1
|
Ahmad N, Amees M, Alam AF, Ahmed SM, Hossain S, Khan J, Raihan M, Alotaibi A, Khan DI, Ali MT. Public Health Risk from Influenza Viruses: A Scientometric Analysis of Influenza Research. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:1826-1836. [PMID: 39415853 PMCID: PMC11475183 DOI: 10.18502/ijph.v53i8.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/28/2023] [Indexed: 10/19/2024]
Abstract
Background Seasonal influenza and novel H1N1 influenza from 2009 present worldwide difficulties for public health sectors. It is difficult to distinguish between significant research output due to the rising quantity of papers mentioning this infectious disease. We aimed to identify a scientometric analysis of influenza diseases. We aimed to highlight the progress made in the discipline by the researchers affiliated with most documents. Methods The h-index was used to evaluate the publication performance of highly cited papers. We retrieved the scientometric data using the keywords "Influenza" OR "Flu" OR "Orthomyxoviridae" AND "Antiviral agents" OR "Antiviral drugs." In all, 59013 documents were retrieved from the Web of Science between 2011 and 2020. The exported data to Biblioshiny and Microsoft Excel tools included sources by year, active authors, active journals, and countries. Also, we made use of quantitative analysis with scientometric indicators and knowledge mapping through the VOSviewer visualization software for creating the network visualization maps. Results We found most papers written in English and other languages were from 402027 authors and listed in 4443 core journals. The researchers found that Palese P produced 155 and received an h-index of 55. The author Li Y has the highest contributions, with 313 publications. In global influenza research, Europe and North America are the most productive and impactful continents. The influenza research has been published in very few journals. Conclusion This study will help hospital librarians and other library professionals to understand the status of research on influenza at any given point in time.
Collapse
Affiliation(s)
- Naved Ahmad
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mohammad Amees
- Shiv Nadar School of Law, Shiv Nadar University, Chennai, India
| | - Abid Fakhre Alam
- Global Library, O.P. Jindal Global University, Sonipat, Haryana, India
| | - Shaikh Mujeeb Ahmed
- Department of Basic Medical Science, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saddam Hossain
- J & V Resource Centre, Great Lakes Institute of Management, Chennai, India
| | - Jalaluddin Khan
- Department of Computer Science and Engineering, Guntur, Andhra Pradesh, India
| | - Mahfuz Raihan
- Department of Pediatrics, 250 Bedded District Hospital, Chapainawabganj, Bangladesh
| | - Abdulmueen Alotaibi
- Department of Anaesthesia Technology, College of Applied Sciences, AlMaarefa University. Riyadh, Saudi Arabia
| | - Diwan Israr Khan
- Department of Pediatrics, Ajmal Khan Tiibiya College Hospital, AMU Aligarh, India
| | - Mohammed Taher Ali
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Graziosi G, Lupini C, Catelli E, Carnaccini S. Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals. Animals (Basel) 2024; 14:1372. [PMID: 38731377 PMCID: PMC11083745 DOI: 10.3390/ani14091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses (AIVs) are highly contagious respiratory viruses of birds, leading to significant morbidity and mortality globally and causing substantial economic losses to the poultry industry and agriculture. Since their first isolation in 2013-2014, the Asian-origin H5 highly pathogenic avian influenza viruses (HPAI) of clade 2.3.4.4b have undergone unprecedented evolution and reassortment of internal gene segments. In just a few years, it supplanted other AIV clades, and now it is widespread in the wild migratory waterfowl, spreading to Asia, Europe, Africa, and the Americas. Wild waterfowl, the natural reservoir of LPAIVs and generally more resistant to the disease, also manifested high morbidity and mortality with HPAIV clade 2.3.4.4b. This clade also caused overt clinical signs and mass mortality in a variety of avian and mammalian species never reported before, such as raptors, seabirds, sealions, foxes, and others. Most notably, the recent outbreaks in dairy cattle were associated with the emergence of a few critical mutations related to mammalian adaptation, raising concerns about the possibility of jumping species and acquisition of sustained human-to-human transmission. The main clinical signs and anatomopathological findings associated with clade 2.3.4.4b virus infection in birds and non-human mammals are hereby summarized.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Kutkat O, Gomaa M, Aboulhoda BE, Moatasim Y, El Taweel A, Kamel MN, El Sayes M, Elkhrsawy A, AbdAllah H, Kandeil A, McKenzie PP, Webby RJ, Ali MA, Kayali G, El-Shesheny R. Genetic and virological characteristics of a reassortant avian influenza A H6N1 virus isolated from wild birds at a live-bird market in Egypt. Arch Virol 2024; 169:95. [PMID: 38594485 DOI: 10.1007/s00705-024-06022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024]
Abstract
The first detection of a human infection with avian influenza A/H6N1 virus in Taiwan in 2013 has raised concerns about this virus. During our routine surveillance of avian influenza viruses (AIVs) in live-bird markets in Egypt, an H6N1 virus was isolated from a garganey duck and was characterized. Phylogenetic analysis indicated that the Egyptian H6N1 strain A/Garganey/Egypt/20869C/2022(H6N1) has a unique genomic constellation, with gene segments inherited from different subtypes (H5N1, H3N8, H7N3, H6N1, and H10N1) that have been detected previously in AIVs from Egypt and some Eurasian countries. We examined the replication of kinetics of this virus in different mammalian cell lines (A549, MDCK, and Vero cells) and compared its pathogenicity to that of the ancestral H6N1 virus A/Quail/HK/421/2002(H6N1). The Egyptian H6N1 virus replicated efficiently in C57BL/6 mice without prior adaptation and grew faster and reached higher titers than in A549 cells than the ancestral strain. These results show that reassortant H6 AIVs might pose a potential threat to human health and highlight the need to continue surveillance of H6 AIVs circulating in nature.
Collapse
Affiliation(s)
- Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Mokhtar Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Amany Elkhrsawy
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Hend AbdAllah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Pamela P McKenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Ahmed Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | | | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
4
|
Lebarbenchon C, Boucher S, Feare C, Dietrich M, Larose C, Humeau L, Le Corre M, Jaeger A. Migratory patterns of two major influenza virus host species on tropical islands. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230600. [PMID: 37800153 PMCID: PMC10548098 DOI: 10.1098/rsos.230600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023]
Abstract
Animal migration is a major driver of infectious agent dispersal. Duck and seabird migrations, for instance, play a key role in the spatial transmission dynamics and gene flow of avian influenza viruses (AIV), worldwide. On tropical islands, brown and lesser noddies (Anous stolidus and Anous tenuirostris) may be important AIV hosts, but the lack of knowledge on their migratory behaviour limits our understanding of virus circulation in island networks. Here we show that high connectivity between islands generated by non-breeding dispersive behaviours may be a major driver in the spread and the maintenance of AIV among tropical islands of the western Indian Ocean. Tracking data highlight two types of dispersive behaviours during the non-breeding season: birds either staying in the vicinity of their breeding ground (on Bird Island, Seychelles), or moving to and roosting on other islands in the western Indian Ocean. Migrant birds used a wide range of roosting places from the Tanzanian coasts to the Maldives archipelago and Tromelin Island. Epidemiological data confirm that brown and lesser noddies are major hosts for AIV, although significant variations of seroprevalence between species suggest that other biological and ecological drivers could be involved in virus infection and transmission dynamics.
Collapse
Affiliation(s)
- Camille Lebarbenchon
- Université de La Réunion, UMR Processus infectieux en milieu insulaire tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, 2 rue Maxime Rivière, Sainte-Clotilde, La Réunion, France
| | - Solenn Boucher
- Université de La Réunion, UMR Processus infectieux en milieu insulaire tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, 2 rue Maxime Rivière, Sainte-Clotilde, La Réunion, France
- Université de la Réunion, UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, 15 Avenue René Cassin, Saint Denis, La Réunion, France
| | - Chris Feare
- WildWings Bird Management, Haslemere, Surrey, UK
| | - Muriel Dietrich
- Université de La Réunion, UMR Processus infectieux en milieu insulaire tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, 2 rue Maxime Rivière, Sainte-Clotilde, La Réunion, France
| | | | - Laurence Humeau
- Université de La Réunion, UMR Peuplements végétaux et bioagresseurs en milieu tropical (PVBMT), CIRAD, 15 Avenue René Cassin, Saint Denis, La Réunion, France
| | - Matthieu Le Corre
- Université de la Réunion, UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, 15 Avenue René Cassin, Saint Denis, La Réunion, France
| | - Audrey Jaeger
- Université de la Réunion, UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, 15 Avenue René Cassin, Saint Denis, La Réunion, France
| |
Collapse
|
5
|
Wang B, Huang Y, Hu B, Zhang H, Han S, Yang Z, Su Q, He H. Characterization of a reassortant H11N9 subtype avian influenza virus isolated from spot-billed duck in China. Virus Genes 2023:10.1007/s11262-023-02009-8. [PMID: 37266848 DOI: 10.1007/s11262-023-02009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
H11N9 viruses in wild birds might have provided the NA gene of human H7N9 virus in early 2013 in China, which evolved with highly pathogenic strains in 2017 and caused severe fatalities. To investigate the prevalence and evolution of the H11N9 influenza viruses, 16,781 samples were collected and analyzed during 2016-2020. As a result, a novel strain of influenza A (H11N9) virus with several characteristics that increase virulence was isolated. This strain had reduced pathogenicity in chicken and mice and was able to replicate in mice without prior adaptation. Phylogenetic analyses showed that it was a sextuple-reassortant virus of H11N9, H3N8, H3N6, H7N9, H9N2, and H6N8 viruses present in China, similar to the H11N9 strains in Japan and Korea during the same period. This was the H11N9 strain isolated from China most recently, which add a record to viruses in wild birds. This study identified a new H11N9 reassortant in a wild bird with key mutation contributing to virulence. Therefore, comprehensive surveillance and enhanced biosecurity precautions are particularly important for the prediction and prevention of potential pandemics resulting from reassortant viruses with continuous evolution and expanding geographic distributions.
