1
|
Tonne JM, Budzik K, Carrasco TF, Ebbert L, Thompson J, Nace R, Kendall B, Diaz RM, Russell SJ, Vile RG. Smoldering oncolysis by foamy virus carrying CD19 as a CAR target escapes CAR T detection by genomic modification. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200852. [PMID: 39220111 PMCID: PMC11362648 DOI: 10.1016/j.omton.2024.200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have had limited success against solid tumors. Here, we used an oncolytic foamy virus (oFV) to display a model CAR target antigen (CD19) on tumors in combination with anti-CD19 CAR T cells. We generated oFV-Δbel2 and oFV-bel2 vectors to test the efficiency and stability of viral/CD19 spread. While both viruses conferred equal CAR T killing in vitro, the oFV-Δbel2 virus acquired G-to-A mutations, whereas oFV-bel2 virus had genome deletions. In subcutaneous tumor models in vivo, CAR T cells led to a significant decrease in oFV-specific bioluminescence, confirming clearance of oFV-infected tumor cells. However, the most effective therapy was with high-dose oFV in the absence of CAR T cells, indicating that CAR T clearance of oFV was detrimental. Moreover, in tumors that escaped CAR T cell treatment, resurgent virus contained deletions within the oFV-CD19 transgene, allowing the virus to escape CAR T elimination. Therefore, oFV represents a slow smoldering type of oncolytic virus, whose chronic spread through tumors generates anti-tumor therapy, which is abolished by CAR T therapy. These results suggest that further development of this oncolytic platform, with additional immunotherapeutic arming, may allow for an effective combination of chronic oncolysis.
Collapse
Affiliation(s)
- Jason M. Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Karol Budzik
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Talia Fernandez Carrasco
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Vyriad Inc, Rochester, MN 55901, USA
| | - Landon Ebbert
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Kendall
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Vyriad Inc, Rochester, MN 55901, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Hirch T, Brander N, Schenk F, Pöllmann SJ, Reichenbach J, Schubert R, Modlich U. Expression of a large coding sequence: Gene therapy vectors for Ataxia Telangiectasia. Sci Rep 2023; 13:19386. [PMID: 37938627 PMCID: PMC10632516 DOI: 10.1038/s41598-023-46332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Ataxia telangiectasia is a monogenetic disorder caused by mutations in the ATM gene. Its encoded protein kinase ATM plays a fundamental role in DNA repair of double strand breaks (DSBs). Impaired function of this kinase leads to a multisystemic disorder including immunodeficiency, progressive cerebellar degeneration, radiation sensitivity, dilated blood vessels, premature aging and a predisposition to cancer. Since allogenic hematopoietic stem cell (HSC) transplantation improved disease outcome, gene therapy based on autologous HSCs is an alternative promising concept. However, due to the large cDNA of ATM (9.2 kb), efficient packaging of retroviral particles and sufficient transduction of HSCs remains challenging.We generated lentiviral, gammaretroviral and foamy viral vectors with a GFP.F2A.Atm fusion or a GFP transgene and systematically compared transduction efficiencies. Vector titers dropped with increasing transgene size, but despite their described limited packaging capacity, we were able to produce lentiviral and gammaretroviral particles. The reduction in titers could not be explained by impaired packaging of the viral genomes, but the main differences occurred after transduction. Finally, after transduction of Atm-deficient (ATM-KO) murine fibroblasts with the lentiviral vector expressing Atm, we could show the expression of ATM protein which phosphorylated its downstream substrates (pKap1 and p-p53).
Collapse
Affiliation(s)
- Tanja Hirch
- Division of Veterinary Medicine, RG Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
| | - Nadine Brander
- Division of Veterinary Medicine, RG Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
| | - Franziska Schenk
- Division of Veterinary Medicine, RG Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
| | - Simon J Pöllmann
- Division of Veterinary Medicine, RG Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
- Department of Gene and Cell Therapy, Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
| | - Janine Reichenbach
- Department of Gene and Cell Therapy, Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Deptartment of Somatic Gene Therapy, University Children's Hospital Zurich, Zurich, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Ralf Schubert
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Ute Modlich
- Division of Veterinary Medicine, RG Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany.
- Department of Gene and Cell Therapy, Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
3
|
Evaluation of the stability and intratumoral delivery of foreign transgenes encoded by an oncolytic Foamy Virus vector. Cancer Gene Ther 2022; 29:1240-1251. [PMID: 35145270 PMCID: PMC9363555 DOI: 10.1038/s41417-022-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Foamy Viruses are cell cycle-dependent retroviruses capable of persisting unintegrated in quiescent cells until cell division occurs. This unique ability allows them to target slowly dividing human tumor cells which remains an unmet need in oncolytic virotherapy. We have previously reported the generation of oncolytic Foamy Virus (oFV) vector system and demonstrated its superiority over oncolytic Murine Leukemia Virus vectors in infecting slowly dividing cancer cells. In the present study we evaluated (i) the ability of oFV to carry foreign transgenes and (ii) the genetic stability of these vectors upon serial passage. The thymidine kinase (TK) and inducible caspase 9 (iCasp9) cDNAs could be detected in the oFV backbone for up to 3 in vitro passages. In vivo, GFP-, TK- and iCasp9- carrying oFV vectors propagated efficiently in subcutaneous xenograft glioblastoma tumors and drove transgene expression for up to 66 days. However, in vivo oFV vector spread eventually resulted in complete loss of the iCasp9 cDNA, minor loss of the TK cDNA and negligible loss of the GFP. Our results suggest that oFV is a promising gene delivery platform and that transgenes smaller than 1 kb might be most suitable for oFV arming.
