1
|
Mane V, Mehta R, Alvarez N, Sharma V, Park S, Fox A, DeCarlo C, Yang X, Perlin DS, Powell RLR. In vivo antiviral efficacy of LCTG-002, a pooled, purified human milk secretory IgA product, against SARS-CoV-2 in a murine model of COVID-19. Hum Vaccin Immunother 2024; 20:2303226. [PMID: 38251677 PMCID: PMC10807469 DOI: 10.1080/21645515.2024.2303226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosae, with secretory form (sIgA) being dominant and uniquely stable. sIgA is challenging to produce recombinantly but is naturally found in human milk, which could be considered a global resource for this biologic, justifying its development as a mucosal therapeutic. Presently, SARS-CoV-2 was utilized as a model mucosal pathogen, and methods were developed to efficiently extract human milk sIgA from donors who were naïve to SARS-CoV-2 or had recovered from infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA in their milk (pooled to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1% or greater were all associated with sIgA. Western blot demonstrated that all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher Spike binding (mean endpoint of 0.87 versus 5.87). LCTG-002 was capable of blocking the Spike receptor-binding domain - angiotensin-converting enzyme 2 (ACE2) interaction with significantly greater potency compared to control (mean LCTG-002 IC50 154ug/mL versus 50% inhibition not achieved for control), and exhibited significant neutralization activity against Spike-pseudotyped virus infection (mean LCTG-002 IC50 49.8ug/mL versus 114.5ug/mL for control). LCTG-002 was tested for its capacity to reduce viral lung burden in K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 significantly reduced SARS-CoV-2 titers compared to control when administered at 0.25 mg/day or 1 mg/day, with a maximum TCID50 reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure and efficacious in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics.
Collapse
Affiliation(s)
- Viraj Mane
- Lactiga US, Inc. 675 US-1, North Brunswick, NJ, USA
| | - Rikin Mehta
- Lactiga US, Inc. 675 US-1, North Brunswick, NJ, USA
| | - Nadine Alvarez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Vijeta Sharma
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Steven Park
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Alisa Fox
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| | - Claire DeCarlo
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| | - Xiaoqi Yang
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Rebecca L. R. Powell
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY, USA
| |
Collapse
|
2
|
Bernardi S, Roversi M, Torelli A, Musolino A, Nicastri E, Palma P, Rossi P, Vallesi L, Corsetti T, Lancella L, Lucarelli B, Galaverna F, Villani A, Perno CF, Raponi M. Safety of Nirmatrelvir-Ritonavir Administration in Children With Immunodeficiency and/or Comorbidities With SARS-CoV-2 Infection: A Retrospective Clinical Report. Pediatr Infect Dis J 2024:00006454-990000000-01146. [PMID: 39774678 DOI: 10.1097/inf.0000000000004657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Despite the generally mild course of COVID-19 in children, immunocompromised patients may experience complications or severe infection. This study reports the clinical outcomes of pediatric patients treated with nirmatrelvir and ritonavir (N/R) for SARS-CoV-2 infection. METHODS We retrospectively reported the data of children with any immunodeficiency with COVID-19 who received N/R treatment between March 2022 and June 2023 at the Bambino Gesù Children's Hospital. Patients were treated with N/R for 5 days. We compared liver and kidney function before and after treatment with N/R and looked for a relationship between the duration of COVID-19 infection and the time from positivity to administration of N/R administration. RESULTS A total of 85 pediatric immunocompromised patients with COVID-19 were included in the study, with a mean age of 10.7 years (SD 4.8), mostly males (60%). We found a significant difference in the viral load before and after N/R administration. Four patients (4.7%) experienced adverse events related to N/R therapy. One of these had to discontinue N/R administration. Three patients (3.5%) experienced negative effects of drug interactions during N/R therapy, namely an increase of sirolimus and ciclosporin serum levels. A significant positive correlation was found between the time from SARS-CoV-2 positivity to N/R administration and the duration of SARS-CoV-2 swab positivity (R = 0.78, P < 0.001), suggesting that the earlier N/R is administered, the shorter the duration of COVID-19 in the study sample. CONCLUSION Our experience shows that N/R is reasonably safe in the pediatric population and could favor viral clearance, thus reducing the duration of infection.