Collapse
Affiliation(s)
- Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Yang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
6
|
Calle-Hernández DM, Hoyos-Salazar V, Bonilla-Aldana DK. Prevalence of the H5N8 influenza virus in birds: Systematic review with meta-analysis. Travel Med Infect Dis 2023; 51:102490. [PMID: 36336273 DOI: 10.1016/j.tmaid.2022.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Avian influenza viruses are members of the Orthomyxoviridae family, considered highly pathogenic (HPAI). They result from genetic variations from their low virulence predecessors. HPAI is a global problem. Large outbreaks of HAPI have significant health and economic impacts. OBJECTIVE The objective of this study was to assess the prevalence of the H5N8 Influenza virus in birds, as well as to assess its variability according to the countries and years. METHODS A systematic review of the literature was carried out in six databases (Web of Sciences, Scopus, PubMed, SciELO, Lilacs and Google Scholar) to evaluate the proportion of birds infected with the H5N8 Influenza virus, by molecular and immunological techniques. A meta-analysis was performed using a random-effects model to calculate the pooled prevalence, 95% confidence intervals (95%CI). A 2-tailed 5% alpha level was used for hypothesis testing. Measures of heterogeneity were estimated and reported, including the Cochrane Q statistic, the I2 index, and the tau-squared test. In addition, bird species performed subgroup analyzes. RESULTS 152 data groups were analyzed, a combined prevalence of 1.6% (95% CI 1.3-1.9%) was found for molecular studies, and the ELISA study yielded a seroprevalence of 66.7%; those results of molecular detection varied by year, from 0.2% in 2014 to 52.6% in 2020 and 96.9% in 2015. CONCLUSION The combined prevalence was substantial because large outbreaks have caused severe economic repercussions. In addition, it is considered a serious concern for public health due to its possible zoonotic activity.
Collapse
Affiliation(s)
- Dayana M Calle-Hernández
- Faculty of Veterinary Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia; Institución Universitaria Vision de las Americas, Pereira, Risaralda, Colombia
| | - Valentina Hoyos-Salazar
- Faculty of Veterinary Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia; Institución Universitaria Vision de las Americas, Pereira, Risaralda, Colombia
| | | |
Collapse
|
7
|
Petherbridge G, Gadzhiev AA, Shestopalov АМ, Alekseev AY, Sharshov KA, Daudova MG. An early warning system for highly pathogenic viruses borne by waterbird species and related dynamics of climate change in the Caspian Sea region: Outlines of a concept. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2022. [DOI: 10.18470/1992-1098-2022-2-233-263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim. Formulation of the outlines of the concept of ViEW (Viral Early Warning) which is intended as a long term system of multidisciplinary transboundary cooperation between specialist institutions of all five Caspian region states to research, regularly monitor and share data about the generation, transmission and epidemiology of avian‐borne pathogens and their vectors in the region, and the ways climate change may affect these processes.Material and Methods. The concept is based on the multidisciplinary experience of the authors in researching the processes incorporated in the ViEW concept and on an in‐depth survey of the literature involved.Results. The outlines of the ViEW concept are presented in this study for review and comment by interested parties and stakeholders.Conclusion. Review of activities and opinions of specialists and organizations with remits relating to the development, establishment and maintenance of ViEW, indicates that such a system is a necessity for global animal and human health because of the role that the Caspian region plays in the mass migration of species of waterbird known as vectors for avian influenza and the already evident impacts of climate change on their phenologies. Waterbirds frequenting the Caspian Sea littorals and their habitats together constitute a major potential global hotspot or High Risk region for the generation and transmission of highly pathogenic avian influenza viruses and other dangerous zoonotic diseases.
Collapse
Affiliation(s)
| | | | - А. М. Shestopalov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - A. Yu. Alekseev
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - K. A. Sharshov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | | |
Collapse
|
8
|
Graziosi G, Mescolini G, Silveira F, Lupini C, Tucciarone CM, Franzo G, Cecchinato M, Legnardi M, Gobbo F, Terregino C, Catelli E. First detection of Avian metapneumovirus subtype C Eurasian Lineage in a Eurasian wigeon ( Mareca penelope) wintering in Northeastern Italy: an additional hint on the role of migrating birds in the viral epidemiology. Avian Pathol 2022; 51:283-290. [PMID: 35261311 DOI: 10.1080/03079457.2022.2051429] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Avian metapneumovirus (aMPV) economically affects the global poultry industry causing respiratory and reproductive disorders. Considering the paucity of data on the aMPV occurrence in European free-ranging avifauna, a molecular survey was conducted on wild birds of 23 species belonging to the orders Anseriformes, Charadriiformes or Passeriformes, captured alive and sampled in Northeast Italy as part of the national Avian influenza virus (AIV) surveillance activities. A total of 492 oropharyngeal swabs, collected from 2007 to 2010, all AIV negative, were screened from aMPV by subtype-specific qRT-PCR. An aMPV-C strain, named aMPV/C/IT/Wigeon/758/07, was found in a wintering young Eurasian wigeon (Mareca penelope) sampled in November 2007. The matrix, fusion, and attachment glycoprotein genes of the detected strain were subsequently amplified by specific independent RT-PCRs, then sequenced, and compared in a phylogenetic framework with known aMPV homologous sequences retrieved from GenBank. Close genetic relationships were found between the aMPV/C/IT/Wigeon/758/07 strain and subtype C Eurasian lineage strains isolated in the late 1990s in French domestic ducks, suggesting epidemiological links. Eurasian wigeons are indeed medium to long-range migrant dabbling ducks that move along the Black Sea/Mediterranean flyway, our finding might therefore be related to migratory bridges between countries. To our knowledge, this is the first molecular evidence of the occurrence of a subtype C in Italy and backdates the aMPV-C circulation to 2007. Moreover, results suggest the susceptibility of Eurasian wigeons to aMPV. Broader investigations are needed to assess the role of wild ducks and the significance of the wildfowl/poultry interface in the aMPV-C epidemiology.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Flavio Silveira
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Claudia M Tucciarone
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Federica Gobbo
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Calogero Terregino
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
9
|
Ineson KM, Hill NJ, Clark DE, MacKenzie KG, Whitney JJ, Laskaris Y, Ronconi RA, Ellis JC, Giroux JF, Lair S, Stevens S, Puryear WB, Runstadler JA. Age and season predict influenza A virus dynamics in urban gulls: consequences for natural hosts in unnatural landscapes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2497. [PMID: 34783416 DOI: 10.1002/eap.2497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/01/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Gulls are ubiquitous in urban areas due to a growing reliance on anthropogenic feeding sites, which has led to changes in their abundance, distribution, and migration ecology, with implications for disease transmission. Gulls offer a valuable model for testing hypotheses regarding the dynamics of influenza A virus (IAV) - for which gulls are a natural reservoir in urban areas. We sampled sympatric populations of Ring-billed (Larus delawarensis), Herring (L. argentatus), and Great Black-backed Gulls (L. marinus) along the densely populated Atlantic rim of North America to understand how IAV transmission is influenced by drivers such as annual cycle, host species, age, habitat type, and their interplay. We found that horizontal transmission, rather than vertical transmission, played an outsized role in the amplification of IAV due to the convergence of gulls from different breeding grounds and age classes. We detected overlapping effects of age and season in our prevalence model, identifying juveniles during autumn as the primary drivers of the seasonal epidemic in gulls. Gulls accumulated immunity over their lifespan, however short-term fluctuations in seroprevalence were observed, suggesting that migration may impose limits on the immune system to maintain circulating antibodies. We found that gulls in coastal urban habitats had higher viral prevalence than gulls captured inland, correlating with higher richness of waterbird species along the coast, a mechanism supported by our movement data. The peak in viral prevalence in newly fledged gulls that are capable of long-distance movement has important implications for the spread of pathogens to novel hosts during the migratory season as well as for human health as gulls increasingly utilize urban habitats.
