Astana, 010000, Kazakhstan
| | - Assel Kiribayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Astana, 010000, Kazakhstan
| | - Asset Daniyarov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev, Eurasian National University, 2 Kanysh Satpayev Street, Astana, 010008, Kazakhstan
| | - Aitbay Bulashev
- S. Seifullin Kazakh Agrotechnical Research University, 62 Zhenis Avenue, Astana, 010001, Kazakhstan
| | - Ulykbek Kairov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000, Kazakhstan.
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, Astana, 010000, Kazakhstan.
| |
Collapse
|
13
|
Benatti ALT, Polizeli MDLTDM. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023; 11:microorganisms11010162. [PMID: 36677454 PMCID: PMC9864444 DOI: 10.3390/microorganisms11010162] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human population growth, industrialization, and globalization have caused several pressures on the planet's natural resources, culminating in the severe climate and environmental crisis which we are facing. Aiming to remedy and mitigate the impact of human activities on the environment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other various industries, is presented as a more sustainable alternative. These enzymes are characterized as a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer units, making it accessible for bioconversion into various products and applications in the most diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms used to obtain them. In addition, different possible industrial applications for these enzymes will be discussed, as well as information about their production modes and considerations about recent advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses at an industrial scale.
Collapse
|
14
|
Agarase, Amylase and Xylanase from Halomonas meridiana: A Study on Optimization of Coproduction for Biomass Saccharification. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coproduction of multienzymes from single potential microbe has captivated contemplation in industries. Bacterial strain, Halomonas meridiana VITSVRP14, isolated from seaweed was labored to produce amylase, agarase and xylanase conjointly using submerged fermentation. The optimum production conditions clinched by classical optimization were: pH 8; 1.5% inoculum; 24 h incubation, 40 °C; 8% NaCl (sodium chloride); 1% lactose and NaNO3 (sodium nitrate). The preponderant variables (pH, temperature, lactose) and their interaction effect on enzyme production were studied by Plackett-Burman design and Response Surface Methodology (RSM). There were 3.29, 1.81 and 2.08 fold increase in enzyme activity with respect to agarase, amylase and xylanase after optimization against basal medium. After 24 h of enzymatic treatment, the saccharification rates of the coproduced enzyme mixture were 38.96% on rice bran, 49.85% on wheat bran, 61.2% on cassava bagasse and 57.82% on corn cob. Thus, the coproduced enzyme mixture from a bacterium with halotolerance is plausible in pretreated lignocellulose degradation. The ability of this single microbe Halomonas meridiana VITSVRP14, in coproducing agarase, amylase and xylanase give the nod for its application in biomass saccharification by subsiding cost, energy and time involved in the process.
Collapse
|