Collapse
|
4
|
Oncolytic Foamy Virus - generation and properties of a nonpathogenic replicating retroviral vector system that targets chronically proliferating cancer cells. J Virol 2021; 95:JVI.00015-21. [PMID: 33692205 PMCID: PMC8139661 DOI: 10.1128/jvi.00015-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonpathogenic retroviruses of the Spumaretrovirinae subfamily can persist long-term in the cytoplasm of infected cells, completing their lifecycle only after the nuclear membrane dissolves at the time of cell division. Since the targeting of slowly dividing cancer cells remains an unmet need in oncolytic virotherapy we constructed a replication competent Foamy Virus vector (oFV) from the genomes of two chimpanzee Simian Foamy Viruses (PAN1 and PAN2) and inserted a GFP transgene in place of the bel-2 open reading frame. oFV-GFP infected and propagated with slow kinetics in multiple human tumor cell lines, inducing a syncytial cytopathic effect. Infection of growth arrested MRC5 cells was not productive, but oFV genomes persisted in the cytoplasm and the productive viral lifecycle resumed when cell division was later restored. In vivo, the virus propagated extensively in intraperitoneal ovarian cancer xenografts, slowing tumor growth, significantly prolonging survival of the treated mice and sustaining GFP transgene expression for at least 45 days. Our data indicate that oFV is a promising new replication-competent viral and gene delivery platform for efficient targeting of the most fundamental trait of cancer cells, their ability to sustain chronic proliferation.Significance:The infectivity of certain retroviruses is limited to dividing cells, which makes them attractive tools for targeting cancer cell proliferation. Previously developed replication-competent gammaretroviral vectors spread efficiently in rapidly dividing cancer cells, but not in cancer cells that divide more slowly. In contrast to rapidly proliferating transplantable mouse tumors, slow proliferation is a hallmark of human cancers and may have contributed to the clinical failure of the preclinically promising Murine Leukemia Virus vector Toca511 which failed to show efficacy in a phase 3 clinical trial in patients with glioblastoma. The studies presented in our manuscript show that oncolytic Foamy Virus (oFV) vectors are capable of persisting unintegrated in quiescent cells and resuming their life cycle once the cells start dividing again. This property of oFVs, together with their lack of pathogenicity and their ability to catalyze the fusion of infected cancer cells, makes them an attractive platform for further investigation.
Collapse
|
5
|
Simantirakis E, Tsironis I, Vassilopoulos G. FV Vectors as Alternative Gene Vehicles for Gene Transfer in HSCs. Viruses 2020; 12:E332. [PMID: 32204324 PMCID: PMC7150843 DOI: 10.3390/v12030332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/08/2020] [Accepted: 03/15/2020] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic Stem Cells (HSCs) are a unique population of cells, capable of reconstituting the blood system of an organism through orchestrated self-renewal and differentiation. They play a pivotal role in stem cell therapies, both autologous and allogeneic. In the field of gene and cell therapy, HSCs, genetically modified or otherwise, are used to alleviate or correct a genetic defect. In this concise review, we discuss the use of SFVpsc_huHSRV.13, formerly known as Prototype Foamy Viral (PFV or FV) vectors, as vehicles for gene delivery in HSCs. We present the properties of the FV vectors that make them ideal for HSC delivery vehicles, we review their record in HSC gene marking studies and their potential as therapeutic vectors for monogenic disorders in preclinical animal models. FVs are a safe and efficient tool for delivering genes in HSCs compared to other retroviral gene delivery systems. Novel technological advancements in their production and purification in closed systems, have allowed their production under cGMP compliant conditions. It may only be a matter of time before they find their way into the clinic.
Collapse
Affiliation(s)
- Emmanouil Simantirakis
- Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, Division of Genetics and Gene Therapy, Basic Research II, 11527 Athens, Greece; (E.S.); (I.T.)
| | - Ioannis Tsironis
- Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, Division of Genetics and Gene Therapy, Basic Research II, 11527 Athens, Greece; (E.S.); (I.T.)
| | - George Vassilopoulos
- Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, Division of Genetics and Gene Therapy, Basic Research II, 11527 Athens, Greece; (E.S.); (I.T.)
- Division of Hematology, University of Thessaly Medical School, 41500 Larissa, Greece
| |
Collapse
|
6
|
Counsell JR, Karda R, Diaz JA, Carey L, Wiktorowicz T, Buckley SMK, Ameri S, Ng J, Baruteau J, Almeida F, de Silva R, Simone R, Lugarà E, Lignani G, Lindemann D, Rethwilm A, Rahim AA, Waddington SN, Howe SJ. Foamy Virus Vectors Transduce Visceral Organs and Hippocampal Structures following In Vivo Delivery to Neonatal Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:626-634. [PMID: 30081233 PMCID: PMC6082918 DOI: 10.1016/j.omtn.2018.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022]
Abstract
Viral vectors are rapidly being developed for a range of applications in research and gene therapy. Prototype foamy virus (PFV) vectors have been described for gene therapy, although their use has mainly been restricted to ex vivo stem cell modification. Here we report direct in vivo transgene delivery with PFV vectors carrying reporter gene constructs. In our investigations, systemic PFV vector delivery to neonatal mice gave transgene expression in the heart, xiphisternum, liver, pancreas, and gut, whereas intracranial administration produced brain expression until animals were euthanized 49 days post-transduction. Immunostaining and confocal microscopy analysis of injected brains showed that transgene expression was highly localized to hippocampal architecture despite vector delivery being administered to the lateral ventricle. This was compared with intracranial biodistribution of lentiviral vectors and adeno-associated virus vectors, which gave a broad, non-specific spread through the neonatal mouse brain without regional localization, even when administered at lower copy numbers. Our work demonstrates that PFV can be used for neonatal gene delivery with an intracranial expression profile that localizes to hippocampal neurons, potentially because of the mitotic status of the targeted cells, which could be of use for research applications and gene therapy of neurological disorders.
Collapse
Affiliation(s)
- John R Counsell
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK; Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Louise Carey
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Tatiana Wiktorowicz
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Shima Ameri
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Joanne Ng
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Filipa Almeida
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Roberto Simone
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Eleonora Lugarà
- Department of Clinical and Experimental Epilepsy, Queen Square House, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, Queen Square House, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Dirk Lindemann
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany; Institute of Virology, Technische Universität Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK; Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Steven J Howe
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| |
Collapse
|
7
|
Wei G, Kehl T, Bao Q, Benner A, Lei J, Löchelt M. The chromatin binding domain, including the QPQRYG motif, of feline foamy virus Gag is required for viral DNA integration and nuclear accumulation of Gag and the viral genome. Virology 2018; 524:56-68. [PMID: 30145377 DOI: 10.1016/j.virol.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/15/2023]
Abstract
The retroviral Gag protein, the major component of released particles, plays different roles in particle assembly, maturation or infection of new host cells. Here, we characterize the Gag chromatin binding site including the highly conserved QPQRYG motif of feline foamy virus, a member of the Spumaretrovirinae. Mutagenesis of critical residues in the chromatin binding site/QPQRYG motif almost completely abrogates viral DNA integration and reduces nuclear accumulation of Gag and viral DNA. Genome packaging, reverse transcription, particle release and uptake into new target cells are not affected. The integrity of the QPQRYG motif appears to be important for processes after cytosolic entry, likely influencing incoming virus capsids or disassembly intermediates but not Gag synthesized de novo in progeny virus-producing cells. According to our data, chromatin binding is a shared feature among foamy viruses but further work is needed to understand the mechanisms involved.