Collapse
Affiliation(s)
- Stefania Bernardi
- From the Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Roversi
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
- Clinical Trial Area, Development and Implementation of Drugs, Vaccines, and Medical Devices for Pediatric Use, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Torelli
- Residency School of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Musolino
- Residency School of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases "Lazzaro Spallanzani," IRCCS, Rome, Italy
| | - Paolo Palma
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Systems Medicine Department, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Rossi
- Clinical Trial Area, Development and Implementation of Drugs, Vaccines, and Medical Devices for Pediatric Use, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Systems Medicine Department, University of Rome Tor Vergata, Rome, Italy
| | - Leonardo Vallesi
- Hospital Pharmacy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tiziana Corsetti
- Hospital Pharmacy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Lancella
- From the Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Barbarella Lucarelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Federica Galaverna
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Alberto Villani
- Systems Medicine Department, University of Rome Tor Vergata, Rome, Italy
- General Pediatrics and ED 2nd Level, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
3
|
Fricke C, Ulrich L, Kochmann J, Gergen J, Kovacikova K, Roth N, Beer J, Schnepf D, Mettenleiter TC, Rauch S, Petsch B, Hoffmann D, Beer M, Corleis B, Dorhoi A. mRNA vaccine-induced IgG mediates nasal SARS-CoV-2 clearance in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102360. [PMID: 39524696 PMCID: PMC11550364 DOI: 10.1016/j.omtn.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Coronavirus disease 2019 (COVID-19) mRNA vaccines that have contributed to controlling the SARS-CoV-2 pandemic induce specific serum antibodies, which correlate with protection. However, the neutralizing capacity of antibodies for emerging SARS-CoV-2 variants is altered. Suboptimal antibody responses are observed in patients with humoral immunodeficiency diseases, ongoing B cell depletion therapy, and aging. Common experimental mouse models with altered B cell compartments, such as B cell depletion or deficiency, do not fully recapitulate scenarios of declining or suboptimal antibody levels as observed in humans. We report on SARS-CoV-2 immunity in a transgenic mouse model with restricted virus-specific antibodies. Vaccination of C57BL/6-Tg(IghelMD4)4Ccg/J mice with unmodified or N1mΨ-modified mRNA encoding for ancestral spike (S) protein and subsequent challenge with mouse-adapted SARS-CoV-2 provided insights into antibody-independent immunity and the impact of antibody titers on mucosal immunity. Protection against fatal disease was independent of seroconversion following mRNA vaccination, suggesting that virus-specific T cells can compensate for suboptimal antibody levels. In contrast, mRNA-induced IgG in the nasal conchae limited the local viral load and disease progression. Our results indicate that parenteral mRNA immunization can elicit nasal IgG antibodies that effectively suppress local viral replication, highlighting the potential of vaccines in controlling SARS-CoV-2 transmission and epidemiology.
Collapse
Affiliation(s)
- Charlie Fricke
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jana Kochmann
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | - Julius Beer
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
4
|
Chang-Rabley E, van Zelm MC, Ricotta EE, Edwards ESJ. An Overview of the Strategies to Boost SARS-CoV-2-Specific Immunity in People with Inborn Errors of Immunity. Vaccines (Basel) 2024; 12:675. [PMID: 38932404 PMCID: PMC11209597 DOI: 10.3390/vaccines12060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
Collapse
Affiliation(s)
- Emma Chang-Rabley
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Emily E. Ricotta
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Preventive Medicine and Biostatistics, Uniform Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Zendt M, Bustos Carrillo FA, Kelly S, Saturday T, DeGrange M, Ginigeme A, Wu L, Callier V, Ortega-Villa A, Faust M, Chang-Rabley E, Bugal K, Kenney H, Khil P, Youn JH, Osei G, Regmi P, Anderson V, Bosticardo M, Daub J, DiMaggio T, Kreuzburg S, Pala F, Pfister J, Treat J, Ulrick J, Karkanitsa M, Kalish H, Kuhns DB, Priel DL, Fink DL, Tsang JS, Sparks R, Uzel G, Waldman MA, Zerbe CS, Delmonte OM, Bergerson JRE, Das S, Freeman AF, Lionakis MS, Sadtler K, van Doremalen N, Munster V, Notarangelo LD, Holland SM, Ricotta EE. Characterization of the antispike IgG immune response to COVID-19 vaccines in people with a wide variety of immunodeficiencies. SCIENCE ADVANCES 2023; 9:eadh3150. [PMID: 37824621 PMCID: PMC10569702 DOI: 10.1126/sciadv.adh3150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Research on coronavirus disease 2019 vaccination in immune-deficient/disordered people (IDP) has focused on cancer and organ transplantation populations. In a prospective cohort of 195 IDP and 35 healthy volunteers (HV), antispike immunoglobulin G (IgG) was detected in 88% of IDP after dose 2, increasing to 93% by 6 months after dose 3. Despite high seroconversion, median IgG levels for IDP never surpassed one-third that of HV. IgG binding to Omicron BA.1 was lowest among variants. Angiotensin-converting enzyme 2 pseudo-neutralization only modestly correlated with antispike IgG concentration. IgG levels were not significantly altered by receipt of different messenger RNA-based vaccines, immunomodulating treatments, and prior severe acute respiratory syndrome coronavirus 2 infections. While our data show that three doses of coronavirus disease 2019 vaccinations induce antispike IgG in most IDP, additional doses are needed to increase protection. Because of the notably reduced IgG response to Omicron BA.1, the efficacy of additional vaccinations, including bivalent vaccines, should be studied in this population.