Collapse
Affiliation(s)
- Katherine M Ineson
- Department of Natural Resources & the Environment, University of New Hampshire, Durham, New Hampshire, 03824, USA
| | - Nichola J Hill
- Department of Biology, University of Massachusetts, Boston, Massachusetts, 02125, USA
| | - Daniel E Clark
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, 01583, USA
| | - Kenneth G MacKenzie
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, 01583, USA
| | - Jillian J Whitney
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, 01583, USA
| | - Yianni Laskaris
- US Fish and Wildlife Service, Galloway, New Jersey, 08205, USA
| | - Robert A Ronconi
- Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, Nova Scotia, B2Y 2N6, Canada
| | - Julie C Ellis
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, 19348, USA
| | - Jean-François Giroux
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, H3C 3P8, Canada
| | - Stéphane Lair
- Centre québécois sur la santé des animaux sauvages/Canadian Wildlife Health Cooperative, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Skyler Stevens
- Division of Mathematics, Physical, and Natural Sciences, University of New Mexico, Gallup, New Mexico, 87301, USA
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts, 01536, USA
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts, 01536, USA
| |
Collapse
|
10
|
Kida Y, Okuya K, Saito T, Yamagishi J, Ohnuma A, Hattori T, Miyamoto H, Manzoor R, Yoshida R, Nao N, Kajihara M, Watanabe T, Takada A. Structural Requirements in the Hemagglutinin Cleavage Site-Coding RNA Region for the Generation of Highly Pathogenic Avian Influenza Virus. Pathogens 2021; 10:1597. [PMID: 34959552 PMCID: PMC8707032 DOI: 10.3390/pathogens10121597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) with H5 and H7 hemagglutinin (HA) subtypes are derived from their low pathogenic counterparts following the acquisition of multiple basic amino acids in their HA cleavage site. It has been suggested that consecutive adenine residues and a stem-loop structure in the viral RNA region that encodes the cleavage site are essential for the acquisition of the polybasic cleavage site. By using a reporter assay to detect non-templated nucleotide insertions, we found that insertions more frequently occurred in the RNA region (29 nucleotide-length) encoding the cleavage site of an H5 HA gene that was predicted to have a stem-loop structure containing consecutive adenines than in a mutated corresponding RNA region that had a disrupted loop structure with fewer adenines. In virus particles generated by using reverse genetics, nucleotide insertions that created additional codons for basic amino acids were found in the RNA region encoding the cleavage site of an H5 HA gene but not in the mutated RNA region. We confirmed the presence of virus clones with the ability to replicate without trypsin in a plaque assay and to cause lethal infection in chicks. These results demonstrate that the stem-loop structure containing consecutive adenines in HA genes is a key molecular determinant for the emergence of H5 HPAIVs.
Collapse
Affiliation(s)
- Yurie Kida
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Kosuke Okuya
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Takeshi Saito
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Aiko Ohnuma
- Technical Office, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Takanari Hattori
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Hiroko Miyamoto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Rashid Manzoor
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Reiko Yoshida
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
| | - Tokiko Watanabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.K.); (K.O.); (T.S.); (T.H.); (H.M.); (R.M.); (R.Y.); (M.K.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
11
|
Wang D, Li M, Xiong C, Yan Y, Hu J, Hao M, Liang B, Chen J, Chen G, Yang G, Li Y, Zhang J, Gulyaeva M, Shestopalov A, Shi W, Bi Y, Liu H, Wang H, Liu D, Chen J. Ecology of avian influenza viruses in migratory birds wintering within the Yangtze River wetlands. Sci Bull (Beijing) 2021; 66:2014-2024. [PMID: 36654171 DOI: 10.1016/j.scib.2021.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Migratory birds are considered natural reservoirs of avian influenza A viruses (AIVs). To further our viral ecology knowledge and understand the subsequent risk posed by wild birds, we conducted a 4-year surveillance study of AIVs in the bird wintering wetlands of the Yangtze River, China. We collected over 8000 samples and isolated 122 AIV strains. Analyses were then carried out with 108 novel sequenced genomes and data were deposited in GISAID and other public databases. The results showed that the Yangtze River wintering wetlands functioned as a mixing ground, where various subtypes of AIVs were detected harboring a high diversity of nucleotide sequences; moreover, a portion of AIV gene segments were persistent inter-seasonally. Phylogenetic incongruence presented complex reassortment events and distinct patterns among various subtypes. In addition, we observed that viral gene segments in wintering wetlands were closely related to known North American isolates, indicating that intercontinental gene flow occurred. Notably, highly pathogenic H5 and low pathogenic H9 viruses, which usually circulate in poultry, were found to have crossed the poultry/wild bird interface, with the viruses introduced to wintering birds. Overall, this study represented the largest AIV surveillance effort of wild birds within the Yangtze River wintering wetlands. Surveillance data highlighted the important role of wintering wild birds in the ecology of AIVs and may enable future early warnings of novel AIV emergence.
Collapse
Affiliation(s)
- Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaochao Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juefu Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China
| | - Mengchan Hao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China
| | - Bilin Liang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Guang Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Guoxiang Yang
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Yong Li
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Jun Zhang
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Marina Gulyaeva
- Novosibirsk State University, Novosibirsk 630090, Russia; Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Alexander Shestopalov
- Novosibirsk State University, Novosibirsk 630090, Russia; Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Hubálek Z. Pathogenic microorganisms associated with gulls and terns (Laridae). JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zdeněk Hubálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| |
Collapse
|
13
|
Reassortment and Persistence of Influenza A Viruses from Diverse Geographic Origins within Australian Wild Birds: Evidence from a Small, Isolated Population of Ruddy Turnstones. J Virol 2021; 95:JVI.02193-20. [PMID: 33627387 DOI: 10.1128/jvi.02193-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Australian lineages of avian influenza A viruses (AIVs) are thought to be phylogenetically distinct from those circulating in Eurasia and the Americas, suggesting the circulation of endemic viruses seeded by occasional introductions from other regions. However, processes underlying the introduction, evolution and maintenance of AIVs in Australia remain poorly understood. Waders (order Charadriiformes, family Scolopacidae) may play a unique role in the ecology and evolution of AIVs, particularly in Australia, where ducks, geese, and swans (order Anseriformes, family Anatidae) rarely undertake intercontinental migrations. Across a 5-year surveillance period (2011 to 2015), ruddy turnstones (Arenaria interpres) that "overwinter" during the Austral summer in southeastern Australia showed generally low levels of AIV prevalence (0 to 2%). However, in March 2014, we detected AIVs in 32% (95% confidence interval [CI], 25 to 39%) of individuals in a small, low-density, island population 90 km from the Australian mainland. This epizootic comprised three distinct AIV genotypes, each of which represent a unique reassortment of Australian-, recently introduced Eurasian-, and recently introduced American-lineage gene segments. Strikingly, the Australian-lineage gene segments showed high similarity to those of H10N7 viruses isolated in 2010 and 2012 from poultry outbreaks 900 to 1,500 km to the north. Together with the diverse geographic origins of the American and Eurasian gene segments, these findings suggest extensive circulation and reassortment of AIVs within Australian wild birds over vast geographic distances. Our findings indicate that long-term surveillance in waders may yield unique insights into AIV gene flow, especially in geographic regions like Oceania, where Anatidae species do not display regular inter- or intracontinental migration.IMPORTANCE High prevalence of avian influenza viruses (AIVs) was detected in a small, low-density, isolated population of ruddy turnstones in Australia. Analysis of these viruses revealed relatively recent introductions of viral gene segments from both Eurasia and North America, as well as long-term persistence of introduced gene segments in Australian wild birds. These data demonstrate that the flow of viruses into Australia may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within the continent. These findings add to a growing body of evidence suggesting that Australian wild birds are unlikely to be ecologically isolated from the highly pathogenic H5Nx viruses circulating among wild birds throughout the Northern Hemisphere.
Collapse
|
14
|
Kim EH, Kim YL, Kim SM, Yu KM, Casel MAB, Jang SG, Pascua PNQ, Webby RJ, Choi YK. Pathogenic assessment of avian influenza viruses in migratory birds. Emerg Microbes Infect 2021; 10:565-577. [PMID: 33666526 PMCID: PMC8018353 DOI: 10.1080/22221751.2021.1899769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several subtypes of avian influenza (AI) viruses have caused human infections in recent years; however, there is a severe knowledge gap regarding the capacity of wild bird viruses to infect mammals. To assess the risk of mammalian infection by AI viruses from their natural reservoirs, a panel of isolates from 34 wild birds was examined in animal models. All selected AI virus subtypes were found to predominantly possess Eurasian lineage, although reassortment with North American lineage AI viruses was also noted in some isolates. When used to infect chickens, 20 AI isolates could be recovered from oropharyngeal swabs at 5 days post-infection (dpi) without causing significant morbidity. Similarly, mild to no observable disease was observed in mice infected with these viruses although the majority replicated efficiently in murine lungs. As expected, wild bird AI isolates were found to recognize avian-like receptors, while a few strains also exhibited detectable human-like receptor binding. Selected strains were further tested in ferrets, and 15 out of 20 were found to shed the virus in the upper respiratory tract until 5 dpi. Overall, we demonstrate that a diversity of low-pathogenic AI viruses carried by wild migratory birds have the capacity to infect land-based poultry and mammalian hosts while causing minimal signs of clinical disease. This study reiterates that there is a significant capacity for interspecies transmission of AI viruses harboured by wild aquatic birds. Thus, these viruses pose a significant threat to human health underscoring the need for continued surveillance.