Collapse
Affiliation(s)
- Guochao Wei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Timo Kehl
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Qiuying Bao
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Janet Lei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Martin Löchelt
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Paris J, Tobaly-Tapiero J, Giron ML, Burlaud-Gaillard J, Buseyne F, Roingeard P, Lesage P, Zamborlini A, Saïb A. The invariant arginine within the chromatin-binding motif regulates both nucleolar localization and chromatin binding of Foamy virus Gag. Retrovirology 2018; 15:48. [PMID: 29996845 PMCID: PMC6042332 DOI: 10.1186/s12977-018-0428-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nuclear localization of Gag is a property shared by many retroviruses and retrotransposons. The importance of this stage for retroviral replication is still unknown, but studies on the Rous Sarcoma virus indicate that Gag might select the viral RNA genome for packaging in the nucleus. In the case of Foamy viruses, genome encapsidation is mediated by Gag C-terminal domain (CTD), which harbors three clusters of glycine and arginine residues named GR boxes (GRI-III). In this study we investigated how PFV Gag subnuclear distribution might be regulated. RESULTS We show that the isolated GRI and GRIII boxes act as nucleolar localization signals. In contrast, both the entire Gag CTD and the isolated GRII box, which contains the chromatin-binding motif, target the nucleolus exclusively upon mutation of the evolutionary conserved arginine residue at position 540 (R540), which is a key determinant of FV Gag chromatin tethering. We also provide evidence that Gag localizes in the nucleolus during FV replication and uncovered that the viral protein interacts with and is methylated by Protein Arginine Methyltransferase 1 (PRMT1) in a manner that depends on the R540 residue. Finally, we show that PRMT1 depletion by RNA interference induces the concentration of Gag C-terminus in nucleoli. CONCLUSION Altogether, our findings suggest that methylation by PRMT1 might finely tune the subnuclear distribution of Gag depending on the stage of the FV replication cycle. The role of this step for viral replication remains an open question.
Collapse
Affiliation(s)
- Joris Paris
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Joëlle Tobaly-Tapiero
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Lou Giron
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université François Rabelais and CHRU de Tours, Tours, France
- INSERM U1259, Université François Rabelais and CHRU de Tours, Tours, France
| | - Florence Buseyne
- Institut Pasteur, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
- CNRS UMR3569, Insitut Pasteur, Paris, France
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université François Rabelais and CHRU de Tours, Tours, France
- INSERM U1259, Université François Rabelais and CHRU de Tours, Tours, France
| | - Pascale Lesage
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alessia Zamborlini
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire PVM, Conservatoire National des Arts et Métiers (Cnam), Paris, France
| | - Ali Saïb
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
9
|
Sweeney NP, Meng J, Patterson H, Morgan JE, McClure M. Delivery of large transgene cassettes by foamy virus vector. Sci Rep 2017; 7:8085. [PMID: 28808269 PMCID: PMC5556010 DOI: 10.1038/s41598-017-08312-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Viral vectors are effective tools in gene therapy, but their limited packaging capacity can be restrictive. Larger clinically-relevant vectors are needed. Foamy viruses have the largest genomes among mammalian retroviruses and their vectors have shown potential for gene therapy in preclinical studies. However, the effect of vector genome size on titre has not been determined. We inserted increasing lengths of the dystrophin open reading frame in a foamy virus vector and quantified packaged vector RNA and integrated DNA. For both measures, a semi-logarithmic reduction in titre was observed as genome size increased. Concentrated titres were reduced 100-fold to approximately 106 transducing units per ml when vector genomes harboured a 12 kb insert, approximately twice that reported for lentivirus vectors in a comparable study. This potential was applied by optimising foamy virus vectors carrying the full-length dystrophin open-reading frame for transduction of human muscle derived cells. Full-length dystrophin protein was expressed and transduced cells remained able to form myotubes in vitro. Foamy virus vectors are well-suited for stable delivery of large transgene cassettes and warrant further investigation for development as a therapy for Duchenne or Becker muscular dystrophy.
Collapse
Affiliation(s)
- Nathan Paul Sweeney
- Jefferiss Research Trust laboratories, Imperial College London, London, United Kingdom
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Hayley Patterson
- Jefferiss Research Trust laboratories, Imperial College London, London, United Kingdom
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Myra McClure
- Jefferiss Research Trust laboratories, Imperial College London, London, United Kingdom.
| |
Collapse
|
10
|
Abstract
The interactions between a retrovirus and host cell chromatin that underlie integration and provirus expression are poorly understood. The prototype foamy virus (PFV) structural protein GAG associates with chromosomes via a chromatin-binding sequence (CBS) located within its C-terminal region. Here, we show that the PFV CBS is essential and sufficient for a direct interaction with nucleosomes and present a crystal structure of the CBS bound to a mononucleosome. The CBS interacts with the histone octamer, engaging the H2A-H2B acidic patch in a manner similar to other acidic patch-binding proteins such as herpesvirus latency-associated nuclear antigen (LANA). Substitutions of the invariant arginine anchor residue in GAG result in global redistribution of PFV and macaque simian foamy virus (SFVmac) integration sites toward centromeres, dampening the resulting proviral expression without affecting the overall efficiency of integration. Our findings underscore the importance of retroviral structural proteins for integration site selection and the avoidance of genomic junkyards.