Collapse
Affiliation(s)
- Mackenzie Zendt
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fausto A. Bustos Carrillo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, NIAID, NIH, Rockville, MD, USA
| | - Sophie Kelly
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, USA
| | | | - Maureen DeGrange
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anita Ginigeme
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Medical Science and Computing LLC, Rockville, MD, USA
| | - Lurline Wu
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Viviane Callier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ana Ortega-Villa
- Biostatistics Research Branch, Division of Clinical Research, NIAID, NIH, Rockville, MD, USA
| | | | - Emma Chang-Rabley
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kara Bugal
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pavel Khil
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Jung-Ho Youn
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Gloria Osei
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Pravesh Regmi
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Victoria Anderson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Janine Daub
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Thomas DiMaggio
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Samantha Kreuzburg
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Justina Pfister
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jennifer Treat
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jean Ulrick
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, USA
| | - Douglas B. Kuhns
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Debra L. Priel
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Danielle L. Fink
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John S. Tsang
- Department of Immunobiology and Yale Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT,USA
| | - Rachel Sparks
- Laboratory of Immune System Biology, DIR, NIAID, NIH, Bethesda, MD,USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Meryl A. Waldman
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Christa S. Zerbe
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jenna R. E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sanchita Das
- Division of Laboratory Medicine, NIH Clinical Center, Bethesda, MD,USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kaitlyn Sadtler
- Section for Immunoengineering, NIBIB, NIH, Bethesda, MD, USA
| | | | | | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emily E. Ricotta
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
6
|
KARABİBER E, ATİK Ö, TEPETAM F, ERGAN B, İLKİ A, KARAKOÇ AYDINER E, ÖZEN A, ÖZYER F, BARIŞ S. Clinical and immunological outcomes of SARS-CoV-2 infection in patients with inborn errors of immunity receiving different brands and doses of COVID-19 vaccines. Tuberk Toraks 2023; 71:236-249. [PMID: 37740627 PMCID: PMC10912874 DOI: 10.5578/tt.20239705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023] Open
Abstract
Introduction Vaccines against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) provide successful control of the coronavirus-2019 (COVID-19) pandemic. The safety and immunogenicity studies are encouraging in patients with inborn errors of immunity (IEI); however, data about mortality outcomes and severe disease after vaccination still need to be fully addressed. Therefore, we aimed to determine the clinical and immunological outcomes of SARS-CoV-2 infection in patients with IEI who have received vaccination. Materials and Methods Eighty-eight patients with a broad range of molecular etiologies were studied; 45 experienced SARS-CoV-2 infection. Infection outcomes were analyzed in terms of genetic etiology, background clinical characteristics, and immunization history, including the type and number of doses received and the time elapsed since vaccination. In addition, anti-SARS-CoV-2 antibodies were quantified using electrochemiluminescent immunoassay. Results Patients were immunized using one of the three regimens: inactivated (Sinovac, Coronavac®), mRNA (BNT162b2, Comirnaty®, Pfizer-Biontech), and a combination. All three regimens induced comparable anti-SARS-CoV-2 IgG levels, with no differences in the adverse events. Among 45 patients with COVID-19, 26 received a full course of vaccination, while 19 were vaccine-naive or received incomplete dosing. No patients died due to COVID-19 infection. The fully immunized group had a lower hospitalization rate (23% vs. 31.5%) and a shorter symptomatic phase than the others. Among the fully vaccinated patients, serum IgM and E levels were significantly lower in hospitalized patients than non-hospitalized patients. Conclusion COVID-19 vaccines were well-tolerated by the IEI patients, and a full course of immunization was associated with lower hospitalization rates and a shorter duration of COVID-19 symptoms.