Collapse
Affiliation(s)
- Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Young-Ll Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Se Mi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Mark Anthony B Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Philippe Noriel Q Pascua
- Virology Division, Department. of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Virology Division, Department. of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
15
|
Broadly Reactive H2 Hemagglutinin Vaccines Elicit Cross-Reactive Antibodies in Ferrets Preimmune to Seasonal Influenza A Viruses. mSphere 2021; 6:6/2/e00052-21. [PMID: 33692193 PMCID: PMC8546680 DOI: 10.1128/msphere.00052-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Influenza vaccines have traditionally been tested in naive mice and ferrets. However, humans are first exposed to influenza viruses within the first few years of their lives. Therefore, there is a pressing need to test influenza virus vaccines in animal models that have been previously exposed to influenza viruses before being vaccinated. In this study, previously described H2 computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) vaccines (Z1 and Z5) were tested in influenza virus “preimmune” ferret models. Ferrets were infected with historical, seasonal influenza viruses to establish preimmunity. These preimmune ferrets were then vaccinated with either COBRA H2 HA recombinant proteins or wild-type H2 HA recombinant proteins in a prime-boost regimen. A set of naive preimmune or nonpreimmune ferrets were also vaccinated to control for the effects of the multiple different preimmunities. All of the ferrets were then challenged with a swine H2N3 influenza virus. Ferrets with preexisting immune responses influenced recombinant H2 HA-elicited antibodies following vaccination, as measured by hemagglutination inhibition (HAI) and classical neutralization assays. Having both H3N2 and H1N1 immunological memory regardless of the order of exposure significantly decreased viral nasal wash titers and completely protected all ferrets from both morbidity and mortality, including the mock-vaccinated ferrets in the group. While the vast majority of the preimmune ferrets were protected from both morbidity and mortality across all of the different preimmunities, the Z1 COBRA HA-vaccinated ferrets had significantly higher antibody titers and recognized the highest number of H2 influenza viruses in a classical neutralization assay compared to the other H2 HA vaccines. IMPORTANCE H1N1 and H3N2 influenza viruses have cocirculated in the human population since 1977. Nearly every human alive today has antibodies and memory B and T cells against these two subtypes of influenza viruses. H2N2 influenza viruses caused the 1957 global pandemic and people born after 1968 have never been exposed to H2 influenza viruses. It is quite likely that a future H2 influenza virus could transmit within the human population and start a new global pandemic, since the majority of people alive today are immunologically naive to viruses of this subtype. Therefore, an effective vaccine for H2 influenza viruses should be tested in an animal model with previous exposure to influenza viruses that have circulated in humans. Ferrets were infected with historical influenza A viruses to more accurately mimic the immune responses in people who have preexisting immune responses to seasonal influenza viruses. In this study, preimmune ferrets were vaccinated with wild-type (WT) and COBRA H2 recombinant HA proteins in order to examine the effects that preexisting immunity to seasonal human influenza viruses have on the elicitation of broadly cross-reactive antibodies from heterologous vaccination.
Collapse
|
16
|
Poulin R, de Angeli Dutra D. Animal migrations and parasitism: reciprocal effects within a unified framework. Biol Rev Camb Philos Soc 2021; 96:1331-1348. [PMID: 33663012 DOI: 10.1111/brv.12704] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022]
Abstract
Migrations, i.e. the recurring, roundtrip movement of animals between distant and distinct habitats, occur among diverse metazoan taxa. Although traditionally linked to avoidance of food shortages, predators or harsh abiotic conditions, there is increasing evidence that parasites may have played a role in the evolution of migration. On the one hand, selective pressures from parasites can favour migratory strategies that allow either avoidance of infections or recovery from them. On the other hand, infected animals incur physiological costs that may limit their migratory abilities, affecting their speed, the timing of their departure or arrival, and/or their condition upon reaching their destination. During migration, reduced immunocompetence as well as exposure to different external conditions and parasite infective stages can influence infection dynamics. Here, we first explore whether parasites represent extra costs for their hosts during migration. We then review how infection dynamics and infection risk are affected by host migration, thereby considering parasites as both causes and consequences of migration. We also evaluate the comparative evidence testing the hypothesis that migratory species harbour a richer parasite fauna than their closest free-living relatives, finding general support for the hypothesis. Then we consider the implications of host migratory behaviour for parasite ecology and evolution, which have received much less attention. Parasites of migratory hosts may achieve much greater spatial dispersal than those of non-migratory hosts, expanding their geographical range, and providing more opportunities for host-switching. Exploiting migratory hosts also exerts pressures on the parasite to adapt its phenology and life-cycle duration, including the timing of major developmental, reproduction and transmission events. Natural selection may even favour parasites that manipulate their host's migratory strategy in ways that can enhance parasite transmission. Finally, we propose a simple integrated framework based on eco-evolutionary feedbacks to consider the reciprocal selection pressures acting on migratory hosts and their parasites. Host migratory strategies and parasite traits evolve in tandem, each acting on the other along two-way causal paths and feedback loops. Their likely adjustments to predicted climate change will be understood best from this coevolutionary perspective.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | |
Collapse
|
17
|
Genetic characteristics and pathogenicity of novel reassortant H6 viruses isolated from wild birds in China. Vet Microbiol 2021; 254:108978. [PMID: 33454600 DOI: 10.1016/j.vetmic.2021.108978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/03/2021] [Indexed: 02/08/2023]
Abstract
During our routine surveillance, we isolated seven H6 avian influenza virus (AIV) strains, including three H6N1 strains, three H6N2 strains, and one H6N8 strain, from 3667 fresh fecal samples that were collected from wild bird habitats in China from March 2017 and May 2019. Phylogenetic analysis revealed that these viruses formed five different genotypes and have undergone complicate reassortment during their evolution by acquiring genes from AIVs of both Eurasian and North American lineages that have been previously detected in migrating waterfowl and poultry. Viral pathogenesis in mice showed that these H6 viruses replicated efficiently in both the nasal turbinates and lungs of mice without pre-adaptation, but none of them were lethal for mice. We studied the genetic characteristic and biological property of novel reassortant H6 viruses isolated from wild birds in China. It also highlights the need for continued surveillance of H6 AIVs circulating in nature.
Collapse
|
18
|
Computationally Optimized Broadly Reactive H2 HA Influenza Vaccines Elicited Broadly Cross-Reactive Antibodies and Protected Mice from Viral Challenges. J Virol 2020; 95:JVI.01526-20. [PMID: 33115871 DOI: 10.1128/jvi.01526-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/25/2020] [Indexed: 01/10/2023] Open
Abstract
Influenza viruses have caused numerous pandemics throughout human history. The 1957 influenza pandemic was initiated by an H2N2 influenza virus. This H2N2 influenza virus was the result of a reassortment event between a circulating H2N2 avian virus and the seasonal H1N1 viruses in humans. Previously, our group has demonstrated the effectiveness of hemagglutinin (HA) antigens derived using computationally optimized broadly reactive antigen (COBRA) methodology against H1N1, H3N2, and H5N1 viruses. Using the COBRA methodology, H2 HA COBRA antigens were designed using sequences from H2N2 viruses isolated from humans in the 1950s and 1960s, as well as H2Nx viruses isolated from avian and mammalian species between the 1950s and 2016. In this study, the effectiveness of H2 COBRA HA antigens (Z1, Z3, Z5, and Z7) was evaluated in DBA/2J mice and compared to that of wild-type H2 HA antigens. The COBRA HA vaccines elicited neutralizing antibodies to the majority of viruses in our H2 HA panel and across all three clades as measured by hemagglutination inhibition (HAI) and neutralization assays. Comparatively, several wild-type HA vaccines elicited antibodies against a majority of the viruses in the H2 HA panel. DBA/2J mice vaccinated with COBRA vaccines showed increase survival for all three viral challenges compared to the wild-type H2 vaccines. In particular, the Z1 COBRA is a promising candidate for future work toward a pandemic H2 influenza vaccine.IMPORTANCE H2N2 influenza has caused at least one pandemic in the past. Given that individuals born after 1968 have not been exposed to H2N2 influenza viruses, a future pandemic caused by H2 influenza is likely. An effective H2 influenza vaccine would need to elicit broadly cross-reactive antibodies to multiple H2 influenza viruses. Choosing a wild-type virus to create a vaccine may elicit a narrow immune response and not protect against multiple H2 influenza viruses. COBRA H2 HA vaccines were developed and evaluated in mice along with wild-type H2 HA vaccines. Multiple COBRA H2 HA vaccines protected mice from all three viral challenges and produced broadly cross-reactive neutralizing antibodies to H2 influenza viruses.
Collapse
|
19
|
Tang L, Tang W, Ming L, Gu J, Qian K, Li X, Wang T, He G. Characterization of Avian Influenza Virus H10-H12 Subtypes Isolated from Wild Birds in Shanghai, China from 2016 to 2019. Viruses 2020; 12:E1085. [PMID: 32992999 PMCID: PMC7600165 DOI: 10.3390/v12101085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
H10, H11 and H12 (H10-H12) subtypes of the avian influenza virus (AIV) are associated with waterfowl. Although these subtypes of AIV are infrequently detected in nature, they can undergo reassortment with other AIV subtypes. Few H10-H12 subtypes of AIV have been isolated from wild birds in China. In this study, 12 AIV isolates of H10-H12 subtypes were identified via routine surveillance of wild birds in Shanghai, China from 2016 to 2019, including two H10, three H11 and seven H12 isolates. Sequence and phylogenetic analyses revealed that the genomic segments of the 12 isolates are highly diverse. These 12 isolates are closely related to those in the Eurasian lineage and share a high degree of sequence identity with those from wild birds and domestic ducks in countries in the East Asian-Australasian Flyway, including Japan, Korea, Bangladesh, Vietnam and China. However, parts of the genomic segments of two H12N2 isolates (NH112319-H12N2 and NH101807-H12N2) belong to the North American lineage, suggesting intercontinental reassortment among H12 AIVs in Eurasia and North American. To better understand the ecological and phylodynamic features of H10-H12 subtypes in wild birds, a large-scale surveillance of AIVs in wild birds is warranted.
Collapse
Affiliation(s)
- Ling Tang
- Laboratory of Wildlife Epidemic Diseases, School of Life Sciences, East China Normal University, Shanghai 200063, China; (L.T.); (W.T.); (L.M.); (X.L.); (T.W.)
| | - Wangjun Tang
- Laboratory of Wildlife Epidemic Diseases, School of Life Sciences, East China Normal University, Shanghai 200063, China; (L.T.); (W.T.); (L.M.); (X.L.); (T.W.)
| | - Le Ming
- Laboratory of Wildlife Epidemic Diseases, School of Life Sciences, East China Normal University, Shanghai 200063, China; (L.T.); (W.T.); (L.M.); (X.L.); (T.W.)
| | - Jianming Gu
- Pudong District Forestry Station of Shanghai, Shanghai 200120, China; (J.G.); (K.Q.)
| | - Kai Qian
- Pudong District Forestry Station of Shanghai, Shanghai 200120, China; (J.G.); (K.Q.)
| | - Xiaofang Li
- Laboratory of Wildlife Epidemic Diseases, School of Life Sciences, East China Normal University, Shanghai 200063, China; (L.T.); (W.T.); (L.M.); (X.L.); (T.W.)
| | - Tianhou Wang
- Laboratory of Wildlife Epidemic Diseases, School of Life Sciences, East China Normal University, Shanghai 200063, China; (L.T.); (W.T.); (L.M.); (X.L.); (T.W.)