Collapse
|
11
|
Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration. PLoS Pathog 2016; 12:e1005860. [PMID: 27579920 PMCID: PMC5006980 DOI: 10.1371/journal.ppat.1005860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/11/2016] [Indexed: 01/31/2023] Open
Abstract
Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. Viruses are masters at exploiting host cell machineries for their replication. For human immunodeficiency virus type 1 (HIV-1), the best-studied representative of the Orthoretrovirinae subfamily from the genus lentiviruses, numerous important virus-host interactions have been described. In contrast, only a few cellular proteins are known to influence the replication of foamy viruses (FVs, also known as spumaviruses), an intriguing type of complex retrovirus of the Spumaretrovirinae subfamily that combines features of both retroviruses and hepadnaviruses in its replication strategy. Given the increasing interest in FVs as gene transfer tools and their unique status within the retrovirus family, this discrepancy urged the identification of novel host cell interaction partners of FV structural components. This study focused on prototype FV (PFV), the best-characterized member of FVs, and its capsid protein, Gag, as the central player of viral replication. Members of the mitosis-regulatory, polo-like kinase (PLK) family were identified as novel Gag binding partners. The Gag interaction with PLK1 (and possibly also PLK2) facilitated efficient PFV genome integration into host chromatin, ensuring successful replication and viral spread in infected target cell cultures. Collectively, our results elucidate the first link between cell cycle regulatory networks and the mitosis-dependent PFV integration process.
Collapse
|
12
|
Bähr A, Singer A, Hain A, Vasudevan AAJ, Schilling M, Reh J, Riess M, Panitz S, Serrano V, Schweizer M, König R, Chanda S, Häussinger D, Kochs G, Lindemann D, Münk C. Interferon but not MxB inhibits foamy retroviruses. Virology 2016; 488:51-60. [DOI: 10.1016/j.virol.2015.10.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/11/2015] [Accepted: 10/31/2015] [Indexed: 11/26/2022]
|
13
|
Efficient transient genetic manipulation in vitro and in vivo by prototype foamy virus-mediated nonviral RNA transfer. Mol Ther 2014; 22:1460-1471. [PMID: 24814152 DOI: 10.1038/mt.2014.82] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022] Open
Abstract
Vector systems based on different retroviruses are widely used to achieve stable integration and expression of transgenes. More recently, transient genetic manipulation systems were developed that are based on integration- or reverse transcription-deficient retroviruses. Lack of viral genome integration is desirable not only for reducing tumorigenic potential but also for applications requiring transient transgene expression such as reprogramming or genome editing. However, all existing transient retroviral vector systems rely on virus-encoded encapsidation sequences for the transfer of heterologous genetic material. We discovered that the transient transgene expression observed in target cells transduced by reverse transcriptase-deficient foamy virus (FV) vectors is the consequence of subgenomic RNA encapsidation into FV particles. Based on this initial observation, we describe here the establishment of FV vectors that enable the efficient transient expression of various transgenes by packaging, transfer, and de novo translation of nonviral RNAs both in vitro and in vivo. Transient transgene expression levels were comparable to integrase-deficient vectors but, unlike the latter, declined to background levels within a few days. Our results show that this new FV vector system provides a useful, novel tool for efficient transient genetic manipulation of target tissues by transfer of nonviral RNAs.
Collapse
|
14
|
Zacharoulis D, Rountas C, Katsimpoulas M, Morianos J, Chatziandreou I, Vassilopoulos G. Efficient liver gene transfer with foamy virus vectors. Med Sci Monit Basic Res 2013; 19:214-20. [PMID: 23941977 PMCID: PMC3747017 DOI: 10.12659/msmbr.883996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Liver gene transfer offers hope for the correction of genetic and acquired disorders. Efficient gene transfer in large animals can be obtained with hydrodynamic gene transfer (HGT), a method that can achieve sufficient levels of gene delivery. Material/Methods To test the relative efficiency between plasmid versus foamy virus (FV) vector-based liver gene transfer efficiency, we applied HGT in 4 juvenile pigs, using the same plasmid backbone, either naked or coated as a FV vector particle. Gene transfer efficiency and persistence of expression was assayed by PCR and real-time PCR, respectively, at 1 week and at 1 month after the infusions. Results HGT was tolerated well and no adverse reactions were observed. Plasmid injections resulted in no detectable DNA sequences at 1 week. At the 1 month time point, 2/15 liver sections analyzed were positive for the presence of plasmid DNA. When FV vectors were infused under identical conditions, 18/28 (64.3%) of the liver samples were positive for the presence of vector sequences, and the expression levels reached 29.7 and 15.6% of the endogenous GAPDH levels in the injected and the adjacent liver lobes. Conclusions Our results indicate that medium-term therapeutic levels of gene expression can be obtained with FV vectors, an effect that can be attributed to the potential of the HGT procedure and to the natural affinity of FV vectors for hepatocytes.
Collapse
|
15
|
Khattak S, Sandoval-Guzmán T, Stanke N, Protze S, Tanaka EM, Lindemann D. Foamy virus for efficient gene transfer in regeneration studies. BMC DEVELOPMENTAL BIOLOGY 2013; 13:17. [PMID: 23641815 PMCID: PMC3655922 DOI: 10.1186/1471-213x-13-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 04/26/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Molecular studies of appendage regeneration have been hindered by the lack of a stable and efficient means of transferring exogenous genes. We therefore sought an efficient integrating virus system that could be used to study limb and tail regeneration in salamanders. RESULTS We show that replication-deficient foamy virus (FV) vectors efficiently transduce cells in two different regeneration models in cell culture and in vivo. Injection of EGFP-expressing FV but not lentivirus vector particles into regenerating limbs and tail resulted in widespread expression that persisted throughout regeneration and reamputation pointing to the utility of FV for analyzing adult phenotypes in non-mammalian models. Furthermore, tissue specific transgene expression is achieved using FV vectors during limb regeneration. CONCLUSIONS FV vectors are efficient mean of transferring genes into axolotl limb/tail and infection persists throughout regeneration and reamputation. This is a nontoxic method of delivering genes into axolotls in vivo/ in vitro and can potentially be applied to other salamander species.