Collapse
Affiliation(s)
- E. KARABİBER
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Marmara University Pendik Training and Research Hospital, İstanbul, Türkiye
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - Ö. ATİK
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
| | - F.M. TEPETAM
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
| | - B. ERGAN
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
| | - A. İLKİ
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
| | - E. KARAKOÇ AYDINER
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - A. ÖZEN
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - F. ÖZYER
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Marmara University Pendik Training and Research Hospital, İstanbul, Türkiye
| | - S. BARIŞ
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| |
Collapse
|
7
|
Mane V, Mehta R, Alvarez N, Sharma V, Park S, Fox A, DeCarlo C, Yang X, Perlin DS, Powell RLR. In Vivo Antiviral Efficacy of LCTG-002, a Pooled, Purified Human Milk Secretory IgA product, Against SARS-CoV-2 in a Murine Model of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554813. [PMID: 37693438 PMCID: PMC10491103 DOI: 10.1101/2023.08.25.554813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosal compartments including the respiratory tract, with the secretory form of IgA (sIgA) being dominant and uniquely stable in these environments. sIgA is naturally found in human milk, which could be considered a global resource for this biologic, justifying the development of human milk sIgA as a dedicated airway therapeutic for respiratory infections such as SARS-CoV-2. In the present study, methods were therefore developed to efficiently extract human milk sIgA from donors who were either immunologically naïve to SARS-CoV-2 (pooled as a control IgA) or had recovered from a PCR-confirmed SARS-CoV-2 infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA Abs in their milk (pooled together to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1.0% or greater were all associated with sIgA. None of the proteins exhibited statistically significant differences between batches. Western blot demonstrated all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher binding to Spike, and was also capable of blocking the Spike - ACE2 interaction in vitro with 6.3x greater potency compared to control IgA (58% inhibition at ∼240ug/mL). LCTG-002 was then tested in vivo for its capacity to reduce viral burden in the lungs of K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 was demonstrated to significantly reduce SARS-CoV-2 titers in the lungs compared to control IgA when administered at either 250ug/day or 1 mg/day, as measured by TCID50, plaque forming units (PFU), and qRT-PCR, with a maximum reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure, efficacious, and well tolerated in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics against SARS-CoV-2 and other mucosal infections.
Collapse
|
8
|
Paris R. SARS-CoV-2 Infection and Response to COVID-19 Vaccination in Patients With Primary Immunodeficiencies. J Infect Dis 2023; 228:S24-S33. [PMID: 37539759 PMCID: PMC10401615 DOI: 10.1093/infdis/jiad145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/06/2023] [Indexed: 08/05/2023] Open
Abstract
Primary immunodeficiencies (PIDs) are heterogeneous, rare disorders that increase susceptibility to infection and/or immune dysregulation. Individuals with certain PIDs are at high risk of severe or fatal outcomes from SARS-CoV-2 infections (the causative agent of COVID-19), either due to the underlying PID and/or due to the presence of comorbidities such as severe lung and liver disease. Vaccination remains the primary strategy to protect individuals with PID from COVID-19. However, populations with PID exhibit variable vaccine seroresponse rates, antibody titers, and neutralization activity depending on the type of PID and/or COVID-19 vaccine, and consequently, are at an elevated risk of severe disease. In this article, we review the COVID-19 burden in patients with PIDs and focus in-depth on findings from patients with predominantly antibody deficiencies or combined immunodeficiencies. We conclude by providing COVID-19 vaccination recommendations for this population.
Collapse
Affiliation(s)
- Robert Paris
- Correspondence: Robert Paris, MD, FACP, FIDSA, Moderna, Inc., 200 Technology Square, Cambridge, MA 02139, USA ()
| |
Collapse
|
9
|
Tandon M, DiGiacomo DV, Zhou B, Hesterberg P, Rosenberg CE, Barmettler S, Farmer JR. Response to SARS-CoV-2 initial series and additional dose vaccine in pediatric patients with predominantly antibody deficiency. Front Immunol 2023; 14:1217718. [PMID: 37575247 PMCID: PMC10413262 DOI: 10.3389/fimmu.2023.1217718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Data regarding response to SARS-CoV-2 immunization in pediatric patients with predominantly antibody deficiency (PAD) is limited. We evaluated SARS-CoV-2 immunization response by anti-SARS-CoV-2-spike antibody level in 15 pediatric PAD patients. These data were compared to a published cohort of adult PAD patients (n=62) previously analyzed following SARS-CoV-2 immunization at our single center institution. We evaluated demographics, clinical characteristics, immunophenotype, infection history, and past medication use by chart review. Following a two-dose monovalent initial series SARS-CoV-2 immunization, mean anti-SARS-CoV-2-spike antibody levels were significantly higher in pediatric PAD patients compared to adult PAD patients (2,890.7 vs. 140.1 U/mL; p<0.0001). Pediatric PAD patients with low class-switched memory B-cells, defined as <2% of total CD19+ B-cells, had significantly lower mean anti-SARS-CoV-2-spike antibody levels than those without (p=0.02). Following a third-dose monovalent SARS-CoV-2 immunization, the mean anti-SARS-CoV-2-spike antibody levels in pediatric PAD patients significantly increased (2,890.7 to 18,267.2 U/mL; p<0.0001). These data support Centers for Disease Control guidelines regarding three-part SARS-CoV-2 vaccine series, including in the pediatric PAD patient demographic.
Collapse
Affiliation(s)
- Megha Tandon
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Daniel V. DiGiacomo
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Baijun Zhou
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Paul Hesterberg
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Chen E. Rosenberg
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sara Barmettler
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jocelyn R. Farmer
- Harvard Medical School, Boston, MA, United States
- Division of Allergy and Inflammation, Beth Israel Lahey Health, Boston, Massachusetts, United States
| |
Collapse
|