- Institute of Eco-Chongming (IEC), East China Normal University, Shanghai 200063, China
| | - Guimei He
- Laboratory of Wildlife Epidemic Diseases, School of Life Sciences, East China Normal University, Shanghai 200063, China; (L.T.); (W.T.); (L.M.); (X.L.); (T.W.)
- Institute of Eco-Chongming (IEC), East China Normal University, Shanghai 200063, China
| |
Collapse
|
20
|
Sun Y, Zhang K, Qi H, Zhang H, Zhang S, Bi Y, Wu L, Sun L, Qi J, Liu D, Ma J, Tien P, Liu W, Li J. Computational predicting the human infectivity of H7N9 influenza viruses isolated from avian hosts. Transbound Emerg Dis 2020; 68:846-856. [PMID: 32706427 PMCID: PMC8246913 DOI: 10.1111/tbed.13750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/03/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022]
Abstract
The genome composition of a given avian influenza virus is the primary determinant of its potential for cross-species transmission from birds to humans. Here, we introduce a viral genome-based computational tool that can be used to evaluate the human infectivity of avian isolates of influenza A H7N9 viruses, which can enable prediction of the potential risk of these isolates infecting humans. This tool, which is based on a novel class weight-biased logistic regression (CWBLR) algorithm, uses the sequences of the eight genome segments of an H7N9 strain as the input and gives the probability of this strain infecting humans (reflecting its human infectivity). We examined the replication efficiency and the pathogenicity of several H7N9 avian isolates that were predicted to have very low or high human infectivity by the CWBLR model in cell culture and in mice, and found that the strains with high predicted human infectivity replicated more efficiently in mammalian cells and were more infective in mice than those that were predicted to have low human infectivity. These results demonstrate that our CWBLR model can serve as a powerful tool for predicting the human infectivity and cross-species transmission risks of H7N9 avian strains.
Collapse
Affiliation(s)
- Yeping Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Heyuan Qi
- Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - He Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linhuan Wu
- Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Juncai Ma
- Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Po Tien
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Guangxi, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Verhagen JH, Poen M, Stallknecht DE, van der Vliet S, Lexmond P, Sreevatsan S, Poulson RL, Fouchier RAM, Lebarbenchon C. Phylogeography and Antigenic Diversity of Low-Pathogenic Avian Influenza H13 and H16 Viruses. J Virol 2020; 94:e00537-20. [PMID: 32321814 PMCID: PMC7307148 DOI: 10.1128/jvi.00537-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 11/20/2022] Open
Abstract
Low-pathogenic avian influenza viruses (LPAIVs) are genetically highly variable and have diversified into multiple evolutionary lineages that are primarily associated with wild-bird reservoirs. Antigenic variation has been described for mammalian influenza viruses and for highly pathogenic avian influenza viruses that circulate in poultry, but much less is known about antigenic variation of LPAIVs. In this study, we focused on H13 and H16 LPAIVs that circulate globally in gulls. We investigated the evolutionary history and intercontinental gene flow based on the hemagglutinin (HA) gene and used representative viruses from genetically distinct lineages to determine their antigenic properties by hemagglutination inhibition assays. For H13, at least three distinct genetic clades were evident, while for H16, at least two distinct genetic clades were evident. Twenty and ten events of intercontinental gene flow were identified for H13 and H16 viruses, respectively. At least two antigenic variants of H13 and at least one antigenic variant of H16 were identified. Amino acid positions in the HA protein that may be involved in the antigenic variation were inferred, and some of the positions were located near the receptor binding site of the HA protein, as they are in the HA protein of mammalian influenza A viruses. These findings suggest independent circulation of H13 and H16 subtypes in gull populations, as antigenic patterns do not overlap, and they contribute to the understanding of the genetic and antigenic variation of LPAIVs naturally circulating in wild birds.IMPORTANCE Wild birds play a major role in the epidemiology of low-pathogenic avian influenza viruses (LPAIVs), which are occasionally transmitted-directly or indirectly-from them to other species, including domestic animals, wild mammals, and humans, where they can cause subclinical to fatal disease. Despite a multitude of genetic studies, the antigenic variation of LPAIVs in wild birds is poorly understood. Here, we investigated the evolutionary history, intercontinental gene flow, and antigenic variation among H13 and H16 LPAIVs. The circulation of subtypes H13 and H16 seems to be maintained by a narrower host range, in particular gulls, than the majority of LPAIV subtypes and may therefore serve as a model for evolution and epidemiology of H1 to H12 LPAIVs in wild birds. The findings suggest that H13 and H16 LPAIVs circulate independently of each other and emphasize the need to investigate within-clade antigenic variation of LPAIVs in wild birds.
Collapse
Affiliation(s)
- Josanne H Verhagen
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
- Linnaeus University, Department of Biology and Environmental Science, Kalmar, Sweden
| | - Marjolein Poen
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, University of Georgia, Athens, Georgia, USA
| | | | - Pascal Lexmond
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - Srinand Sreevatsan
- Michigan State University, College of Veterinary Medicine, Department of Pathobiology and Diagnostic Investigation, East Lansing, Michigan, USA
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - Ron A M Fouchier
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - Camille Lebarbenchon
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, University of Georgia, Athens, Georgia, USA
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
22
|
Hassan MM, El Zowalaty ME, Islam A, Khan SA, Rahman MK, Järhult JD, Hoque MA. Prevalence and Diversity of Avian Influenza Virus Hemagglutinin Sero-Subtypes in Poultry and Wild Birds in Bangladesh. Vet Sci 2020; 7:vetsci7020073. [PMID: 32492967 PMCID: PMC7355479 DOI: 10.3390/vetsci7020073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 02/05/2023] Open
Abstract
Highly pathogenic avian influenza H5 viruses have pandemic potential, cause significant economic losses and are of veterinary and public health concerns. This study aimed to investigate the distribution and diversity of hemagglutinin (HA) subtypes of avian influenza virus (AIV) in poultry and wild birds in Bangladesh. We conducted an avian influenza sero-surveillance in wild and domestic birds in wetlands of Chattogram and Sylhet in the winter seasons 2012-2014. We tested serum samples using a competitive enzyme-linked immunosorbent assay (c-ELISA), and randomly selected positive serum samples (170 of 942) were tested using hemagglutination inhibition (HI) to detect antibodies against the 16 different HA sero-subtypes. All AIV sero-subtypes except H7, H11, H14 and H15 were identified in the present study, with H5 and H9 dominating over other subtypes, regardless of the bird species. The diversity of HA sero-subtypes within groups ranged from 3 (in household chickens) to 10 (in migratory birds). The prevalence of the H5 sero-subtype was 76.3% (29/38) in nomadic ducks, 71.4% (5/7) in household chicken, 66.7% (24/36) in resident wild birds, 65.9% (27/41) in migratory birds and 61.7% (29/47) in household ducks. Moreover, the H9 sero-subtype was common in migratory birds (56%; 23/41), followed by 38.3% (18/47) in household ducks, 36.8% (14/38) in nomadic ducks, 30.6% (11/66) in resident wild birds and 28.5% (2/7) in household chickens. H1, H4 and H6 sero-subtypes were the most common sero-subtypes (80%; 8/10, 70%; 7/10 and 70%; 7/10, respectively) in migratory birds in 2012, H9 in resident wild birds (83.3%; 5/6) and H2 in nomadic ducks (73.9%; 17/23) in 2013, and the H5 sero-subtype in all types of birds (50% to 100%) in 2014. The present study demonstrates that a high diversity of HA subtypes circulated in diverse bird species in Bangladesh, and this broad range of AIV hosts may increase the probability of AIVs' reassortment and may enhance the emergence of novel AIV strains. A continued surveillance for AIV at targeted domestic-wild bird interfaces is recommended to understand the ecology and evolution of AIVs.