Collapse
Affiliation(s)
- Shahryar Khattak
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Berka U, Hamann MV, Lindemann D. Early events in foamy virus-host interaction and intracellular trafficking. Viruses 2013; 5:1055-74. [PMID: 23567621 PMCID: PMC3705265 DOI: 10.3390/v5041055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 02/08/2023] Open
Abstract
Here we review viral and cellular requirements for entry and intracellular trafficking of foamy viruses (FVs) resulting in integration of viral sequences into the host cell genome. The virus encoded glycoprotein harbors all essential viral determinants, which are involved in absorption to the host membrane and triggering the uptake of virus particles. However, only recently light was shed on some details of FV's interaction with its host cell receptor(s). Latest studies indicate glycosaminoglycans of cellular proteoglycans, particularly heparan sulfate, to be of utmost importance. In a species-specific manner FVs encounter endogenous machineries of the target cell, which are in some cases exploited for fusion and further egress into the cytosol. Mostly triggered by pH-dependent endocytosis, viral and cellular membranes fuse and release naked FV capsids into the cytoplasm. Intact FV capsids are then shuttled along microtubules and are found to accumulate nearby the centrosome where they can remain in a latent state for extended time periods. Depending on the host cell cycle status, FV capsids finally disassemble and, by still poorly characterized mechanisms, the preintegration complex gets access to the host cell chromatin. Host cell mitosis finally allows for viral genome integration, ultimately starting a new round of viral replication.
Collapse
Affiliation(s)
- Ursula Berka
- Institute of Virology, Medical Faculty―Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (U.B.); (M.V.H.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Martin Volker Hamann
- Institute of Virology, Medical Faculty―Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (U.B.); (M.V.H.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty―Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (U.B.); (M.V.H.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| |
Collapse
|
17
|
The foamy virus Gag proteins: what makes them different? Viruses 2013; 5:1023-41. [PMID: 23531622 PMCID: PMC3705263 DOI: 10.3390/v5041023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
Gag proteins play an important role in many stages of the retroviral replication cycle. They orchestrate viral assembly, interact with numerous host cell proteins, engage in regulation of viral gene expression, and provide the main driving force for virus intracellular trafficking and budding. Foamy Viruses (FV), also known as spumaviruses, display a number of unique features among retroviruses. Many of these features can be attributed to their Gag proteins. FV Gag proteins lack characteristic orthoretroviral domains like membrane-binding domains (M domains), the major homology region (MHR), and the hallmark Cys-His motifs. In contrast, they contain several distinct domains such as the essential Gag-Env interaction domain and the glycine and arginine rich boxes (GR boxes). Furthermore, FV Gag only undergoes limited maturation and follows an unusual pathway for nuclear translocation. This review summarizes the known FV Gag domains and motifs and their functions. In particular, it provides an overview of the unique structural and functional properties that distinguish FV Gag proteins from orthoretroviral Gag proteins.
Collapse
|
18
|
Abstract
The retrovirus family contains several important human and animal pathogens, including the human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). Studies with retroviruses were instrumental to our present understanding of the cellular entry of enveloped viruses in general. For instance, studies with alpharetroviruses defined receptor engagement, as opposed to low pH, as a trigger for the envelope protein-driven membrane fusion. The insights into the retroviral entry process allowed the generation of a new class of antivirals, entry inhibitors, and these therapeutics are at present used for treatment of HIV/AIDS. In this chapter, we will summarize key concepts established for entry of avian sarcoma and leukosis virus (ASLV), a widely used model system for retroviral entry. We will then review how foamy virus and HIV, primate- and human retroviruses, enter target cells, and how the interaction of the viral and cellular factors involved in the cellular entry of these viruses impacts viral tropism, pathogenesis and approaches to therapy and vaccine development.
Collapse
|
19
|
Large animal models for foamy virus vector gene therapy. Viruses 2012; 4:3572-88. [PMID: 23223198 PMCID: PMC3528280 DOI: 10.3390/v4123572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 01/12/2023] Open
Abstract
Foamy virus (FV) vectors have shown great promise for hematopoietic stem cell (HSC) gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit.
Collapse
|
20
|
Verhoeyen E. Advances in foamy virus vector technology and disease correction could speed the path to clinical application. Mol Ther 2012; 20:1105-7. [PMID: 22652999 DOI: 10.1038/mt.2012.97] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Els Verhoeyen
- INSERM U758, Human Virology Laboratory, EVIR, Lyon, France.
| |
Collapse
|
21
|
Swiersy A, Wiek C, Zentgraf H, Lindemann D. Characterization and manipulation of foamy virus membrane interactions. Cell Microbiol 2012; 15:227-36. [PMID: 23051660 DOI: 10.1111/cmi.12042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 01/19/2023]
Abstract
Foamy viruses (FVs), a unique type of retroviruses, are characterized by several unusual features in their replication strategy. FVs, common to all non-human primates and several other species, display an extremely broad tropism in vitro. Basically, all mammalian cells and species examined, but also cells of amphibian or bird origin, are permissive to FV glycoprotein (Env)-mediated capsid release into the cytoplasm. The nature of the broadly expressed, and potentially evolutionary conserved, FV entry receptor molecule(s) is poorly characterized. Although recent data indicate that proteoglycans serve as an important factor for FV Env-mediated target cell attachment, additional uncharacterized molecules appear to be essential for the pH-dependent fusion of viral and cellular lipid membranes after endocytic uptake of virions. Furthermore, FVs show a very special assembly strategy. Unlike other retroviruses, the FV capsid precursor protein (Gag) undergoes only very limited proteolytic processing during assembly. This results in an immature morphology of capsids found in released FV virions. In addition, the FV Gag protein appears to lack a functional membrane-targeting signal. As a consequence, FVs utilize a specific interaction between capsid and cognate viral glycoprotein for initiation of thebudding process. Genetic fusion of heterologous targeting domains for plasma but not endosomal membranes to FV Gag enables glycoprotein-independent particle egress. However, this is at the expense of normal capsid morphogenesis and infectivity. The low-level Gag precursor processing and the requirement for a reversible, artificial Gag membrane association for effective pseudotyping of FV capsids by heterologous glycoproteins strongly suggest that FVs require a transient interaction of capsids with cellular membranes for viral replication. Under natural condition, this appears to be achieved by the lack of a membrane-targeting function of the FV Gag protein and the accomplishment of capsid membrane attachment through an unusual specific interaction with the cognate glycoprotein.
