1
|
Nayak TR, Chrastina A, Valencia J, Cordova-Robles O, Yedidsion R, Buss T, Cederstrom B, Koziol J, Levin MD, Olenyuk B, Schnitzer JE. Rapid precision targeting of nanoparticles to lung via caveolae pumping system in endothelium. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01786-z. [PMID: 39379614 DOI: 10.1038/s41565-024-01786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/08/2024] [Indexed: 10/10/2024]
Abstract
Modern medicine seeks precision targeting, imaging and therapy to maximize efficacy and avoid toxicities. Nanoparticles (NPs) have tremendous yet unmet clinical potential to carry and deliver imaging and therapeutic agents systemically with tissue precision. But their size contributes to rapid scavenging by the reticuloendothelial system and poor penetration of key endothelial cell (EC) barriers, limiting target tissue uptake, safety and efficacy. Here we discover the ability of the EC caveolae pumping system to outpace scavenging and deliver NPs rapidly and specifically into the lungs. Gold and dendritic NPs are conjugated to antibodies targeting caveolae of the lung microvascular endothelium. SPECT-CT imaging and biodistribution analyses reveal that rat lungs extract most of the intravenous dose within minutes to achieve precision lung imaging and targeting with high lung concentrations exceeding peak blood levels. These results reveal how much ECs can both limit and promote tissue penetration of NPs and the power and size-dependent limitations of the caveolae pumping system. This study provides a new retargeting paradigm for NPs to avoid reticuloendothelial system uptake and achieve rapid precision nanodelivery for future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Tapas R Nayak
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Adrian Chrastina
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Jose Valencia
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | | | - Robert Yedidsion
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Tim Buss
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | | | - Jim Koziol
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Michael D Levin
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA.
- Institute of Engineering in Medicine, UCSD, La Jolla, CA, USA.
| |
Collapse
|
2
|
Yang Y, Ivanov DG, Levin MD, Olenyuk B, Cordova-Robles O, Cederstrom B, Schnitzer JE, Kaltashov IA. Characterization of Large Immune Complexes with Size Exclusion Chromatography and Native Mass Spectrometry Supplemented with Gas Phase Ion Chemistry. Anal Chem 2024. [PMID: 38319243 DOI: 10.1021/acs.analchem.3c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Large immune complexes formed by the cross-linking of antibodies with polyvalent antigens play critical roles in modulating cell-mediated immunity. While both the size and the shape of immune complexes are important determinants in Fc receptor-mediated signaling responsible for phagocytosis, degranulation, and, in some instances, autoimmune pathologies, their characterization remains extremely challenging due to their large size and structural heterogeneity. We use native mass spectrometry (MS) supplemented with limited charge reduction in the gas phase to determine the stoichiometry of immune complexes formed by a bivalent (homodimeric) antigen, a 163 kDa aminopeptidase P2 (APP2), and a monoclonal antibody (mAb) to APP2. The observed (APP2·mAb)n complexes populate a wide range of stoichiometries (n = 1-4) with the largest detected species exceeding 1 MDa, although the gas-phase dissociation products are also evident in the mass spectra. While frequently considering a nuisance that complicates interpretation of native MS data, limited dissociation provides an additional dimension for characterization of the immune complex quaternary structure. APP2/mAb associations with identical composition but slightly different elution times in size exclusion chromatography exhibit notable differences in their spontaneous fragmentation profiles. The latter indicates the presence of both extended linear and cyclized (APP2·mAb)n configurations. The unique ability of MS to distinguish between such isomeric structures will be invaluable for a variety of applications where the biological effects of immune complexes are determined by their ability to assemble Fc receptor clusters of certain density on cell surfaces, such as platelet activation by clustering the low-affinity receptors FcγRIIa on their surface.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Michael D Levin
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Oscar Cordova-Robles
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
3
|