Collapse
Affiliation(s)
- Mohammad M. Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
- Correspondence: (M.M.H.); (M.E.E.Z.)
| | - Mohamed E. El Zowalaty
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, SE-75 123 Uppsala, Sweden
- St. Jude Center of Excellence for Influenza Research and Surveillance, Division of Virology, Department of Infectious Diseases, St Jude Children’s Hospital, Memphis, TN 38105, USA
- Correspondence: (M.M.H.); (M.E.E.Z.)
| | - Ariful Islam
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong Campus, Geelong, VIC 3125, Australia
- EcoHealth Alliance, New York, NY 10001-2320, USA;
| | - Shahneaz A. Khan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
| | | | - Josef D. Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, SE-752 36 Uppsala, Sweden;
| | - Md. A. Hoque
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
| |
Collapse
|
23
|
Hu C, Li X, Zhu C, Zhou F, Tang W, Wu D, Li Z, Zhou L, Liu J, Wei X, Cui J, Wang T, He G. Co-circulation of multiple reassortant H6 subtype avian influenza viruses in wild birds in eastern China, 2016-2017. Virol J 2020; 17:62. [PMID: 32349760 PMCID: PMC7189434 DOI: 10.1186/s12985-020-01331-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Background H6 subtype influenza viruses were prevalent in domestic poultry and wild birds, which also could pose potential threat to humans. However, little is known about the prevalence of H6 subtype viruses in wild birds in eastern China, a crucial stopover or wintering site for migratory wild birds along the East Asian-Australasian Flyway. Methods During the routine surveillance in 2016–2017, H6 subtype AIVs positive samples were identified, and the representative strains were selected for further sequence and phylogenetic analysis and the pathogenicity in mice were evaluated. Results Among the 30 H6 positive samples, there were at least four subtypes H6N1, H6N2, H6N5 and H6N8 co-circulated in Shanghai, China. Genetic analysis showed the 8 representative isolates shared homology with different AIV sub-lineages isolated from domestic ducks or wild birds in different countries along the East Asian-Australasian flyways, and were classified into 7 new genotypes. The pathogenicity to mice showed that these H6 viruses could replicate efficiently in the lungs without prior adaptation, but could not cause mice death. Conclusions Eight novel strains belonged to H6N1, H6N2, H6N5 and H6N8 subtypes were isolated. Phylogenetic analyses revealed multiple origins of internal genes indicative of robust reassortment events and frequent wild birds-poultry interaction encouraging the evolution and emergence of new genotypes. The pathogenicity to mammals should be closely monitored to prevent the emergence of novel pandemic viruses.
Collapse
Affiliation(s)
- Chuanxia Hu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaofang Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Caihui Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Feng Zhou
- Jinshan Forest Working-Station, Shanghai, China
| | - Wangjun Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Di Wu
- Shanghai Wildlife Conservation and Management Center, Shanghai, China
| | - Zhihui Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Jing Liu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaoman Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Unit of Pathogen Bioinformatics, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Cui
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Unit of Pathogen Bioinformatics, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tianhou Wang
- School of Life Sciences, East China Normal University, Shanghai, China. .,Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China.
| | - Guimei He
- School of Life Sciences, East China Normal University, Shanghai, China. .,Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China.
| |
Collapse
|
24
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
25
|
Lin Y, Dong X, Wu J, Rao D, Zhang L, Faraj Y, Yang K. Metadata Analysis of mcr-1-Bearing Plasmids Inspired by the Sequencing Evidence for Horizontal Transfer of Antibiotic Resistance Genes Between Polluted River and Wild Birds. Front Microbiol 2020; 11:352. [PMID: 32210943 PMCID: PMC7076156 DOI: 10.3389/fmicb.2020.00352] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/18/2020] [Indexed: 12/30/2022] Open
Abstract
We sequenced the whole genomes of three mcr-1-positive multidrug-resistant E. coli strains, which were previously isolated from the environment of egret habitat (polluted river) and egret feces. The results exhibit high correlation between antibiotic-resistant phenotype and genotype among the three strains. Most of the mobilized antibiotic resistance genes (ARGs) are distributed on plasmids in the forms of transposons or integrons. Multidrug-resistant (MDR) regions of high homology are detected on plasmids of different E. coli isolates. Therefore, horizontal transfer of resistance genes has facilitated the transmission of antibiotic resistance between the environmental and avian bacteria, and the transfer of ARGs have involved multiple embedded genetic levels (transposons, integrons, plasmids, and bacterial lineages). Inspired by this, systematic metadata analysis was performed for the available sequences of mcr-1-bearing plasmids. Among these plasmids, IncHI2 plasmids carry the most additional ARGs. The composition of these additional ARGs varies according to their geographical distribution. The phylogenetic reconstruction of IncI2 and IncX4 plasmids provides the evidence for their multiregional evolution. Phylogenetic analysis at the level of mobile genetic element (plasmid) provides important epidemiological information for the global dissemination of mcr-1 gene. Highly homologous mcr-1-bearing IncI2 plasmids have been isolated from different regions along the East Asian-Australasian Flyway, suggesting that migratory birds may mediate the intercontinental transportation of ARGs.
Collapse
Affiliation(s)
- Yufei Lin
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xiaohong Dong
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jiao Wu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Dawei Rao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Lihua Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yousef Faraj
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Kun Yang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Coombs KM, Simon PF, McLeish NJ, Zahedi-Amiri A, Kobasa D. Aptamer Profiling of A549 Cells Infected with Low-Pathogenicity and High-Pathogenicity Influenza Viruses. Viruses 2019; 11:v11111028. [PMID: 31694171 PMCID: PMC6893437 DOI: 10.3390/v11111028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAVs) are important animal and human emerging and re-emerging pathogens that are responsible for yearly seasonal epidemics and sporadic pandemics. IAVs cause a wide range of clinical illnesses, from relatively mild infections by seasonal strains, to acute respiratory distress during infections with highly pathogenic avian IAVs (HPAI). For this study, we infected A549 human lung cells with lab prototype A/PR/8/34 (H1N1) (PR8), a seasonal H1N1 (RV733), the 2009 pandemic H1N1 (pdm09), or with two avian strains, an H5N1 HPAI strain or an H7N9 strain that has low pathogenicity in birds but high pathogenicity in humans. We used a newly-developed aptamer-based multiplexed technique (SOMAscan®) to examine >1300 human lung cell proteins affected by the different IAV strains, and identified more than 500 significantly dysregulated cellular proteins. Our analyses indicated that the avian strains induced more profound changes in the A549 global proteome compared to all tested low-pathogenicity H1N1 strains. The PR8 strain induced a general activation, primarily by upregulating many immune molecules, the seasonal RV733 and pdm09 strains had minimal effect upon assayed molecules, and the avian strains induced significant downregulation, primarily in antimicrobial response, cardiovascular and post-translational modification systems.
Collapse
Affiliation(s)
- Kevin M. Coombs
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-7893-976
| | - Philippe F. Simon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Nigel J. McLeish
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
| | - Ali Zahedi-Amiri
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Darwyn Kobasa
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada (A.Z.-A.); (D.K.)
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
27
|
La Sala LF, Burgos JM, Blanco DE, Stevens KB, Fernández AR, Capobianco G, Tohmé F, Pérez AM. Spatial modelling for low pathogenicity avian influenza virus at the interface of wild birds and backyard poultry. Transbound Emerg Dis 2019; 66:1493-1505. [PMID: 30698918 DOI: 10.1111/tbed.13136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/28/2022]
Abstract
Low pathogenicity avian influenza virus (LPAIV) is endemic in wild birds and poultry in Argentina, and active surveillance has been in place to prevent any eventual virus mutation into a highly pathogenic avian influenza virus (HPAIV), which is exotic in this country. Risk mapping can contribute effectively to disease surveillance and control systems, but it has proven a very challenging task in the absence of disease data. We used a combination of expert opinion elicitation, multicriteria decision analysis (MCDA) and ecological niche modelling (ENM) to identify the most suitable areas for the occurrence of LPAIV at the interface between backyard domestic poultry and wild birds in Argentina. This was achieved by calculating a spatially explicit risk index. As evidenced by the validation and sensitivity analyses, our model was successful in identifying high-risk areas for LPAIV occurrence. Also, we show that the risk for virus occurrence is significantly higher in areas closer to commercial poultry farms. Although the active surveillance systems have been successful in detecting LPAIV-positive backyard farms and wild birds in Argentina, our predictions suggest that surveillance efforts in those compartments could be improved by including high-risk areas identified by our model. Our research provides a tool to guide surveillance activities in the future, and presents a mixed methodological approach which could be implemented in areas where the disease is exotic or rare and a knowledge-driven modelling method is necessary.
Collapse
Affiliation(s)
- Luciano F La Sala
- Instituto de Ciencias Biológicas y Biomédicas del Sur (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Julián M Burgos
- Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Daniel E Blanco
- Wetlands International/Fundación Humedales, Buenos Aires, Argentina
| | - Kim B Stevens
- Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, London, UK
| | - Andrea R Fernández
- Departamento de Ciencias de la Administración, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Guillermo Capobianco
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina.,Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Fernando Tohmé
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Andrés M Pérez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
28
|
H2 influenza viruses: designing vaccines against future H2 pandemics. Biochem Soc Trans 2019; 47:251-264. [PMID: 30647144 DOI: 10.1042/bst20180602] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022]
Abstract
Influenza-related pathologies affect millions of people each year and the impact of influenza on the global economy and in our everyday lives has been well documented. Influenza viruses not only infect humans but also are zoonotic pathogens that infect various avian and mammalian species, which serve as viral reservoirs. While there are several strains of influenza currently circulating in animal species, H2 influenza viruses have a unique history and are of particular concern. The 1957 'Asian Flu' pandemic was caused by H2N2 influenza viruses and circulated among humans from 1957 to 1968 before it was replaced by viruses of the H3N2 subtype. This review focuses on avian influenza viruses of the H2 subtype and the role these viruses play in human infections. H2 influenza viral infections in humans would present a unique challenge to medical and scientific researchers. Much of the world's population lacks any pre-existing immunity to the H2N2 viruses that circulated 50-60 years ago. If viruses of this subtype began circulating in the human population again, the majority of people alive today would have no immunity to H2 influenza viruses. Since H2N2 influenza viruses have effectively circulated in people in the past, there is a need for additional research to characterize currently circulating H2 influenza viruses. There is also a need to stockpile vaccines that are effective against both historical H2 laboratory isolates and H2 viruses currently circulating in birds to protect against a future pandemic.