Collapse
Affiliation(s)
- Anka Swiersy
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
22
|
Stirnnagel K, Schupp D, Dupont A, Kudryavtsev V, Reh J, Müllers E, Lamb DC, Lindemann D. Differential pH-dependent cellular uptake pathways among foamy viruses elucidated using dual-colored fluorescent particles. Retrovirology 2012; 9:71. [PMID: 22935135 PMCID: PMC3495412 DOI: 10.1186/1742-4690-9-71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/13/2012] [Indexed: 11/30/2022] Open
Abstract
Background It is thought that foamy viruses (FVs) enter host cells via endocytosis because all FV glycoproteins examined display pH-dependent fusion activities. Only the prototype FV (PFV) glycoprotein has also significant fusion activity at neutral pH, suggesting that its uptake mechanism may deviate from other FVs. To gain new insights into the uptake processes of FV in individual live host cells, we developed fluorescently labeled infectious FVs. Results N-terminal tagging of the FV envelope leader peptide domain with a fluorescent protein resulted in efficient incorporation of the fluorescently labeled glycoprotein into secreted virions without interfering with their infectivity. Double-tagged viruses consisting of an eGFP-tagged PFV capsid (Gag-eGFP) and mCherry-tagged Env (Ch-Env) from either PFV or macaque simian FV (SFVmac) were observed during early stages of the infection pathway. PFV Env, but not SFVmac Env, containing particles induced strong syncytia formation on target cells. Both virus types showed trafficking of double-tagged virions towards the cell center. Upon fusion and subsequent capsid release into the cytosol, accumulation of naked capsid proteins was observed within four hours in the perinuclear region, presumably representing the centrosomes. Interestingly, virions harboring fusion-defective glycoproteins still promoted virus attachment and uptake, but failed to show syncytia formation and perinuclear capsid accumulation. Biochemical and initial imaging analysis indicated that productive fusion events occur predominantly within 4–6 h after virus attachment. Non-fused or non-fusogenic viruses are rapidly cleared from the cells by putative lysosomal degradation. Quantitative monitoring of the fraction of individual viruses containing both Env and capsid signals as a function of time demonstrated that PFV virions fused within the first few minutes, whereas fusion of SFVmac virions was less pronounced and observed over the entire 90 minutes measured. Conclusions The characterized double-labeled FVs described here provide new mechanistic insights into FV early entry steps, demonstrating that productive viral fusion occurs early after target cell attachment and uptake. The analysis highlights apparent differences in the uptake pathways of individual FV species. Furthermore, the infectious double-labeled FVs promise to provide important tools for future detailed analyses on individual FV fusion events in real time using advanced imaging techniques.
Collapse
Affiliation(s)
- Kristin Stirnnagel
- Institute of Virology, Medizinische Fakultät "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr, 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
"There have been rare cases of zoonotic transmission of foamy virus from monkeys to humans, but despite keeping these cases under close scrutiny for years no pathology has ever been detected...".
Collapse
|
24
|
Nasimuzzaman M, Persons DA. Cell Membrane-associated heparan sulfate is a receptor for prototype foamy virus in human, monkey, and rodent cells. Mol Ther 2012; 20:1158-66. [PMID: 22434139 PMCID: PMC3369305 DOI: 10.1038/mt.2012.41] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/10/2012] [Indexed: 12/21/2022] Open
Abstract
Foamy viruses (FVs) (spumaretroviruses) are good alternative to retroviruses as gene therapy vector. Despite four decades since the discovery of FV, its receptor molecule is still unknown. FV vector transduction of human CD34(+) cells was inhibited by culture with fibronectin. Because fibronectin contains heparin-binding domain, the interactions of fibronectin with heparan sulfate (HS) on cells might be inhibitory to FV transduction. These observations led us to investigate whether HS is a receptor for FV. Two mutant CHO cell lines (but not parental wild type) lacking cell surface HS but not chondroitin sulfate (CS) were largely resistant to FV attachment and transduction. Inhibition of HS expression using enzymes or chemicals greatly reduced FV transduction in human, monkey, and rodent cells. Raji cells, which lack HS and were largely resistant to FV, were rendered more permissive through ectopic expression of syndecan-1, which contains HS. In contrast, mutant syndecan-1-expressing cells were largely resistant to FV. Our findings indicate that cellular HS is a receptor for FV. Identifying FV receptor will enable better understanding of its entry process and optimal use as gene therapy vector to treat inherited and pathogenic diseases.
Collapse
Affiliation(s)
- Md Nasimuzzaman
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Derek A Persons
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
25
|
Lindemann D, Rethwilm A. Foamy virus biology and its application for vector development. Viruses 2011; 3:561-85. [PMID: 21994746 PMCID: PMC3185757 DOI: 10.3390/v3050561] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/21/2011] [Accepted: 04/23/2011] [Indexed: 01/12/2023] Open
Abstract
Spuma- or foamy viruses (FV), endemic in most non-human primates, cats, cattle and horses, comprise a special type of retrovirus that has developed a replication strategy combining features of both retroviruses and hepadnaviruses. Unique features of FVs include an apparent apathogenicity in natural hosts as well as zoonotically infected humans, a reverse transcription of the packaged viral RNA genome late during viral replication resulting in an infectious DNA genome in released FV particles and a special particle release strategy depending capsid and glycoprotein coexpression and specific interaction between both components. In addition, particular features with respect to the integration profile into the host genomic DNA discriminate FV from orthoretroviruses. It appears that some inherent properties of FV vectors set them favorably apart from orthoretroviral vectors and ask for additional basic research on the viruses as well as on the application in Gene Therapy. This review will summarize the current knowledge of FV biology and the development as a gene transfer system.