Morsi AA, Mersal EA, Abdelmoneim AM, Faruk EM, Sofii MM, Sadek NA, Ibrahim KE, Aljanfawe HJ, Elmadhoun I, Mubarak W, Mahmoud MM, Salim MS. ACE2/ACE imbalance mediates bisphenol A-induced lung injury in Wistar rats: Results from captopril versus losartan histo-biochemical study. Heliyon 2023; 9:e22056. [PMID: 38027817 PMCID: PMC10661530 DOI: 10.1016/j.heliyon.2023.e22056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Bisphenol-A (BPA) is a synthetic chemical compound broadly used in the plastic and epoxy resin industries with a considerable potential for food contamination. Literary reports have suggested that the altered renin-angiotensin system (RAS) is a mechanism for lung injury and inflammation caused by variable agents. The current study sought to investigate the contribution of RAS to BPA-induced lung damage. Moreover, the study assessed whether angiotensin II and/or bradykinin pathways were involved. For this aim, the angiotensin-converting enzyme (ACE) inhibitor captopril (Cap), either alone or combined with bradykinin receptor antagonist icatibant (Icat), was attempted versus the angiotensin receptor blocker losartan (Los). An eight-week study was conducted on forty Wistar male albino rats randomly divided into five equal groups: control, BPA, BPA/Cap, BPA/Los, and BPA/Cap/Icat groups. Captopril (100 mg/mL) and losartan (200 mg/mL) were given orally in drinking water, but icatibant (Icat) was injected subcutaneously (250 μg/kg) during the last two weeks of captopril treatment. Biochemical analysis of bronchoalveolar lavage fluid (BALF) and lung tissues, polymerase chain reaction (PCR) assay for ACE, ACE2, and caspase-3 genes expression, and histological and immunohistochemical studies were carried out to evaluate BPA-mediated pulmonary inflammation/apoptosis. BPA impaired the histological structure of the lungs, increased ACE, ACE2, and caspase-3 expressions at both gene/protein levels, and increased BALF inflammatory cytokines and lung oxidative markers. Inhibiting the ACE activity by captopril maintained the histological lung injury score, restored inflammation and the ACE2/ACE balance, and decreased apoptosis. Further improvement was obtained by the angiotensin II receptor (ATR1) blocker losartan. Icatibant (bradykinin B2 receptor blocker) didn't counteract the observed captopril effects. It was strongly suggested that RAS contributed to BPA-induced lung damage via alteration of ACE2 and ACE expression mediating angiotensin II generation rather than bradykinin.
Collapse
Affiliation(s)
- Ahmed A. Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ezat A. Mersal
- Biochemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Vision Colleges, Riyadh, Saudi Arabia
| | | | - Eman Mohamed Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed M. Sofii
- Department of Anatomy and Embryology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nehad Ahmed Sadek
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | | | | | - Mohamed S. Salim
- Medical Laboratory Technology Department, Higher Technological Institute of Applied Health Sciences, Beni-Suef, Egypt
| |
Collapse
|
4
|
Kadam AH, Schnitzer JE. Characterization of acute lung injury in the bleomycin rat model. Physiol Rep 2023; 11:e15618. [PMID: 36898724 PMCID: PMC10005890 DOI: 10.14814/phy2.15618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
The aim of this study was to describe and characterize the pathophysiological changes occurring during the early inflammatory phase (first 3 days) in the rat bleomycin model of lung injury preceding the development of fibrosis. Further, we wanted to understand the kinetics and factors contributing to bleomycin-induced acute lung injury (ALI) and provide a robust, reliable and reproducible framework of features of ALI readouts to assess effects of therapeutics on bleomycin-induced ALI in rats. We induced ALI in rats with intratracheal (i.t.) installation of bleomycin. The animals were sacrificed on predetermined time points, that is, Day 0, 1, 2, and 3 post the bleomycin challenge. We analyzed bronchoalveolar lavage fluid (BALF) and lung tissue to establish and assess relevant experimental features of ALI. We demonstrated that bleomycin induced key features of experimental ALI including a profound increase in neutrophils in BALF (50-60%), pulmonary edema, and lung pathology on Day 3 after challenge. Furthermore, we showed that TGF-β1, IL-1β, TNF-α, IL-6, CINC-1, TIMP-1, and WISP-1 were induced by studying their kinetic profile during the first 3 days after bleomycin injury consistent with their known role ALI. We also confirmed that detectable fibrogenesis occurs at the earliest on Day 3 after injury based on collagen content, along with changes in the TGF-β/Smad signaling pathway and increased expression of Galectin-3, Vimentin, and Fibronectin in lung homogenate. Our report presents robust features and contributing mediators/factors to the pathology of bleomycin-induced ALI in rats on Day 3. The kinetic data provide insights on the progression of ALI and a detailed understanding of early events before actual fibrosis development. This set of experimental endpoints is very appropriate and invaluable for efficacy testing of potential novel therapeutic treatments (single or combined) in ALI and understanding their mechanism of action.
Collapse
Affiliation(s)
- Anil Hari Kadam
- Proteogenomics Research Institute for Systems Medicine (PRISM)La JollaCaliforniaUSA
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM)La JollaCaliforniaUSA
| |
Collapse
|