Collapse
|
29
|
Gharieb R, Mohamed M, Khalil A, Ali A. Influenza A viruses in birds and humans: Prevalence, molecular characterization, zoonotic significance and risk factors' assessment in poultry farms. Comp Immunol Microbiol Infect Dis 2019; 63:51-57. [PMID: 30961818 DOI: 10.1016/j.cimid.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the prevalence of influenza A viruses in birds and humans residing in the same localities of Sharkia Province, Egypt and the risk factors' assessment in poultry farms. A total of 100 birds comprised of 50 chickens, 25 ducks and 25 wild egrets were sampled. Swab samples were collected from 65 people (50 poultry farm workers and 15 hospitalized patients). All samples were screened for the presence of influenza A viruses using isolation and molecular assays. Avian influenza viruses were only detected in chicken samples (18%) and molecularly confirmed as subtype H5. The infection rate was higher in broilers (40%) than layers (8.6%). Influenza A (H1) pdm09 virus was detected in a single human case (1.54%). All the isolated AI H5 viruses were clustered into clade (2.2.1.2) and shared a high similarity rate at nucleotides and amino acid levels. In addition, they had a multi-basic amino acid motif (ـــPQGEKRRKKR/GLFـــ) at the H5 gene cleavage site that exhibited point mutations. Chicken breed, movement of workers from one flock to another, lack of utensils' disinfection and the introduction of new birds to the farm were significant risk factors associated with highly pathogenic AI H5 virus infection in poultry farms (p ≤ 0.05). Other factors showed no significant association. The HPAI H5 viruses are still endemic in Egypt with continuous mutation. Co-circulation of these viruses in birds and pdm09 viruses in humans raises alarm for the emergence of reassortant viruses that are capable of potentiating pandemics.
Collapse
Affiliation(s)
- Rasha Gharieb
- Depatment of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Mohamed Mohamed
- Depatment of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Ahmed Khalil
- Depatment of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; The United Graduate School of Veterinary Science, Yamaguchi University, 16771-1 Yoshida, Yamaguchi-shi, 753-8515, Japan
| | - Ahmed Ali
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| |
Collapse
|
30
|
Yin R, Zhou X, Zheng J, Kwoh CK. Computational identification of physicochemical signatures for host tropism of influenza A virus. J Bioinform Comput Biol 2018; 16:1840023. [PMID: 30567479 DOI: 10.1142/s0219720018400231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Avian influenza viruses from migratory birds have managed to cross host species barriers and infected various hosts like human and swine. Epidemics and pandemics might occur when influenza viruses are adapted to humans, causing deaths and enormous economic loss. Receptor-binding specificity of the virus is one of the key factors for the transmission of influenza viruses across species. The determination of host tropism and understanding of molecular properties would help identify the mechanism why zoonotic influenza viruses can cross species barrier and infect humans. In this study, we have constructed computational models for host tropism prediction on human-adapted subtypes of influenza HA proteins using random forest. The feature vectors of the prediction models were generated based on seven physicochemical properties of amino acids from influenza sequences of three major hosts. Feature aggregation and associative rules were further applied to select top 20 features and extract host-associated physicochemical signatures on the combined model of nonspecific subtypes. The prediction model achieved high performance ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>Accuracy</mml:mtext><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>9</mml:mn><mml:mn>4</mml:mn><mml:mn>8</mml:mn></mml:math> , <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>Precision</mml:mtext><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>9</mml:mn><mml:mn>5</mml:mn><mml:mn>4</mml:mn></mml:math> , <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>MCC</mml:mtext><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>9</mml:mn><mml:mn>2</mml:mn><mml:mn>2</mml:mn></mml:math> ). Support and confidence rates were calculated for the host class-association rules. The results indicated that secondary structure and normalized Van der Waals volume were identified as more important physicochemical signatures in determining the host tropism.
Collapse
Affiliation(s)
- Rui Yin
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xinrui Zhou
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jie Zheng
- School of Information Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, P. R. China
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
31
|
Nooruzzaman M, Haque ME, Chowdhury EH, Islam MR. Pathology of clade 2.3.2.1 avian influenza virus (H5N1) infection in quails and ducks in Bangladesh. Avian Pathol 2018; 48:73-79. [DOI: 10.1080/03079457.2018.1535165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Enamul Haque
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
32
|
Wu H, Yang F, Liu F, Lu R, Peng X, Chen B, Yao H, Wu N. Isolation and characterization of novel reassortant H6N1 avian influenza viruses from chickens in Eastern China. Virol J 2018; 15:164. [PMID: 30355336 PMCID: PMC6201551 DOI: 10.1186/s12985-018-1063-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022] Open
Abstract
Background The H6N1 subtype of avian influenza viruses (AIVs) can infect people with an influenza-like illness; the H6N1 viruses possess the ability for zoonotic transmission from avians into mammals, and possibly pose a threat to human health. Methods In 2017, live poultry markets (LPMs) in Zhejiang Province were surveyed for AIVs. To better understand the genetic relationships between these strains from Eastern China and other AIVs, all gene segments of these strains were sequenced and compared with sequences available in GenBank. In this study, we analyzed the receptor-binding specificity, antigenic characteristics, and pathogenicity of these two H6N1 viruses. Results In 2017, two H6N1 AIVs were isolated from chickens during surveillance for AIVs in LPMs in Eastern China. Phylogenetic analysis showed that these strains shared genetic characteristics from H6, H10, H1, and H4 AIVs found in ducks and wild birds in East Asia. These AIV strains were able to replicate in mice without prior adaptation. Conclusions In this study, we report the discovery of new strains of H6N1 viruses from chickens with novel gene reassortments. Our results suggest that these chickens play an important role generating novel reassortments in AIVs, and emphasize the need for continued surveillance of AIV strains circulating in poultry. Electronic supplementary material The online version of this article (10.1186/s12985-018-1063-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Rufeng Lu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Bin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China.
| |
Collapse
|
33
|
Genetic evidence for the intercontinental movement of avian influenza viruses possessing North American-origin nonstructural gene allele B into South Korea. INFECTION GENETICS AND EVOLUTION 2018; 66:18-25. [PMID: 30196122 DOI: 10.1016/j.meegid.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/16/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023]
Abstract
Avian influenza viruses (AIVs) are genetically separated by geographical barriers, resulting in the independent evolution of North American and Eurasian lineages. In the present study, to determine whether AIVs possessing the North American-origin nonstructural (NS) gene were previously introduced into South Korea, we performed a genetic analysis of AIVs isolated from fecal samples of migratory birds. We detected seven viruses possessing the North American-origin NS allele B among 413 AIV-positive samples obtained during AI surveillance between 2012 and 2017. We found evidence for the intercontinental transmission of at least three genetically distinct clusters of the B allele of the North American-origin NS gene into Eurasia at a low frequency. The host species of three viruses were identified as the greater white-fronted goose (Anser albifrons) using a DNA barcoding technique. Moreover, we used GPS-CDMA-based telemetry to determine the migration route of the greater white-fronted goose between the Far East of Russia and South Korea and found that this species may play an important role as an intermediate vector in the intercontinental transmission of AIVs. To improve our understanding of the role of wild birds in the ecology of AIVs, advanced AIV surveillance is required in the Far East of Russia as well as in Alaska region of Beringia accompanied by host identification and wild bird tracking.
Collapse
|
34
|
Heterosubtypic immunity increases infectious dose required to infect Mallard ducks with Influenza A virus. PLoS One 2018; 13:e0196394. [PMID: 29698449 PMCID: PMC5919434 DOI: 10.1371/journal.pone.0196394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/12/2018] [Indexed: 11/19/2022] Open
Abstract
Previous field and experimental studies have demonstrated that heterosubtypic immunity (HSI) is a potential driver of Influenza A virus (IAV) prevalence and subtype diversity in mallards. Prior infection with IAV can reduce viral shedding during subsequent reinfection with IAV that have genetically related hemagglutinins (HA). In this experiment, we evaluated the effect of HSI conferred by an H3N8 IAV infection against increasing challenge doses of closely (H4N6) and distantly (H6N2) related IAV subtypes in mallards. Two groups of thirty 1-month-old mallards each, were inoculated with 105.9 50% embryo infectious doses (EID50) of an H3N8 virus or a mock-inoculum. One month later, groups of five birds each were challenged with increasing doses of H4N6 or H6N2 virus; age-matched, single infection control ducks were included for all challenges. Results demonstrate that naïve birds were infected after inoculation with 103 and 104 EID50 doses of the H4N6 or H6N2 virus, but not with 102 EID50 doses of either IAV. In contrast, with birds previously infected with H3N8 IAV, only one duck challenged with 104 EID50 of H4N6 IAV was shedding viral RNA at 2 days post-inoculation, and with H6N2 IAV, only birds challenged with the 104 EID50 dose were positive to virus isolation. Viral shedding in ducks infected with H6N2 IAV was reduced on days 2 and 3 post-inoculation compared to control birds. To explain the differences in the dose necessary to produce infection among H3-primed ducks challenged with H4N6 or H6N2 IAV, we mapped the amino acid sequence changes between H3 and H4 or H6 HA on predicted three-dimensional structures. Most of the sequence differences occurred between H3 and H6 at antigenic sites A, B, and D of the HA1 region. These findings demonstrate that the infectious dose necessary to infect mallards with IAV can increase as a result of HSI and that this effect is most pronounced when the HA of the viruses are genetically related.