Collapse
Affiliation(s)
- Dirk Lindemann
- Institut für Virologie, Medizinische Fakultät “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Universität Würzburg, 97078 Würzburg, Germany; E-Mail:
| |
Collapse
|
26
|
Abstract
Foamy viruses, distantly related to the major subfamily of Retroviruses, Orthoretroviruses that include oncoviruses (for example, murine leukemia virus (MLV)) and lentiviruses (human immunodeficiency virus (HIV)), are endemic in mammalian species, but not in human populations. Humans infected by accidental or occupational exposure remain well. The virus is not transmitted to others, nor is it associated with any disease. These features added to its broad host range, efficient transduction of progenitor cells and an integration profile less likely to induce insertional mutagenesis, make these viruses attractive as vectors. Long-term reversal of disease phenotype in dogs with the genetic defect, leukocyte adhesion deficiency, by foamy virus vector therapy strengthens the case for their clinical exploitation.
Collapse
|
27
|
Stirnnagel K, Lüftenegger D, Stange A, Swiersy A, Müllers E, Reh J, Stanke N, Grosse A, Chiantia S, Keller H, Schwille P, Hanenberg H, Zentgraf H, Lindemann D. Analysis of prototype foamy virus particle-host cell interaction with autofluorescent retroviral particles. Retrovirology 2010; 7:45. [PMID: 20478027 PMCID: PMC2887381 DOI: 10.1186/1742-4690-7-45] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/17/2010] [Indexed: 11/21/2022] Open
Abstract
Background The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive. Results In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction. Conclusions We have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV - host cell interactions using modern fluorescent imaging techniques. Furthermore, we succeeded for the first time in identifying two cell lines resistant to Prototype Foamy Virus Env-mediated gene transfer. Interestingly, both cell lines still displayed FV Env-dependent attachment of fluorescent retroviral particles, implying a post-binding block potentially due to lack of putative FV entry cofactors. These cell lines might ultimately lead to the identification of the currently unknown ubiquitous cellular entry receptor(s) of FVs.
Collapse
Affiliation(s)
- Kristin Stirnnagel
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Retroviral particles assemble a few thousand units of the Gag polyproteins. Proteolytic cleavage mediated by the retroviral protease forms the bioactive retroviral protein subunits before cell entry. We hypothesized that this process could be exploited for targeted, transient, and dose-controlled transduction of nonretroviral proteins into cultured cells. We demonstrate that gammaretroviral particles tolerate the incorporation of foreign protein at several positions of their Gag or Gag-Pol precursors. Receptor-mediated and thus potentially cell-specific uptake of engineered particles occurred within minutes after cell contact. Dose and kinetics of nonretroviral protein delivery were dependent upon the location within the polyprotein precursor. Proteins containing nuclear localization signals were incorporated into retroviral particles, and the proteins of interest were released from the precursor by the retroviral protease, recognizing engineered target sites. In contrast to integration-defective lentiviral vectors, protein transduction by retroviral polyprotein precursors was completely transient, as protein transducing retrovirus-like particles could be produced that did not transduce genes into target cells. Alternatively, bifunctional protein-delivering particle preparations were generated that maintained their ability to serve as vectors for retroviral transgenes. We show the potential of this approach for targeted genome engineering of induced pluripotent stem cells by delivering the site-specific DNA recombinase, Flp. Protein transduction of Flp after proteolytic release from the matrix position of Gag allowed excision of a lentivirally transduced cassette that concomitantly expresses the canonical reprogramming transcription factors (Oct4, Klf4, Sox2, c-Myc) and a fluorescent marker gene, thus generating induced pluripotent stem cells that are free of lentivirally transduced reprogramming genes.
Collapse
|
29
|
The foamy virus genome remains unintegrated in the nuclei of G1/S phase-arrested cells, and integrase is critical for preintegration complex transport into the nucleus. J Virol 2009; 84:2832-42. [PMID: 20032182 DOI: 10.1128/jvi.02435-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Foamy viruses are a member of the spumavirus subfamily of retroviruses with unique mechanisms of virus replication. Foamy virus replication is cell cycle dependent; however, the genome is found in the nuclei of cells arrested in the G(1)/S phase. Despite the presence of genome in the nuclei of growth-arrested cells, there is no viral gene expression, thus explaining its dependency on cell cycle. This report shows that the foamy virus genome remains unintegrated in G(1)/S phase-arrested cells. The foamy virus genome is detected by confocal microscopy in the nuclei of both dividing and growth-arrested cells. Alu PCR revealed foamy virus-specific DNA amplification from genomic DNA isolated in cycling cells at 24 h postinfection. In arrested cells no foamy virus DNA band was detected in cells harvested at 1 or 7 days after infection, and a very faint band that is significantly less than DNA amplified from cycling cells was observed at day 15. After these cells were arrested at the G(1)/S phase for 1, 7, or 15 days they were allowed to cycle, at which time foamy virus-specific DNA amplification was readily observed. Taken together, these results suggest that the foamy virus genome persists in nondividing cells without integrating. We have also established evidence for the first time that the foamy virus genome and Gag translocation into the nucleus are dependent on integrase in cycling cells, implicating the role of integrase in transport of the preintegration complex into the nucleus. Furthermore, despite the presence of a nuclear localization signal sequence in Gag, we observed no foamy virus Gag importation into the nucleus in the absence of integrase.
Collapse
|
30
|
Abstract
Foamy virus (FV) vectors are efficient gene delivery vehicles that have shown great promise for gene therapy in preclinical animal models. FVs or spumaretroviruses are not endemic in humans, but are prevalent in nonhuman primates and in other mammals. They have evolved means for efficient horizontal transmission in their host species without pathology. FV vectors have several unique properties that make them well suited for therapeutic gene transfer including a desirable safety profile, a broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. They mediate efficient and stable gene transfer to hematopoietic stem cells (HSCs) in mouse models, and in the canine large animal model. Analysis of FV vector integration sites in vitro and in hematopoietic repopulating cells shows they have a unique integration profile, and suggests they may be safer than gammaretroviruses or lentiviral vectors. Here, properties of FVs relevant to the safety and efficacy of FV vectors are discussed. The development of FV vector systems is described, and studies evaluating their potential in vitro, and in small and large animal models, is reviewed.
Collapse
Affiliation(s)
- Grant D Trobridge
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| |
Collapse
|
31
|
Desfarges S, Salin B, Calmels C, Andreola ML, Parissi V, Fournier M. HIV-1 integrase trafficking in S. cerevisiae: a useful model to dissect the microtubule network involvement of viral protein nuclear import. Yeast 2009; 26:39-54. [PMID: 19180639 DOI: 10.1002/yea.1651] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracellular transport of karyophilic cargos comprises translocation to the nuclear envelope and subsequent nuclear import. Small cargos such as isolated proteins can reach the nuclear envelope by diffusion but movement of larger structures depends on active translocation, typically using microtubules. Centripetal transport ends at the perinuclear microtubule organizing centre called the spindle pole body (SPB) in yeast. Previously, we found by two hybrids that the karyophilic lentiviral-encoded integrase (IN) interacts with two yeast microtubule-associated proteins, Dyn2p (dynein light chain protein) and Stu2p, a centrosomal protein (de Soultrait et al., 2002). Thus, to investigate the hinge between cytoplasmic retrograde transport and nuclear import, we decided to analyse HIV-1 IN trafficking in yeast as the model, since each of these biological mechanisms is evolutionarily conserved in eukaryotic cells. Here, we found an accumulation of IN at the SPB in yeast via Stu2p colocalization. Disruption of the microtubule network by nocodazole or IN expression in a dynein 2-deficient yeast strain prevented IN accumulation in the nuclear periphery and additionally inhibited IN transport into the nucleus. By mutagenesis, we showed that trafficking of IN towards the SPB requires the C-terminus of the molecule. Taking our findings together, we proposed a model in which IN nuclear import seems to depend on an essential intermediate step in the SPB. We found that Dyn2p and Stu2p play an important role in driving IN toward MTOC and could optimize nuclear entry of the retroviral enzyme. Our results suggest a new hypothesis in keeping with the current HIV-1 intracellular trafficking model.
Collapse
Affiliation(s)
- S Desfarges
- Laboratoire Microbiologie Cellulaire et Moléculaire et Pathogénicité, Département 1, UMR 5234-CNRS, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
32
|
Si Y, Pulliam AC, Linka Y, Ciccone S, Leurs C, Yuan J, Eckermann O, Fruehauf S, Mooney S, Hanenberg H, Clapp DW. Overnight transduction with foamyviral vectors restores the long-term repopulating activity of Fancc-/- stem cells. Blood 2008; 112:4458-65. [PMID: 18684868 PMCID: PMC2597121 DOI: 10.1182/blood-2007-07-102947] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 07/10/2008] [Indexed: 01/29/2023] Open
Abstract
Fanconi anemia (FA) is a complex genetic disorder characterized by congenital abnormalities, bone marrow failure, and myeloid malignancies. Identification of 13 FA genes has been instrumental to explore gene transfer technologies aimed at correction of autologous FA-deficient stem cells. To date, 3 human FA stem cell gene therapy trials with standard 4-day transduction protocols using gammaretroviral vectors failed to provide clinical benefit. In addition, 2- to 4 day ex vivo manipulation of bone marrow from mice containing a disruption of the homologue of human FANCC (Fancc) results in a time-dependent increase in apoptosis and a risk for malignant transformation of hematopoietic cells. Here, we show that a 14-hour transduction period allows a foamyviral vector construct expressing the human FANCC cDNA to efficiently transduce murine FA stem cells with 1 to 2 proviral integrations per genome. Functionally, the repopulating activity of Fancc(-/-) stem cells from reconstituted mice expressing the recombinant FANCC transgene was comparable with wild-type controls. Collectively, these data provide evidence that short-term transduction of c-kit(+) cells with a foamyviral vector is sufficient for functional correction of a stem cell phenotype in a murine FA model. These data could have implications for future gene therapy trials for FA patients.
Collapse
Affiliation(s)
- Yue Si
- Departments of Microbiology and Immunology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine,Indianapolis, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tobaly-Tapiero J, Bittoun P, Lehmann-Che J, Delelis O, Giron ML, de Thé H, Saïb A. Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic 2008; 9:1717-27. [PMID: 18627573 DOI: 10.1111/j.1600-0854.2008.00792.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retroviruses hijack cellular machineries to productively infect their hosts. During the early stages of viral replication, proviral integration relies on specific interactions between components of the preintegration complex and host chromatin-bound proteins. Here, analyzing the fate of incoming primate foamy virus, we identify a short domain within the C-terminus of the structural Gag protein that efficiently binds host chromosomes, by interacting with H2A/H2B core histones. While viral particle production, virus entry and intracellular trafficking are not affected by mutation of this domain, chromosomal attachment of incoming subviral complexes is abolished, precluding proviral integration. We thus highlight a new function of the structural foamy Gag protein as the main tether between incoming subviral complexes and host chromatin prior to integration.
Collapse
Affiliation(s)
- Joelle Tobaly-Tapiero
- CNRS UMR 7151, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Zamborlini A, Lehmann-Che J, Clave E, Giron ML, Tobaly-Tapiero J, Roingeard P, Emiliani S, Toubert A, de Thé H, Saïb A. Centrosomal pre-integration latency of HIV-1 in quiescent cells. Retrovirology 2007; 4:63. [PMID: 17845727 PMCID: PMC2014762 DOI: 10.1186/1742-4690-4-63] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 09/10/2007] [Indexed: 11/25/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) efficiently replicates in dividing and non-dividing cells. However, HIV-1 infection is blocked at an early post-entry step in quiescent CD4+ T cells in vitro. The molecular basis of this restriction is still poorly understood. Here, we show that in quiescent cells, incoming HIV-1 sub-viral complexes concentrate and stably reside at the centrosome for several weeks. Upon cell activation, viral replication resumes leading to viral gene expression. Thus, HIV-1 can persist in quiescent cells as a stable, centrosome-associated, pre-integration intermediate.
Collapse
Affiliation(s)
| | | | - Emmanuel Clave
- INSERM U662, Laboratoire d'Immunologie et d'Histocompatibilité AP-HP, Paris, France
| | - Marie-Lou Giron
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Paris, France
| | | | | | | | - Antoine Toubert
- INSERM U662, Laboratoire d'Immunologie et d'Histocompatibilité AP-HP, Paris, France
| | - Hugues de Thé
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Paris, France
| | - Ali Saïb
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Paris, France
| |
Collapse
|