Collapse
|
35
|
Reeves AB, Hall JS, Poulson RL, Donnelly T, Stallknecht DE, Ramey AM. Influenza A virus recovery, diversity, and intercontinental exchange: A multi-year assessment of wild bird sampling at Izembek National Wildlife Refuge, Alaska. PLoS One 2018; 13:e0195327. [PMID: 29621333 PMCID: PMC5950690 DOI: 10.1371/journal.pone.0195327] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/20/2018] [Indexed: 11/18/2022] Open
Abstract
Western Alaska is a potential point-of-entry for foreign-origin influenza A viruses (IAVs) into North America via migratory birds. We sampled waterfowl and gulls for IAVs at Izembek National Wildlife Refuge (NWR) in western Alaska, USA, during late summer and autumn months of 2011-2015, to evaluate the abundance and diversity of viruses at this site. We collected 4842 samples across five years from 25 species of wild birds resulting in the recovery, isolation, and sequencing of 172 IAVs. With the intent of optimizing sampling efficiencies, we used information derived from this multi-year effort to: 1) evaluate from which species we consistently recover viruses, 2) describe viral subtypes of isolates by host species and year, 3) characterize viral gene segment sequence diversity with respect to host species, and assess potential differences in the viral lineages among the host groups, and 4) examine how evidence of intercontinental exchange of IAVs relates to host species. We consistently recovered viruses from dabbling ducks (Anas spp.), emperor geese (Chen canagica) and glaucous-winged gulls (Larus glaucescens). There was little evidence for differences in viral subtypes and diversity from different waterfowl hosts, however subtypes and viral diversity varied between waterfowl host groups and glaucous-winged gulls. Furthermore, higher proportions of viral sequences from northern pintails (Anas acuta), emperor geese and glaucous-winged gulls were grouped in phylogenetic clades that included IAV sequences originating from wild birds sampled in Asia as compared to non-pintail dabbling ducks, a difference that may be related to intercontinental migratory tendencies of host species. Our summary of research and surveillance efforts at Izembek NWR will assist in future prioritization of which hosts to sample and swab types to collect in Alaska and elsewhere in order to maximize isolate recovery, subtype and sequence diversity for resultant viruses, and detection of evidence for intercontinental viral exchange.
Collapse
Affiliation(s)
- Andrew B. Reeves
- United States Geological Survey Alaska Science Center, Anchorage, Alaska, United States of America
- * E-mail: (ABR); (AMR)
| | - Jeffrey S. Hall
- United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Tyrone Donnelly
- United States Geological Survey Alaska Science Center, Anchorage, Alaska, United States of America
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Andrew M. Ramey
- United States Geological Survey Alaska Science Center, Anchorage, Alaska, United States of America
- * E-mail: (ABR); (AMR)
| |
Collapse
|
36
|
Araujo J, Petry MV, Fabrizio T, Walker D, Ometto T, Thomazelli LM, Scherer AL, Serafini PP, Neto IS, Krauss S, Webster RG, Webby RJ, Durigon EL. Migratory birds in southern Brazil are a source of multiple avian influenza virus subtypes. Influenza Other Respir Viruses 2018; 12:220-231. [PMID: 29143465 PMCID: PMC5820415 DOI: 10.1111/irv.12519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND There is insufficient knowledge about the relation of avian influenza virus (AIV) to migratory birds in South America. Accordingly, we studied samples obtained over a 4-year period (2009-2012) from wild birds at a major wintering site in southern Brazil. METHODS We obtained 1212 oropharyngeal/cloacal samples from wild birds at Lagoa do Peixe National Park and screened them for influenza A virus by RT-PCR amplification of the matrix gene. Virus isolates were subjected to genomic sequencing and antigenic characterization. RESULTS Forty-eight samples of 1212 (3.96%) contained detectable influenza virus RNA. Partial viral sequences were obtained from 12 of these samples, showing the presence of H2N2 (1), H6Nx (1), H6N1 (8), H9N2 (1), and H12N5 (1) viruses. As H6 viruses predominated, we generated complete genomes from all 9 H6 viruses. Phylogenetic analyses showed that they were most similar to viruses of South American lineage. The H6N1 viruses caused no disease signs in infected ferrets and, despite genetic differences, were antigenically similar to North American isolates. CONCLUSIONS Lagoa do Peixe National Park is a source of multiple AIV subtypes, with the levels of influenza virus in birds being highest at the end of their wintering period in this region. H6N1 viruses were the predominant subtype identified. These viruses were more similar to viruses of South American lineage than to those of North American lineage.
Collapse
Affiliation(s)
- Jansen Araujo
- Laboratório de Virologia Clínica e Molecular do Instituto de Ciências Biomédicas (ICB‐II)Universidade de São PauloSão PauloSPBrazil
| | - Maria Virgínia Petry
- Laboratório de Ornitologia e Animais Marinhos (LOAM)Universidade do Vale do Rio dos Sinos, UNISINOSSão LeopoldoRSBrazil
| | - Thomas Fabrizio
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - David Walker
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - Tatiana Ometto
- Laboratório de Virologia Clínica e Molecular do Instituto de Ciências Biomédicas (ICB‐II)Universidade de São PauloSão PauloSPBrazil
| | - Luciano M. Thomazelli
- Laboratório de Virologia Clínica e Molecular do Instituto de Ciências Biomédicas (ICB‐II)Universidade de São PauloSão PauloSPBrazil
| | - Angelo L. Scherer
- Laboratório de Ornitologia e Animais Marinhos (LOAM)Universidade do Vale do Rio dos Sinos, UNISINOSSão LeopoldoRSBrazil
| | - Patricia P. Serafini
- Centro Nacional de Pesquisa e Conservação das Aves Silvestres (CEMAVE/ICMBio/MMA), BrazilFlorianópolisBrazil
| | - Isaac S. Neto
- Centro Nacional de Pesquisa e Conservação das Aves Silvestres (CEMAVE/ICMBio/MMA), BrazilFlorianópolisBrazil
| | - Scott Krauss
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - Robert G. Webster
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - Richard J. Webby
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - Edison L. Durigon
- Laboratório de Virologia Clínica e Molecular do Instituto de Ciências Biomédicas (ICB‐II)Universidade de São PauloSão PauloSPBrazil
| |
Collapse
|
37
|
Yang F, Wu H, Liu F, Lu X, Peng X, Wu N. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses. Arch Virol 2018; 163:1671-1675. [PMID: 29468361 DOI: 10.1007/s00705-018-3773-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023]
Abstract
The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
38
|
Ramey AM, DeLiberto TJ, Berhane Y, Swayne DE, Stallknecht DE. Lessons learned from research and surveillance directed at highly pathogenic influenza A viruses in wild birds inhabiting North America. Virology 2018; 518:55-63. [PMID: 29453059 DOI: 10.1016/j.virol.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 11/19/2022]
Abstract
Following detections of highly pathogenic (HP) influenza A viruses (IAVs) in wild birds inhabiting East Asia after the turn of the millennium, the intensity of sampling of wild birds for IAVs increased throughout much of North America. The objectives for many research and surveillance efforts were directed towards detecting Eurasian origin HP IAVs and understanding the potential of such viruses to be maintained and dispersed by wild birds. In this review, we highlight five important lessons learned from research and surveillance directed at HP IAVs in wild birds inhabiting North America: (1) Wild birds may disperse IAVs between North America and adjacent regions via migration, (2) HP IAVs can be introduced to wild birds in North America, (3) HP IAVs may cross the wild bird-poultry interface in North America, (4) The probability of encountering and detecting a specific virus may be low, and (5) Population immunity of wild birds may influence HP IAV outbreaks in North America. We review empirical support derived from research and surveillance efforts for each lesson learned and, furthermore, identify implications for future surveillance efforts, biosecurity, and population health. We conclude our review by identifying five additional areas in which we think future mechanistic research relative to IAVs in wild birds in North America are likely to lead to other important lessons learned in the years ahead.
Collapse
Affiliation(s)
- Andrew M Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Thomas J DeLiberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO 80521, USA
| | - Yohannes Berhane
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada R3E 3M4; Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
39
|
Suzuki M, Okamatsu M, Hiono T, Matsuno K, Sakoda Y. Potency of an inactivated influenza vaccine prepared from A/duck/Hokkaido/162/2013 (H2N1) against a challenge with A/swine/Missouri/2124514/2006 (H2N3) in mice. J Vet Med Sci 2017; 79:1815-1821. [PMID: 28993601 PMCID: PMC5709558 DOI: 10.1292/jvms.17-0312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
H2N2 influenza virus caused a pandemic starting in 1957 but has not been detected in humans since 1968. Thus, most people are immunologically naive to viruses of the H2 subtype. In contrast, H2 influenza viruses are continually
isolated from wild birds, and H2N3 viruses were isolated from pigs in 2006. H2 influenza viruses could cause a pandemic if re-introduced into humans. In the present study, a vaccine against H2 influenza was prepared as an
effective control measure against a future human pandemic. A/duck/Hokkaido/162/2013 (H2N1), which showed broad antigenic cross-reactivity, was selected from the candidate H2 influenza viruses recently isolated from wild birds in
Asian countries. Sufficient neutralizing antibodies against homologous and heterologous viruses were induced in mice after two subcutaneous injections of the inactivated whole virus particle vaccine. The inactivated vaccine
induced protective immunity sufficient to reduce the impact of challenges with A/swine/Missouri/2124514/2006 (H2N3). This study demonstrates that the inactivated whole virus particle vaccine prepared from an influenza virus
library would be useful against a future H2 influenza pandemic.
Collapse
Affiliation(s)
- Mizuho Suzuki
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
40
|
More S, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F, Fabris C, Martino L, Mosbach-Schulz O, Verdonck F, Morgado J, Stegeman JA. Avian influenza. EFSA J 2017; 15:e04991. [PMID: 32625288 PMCID: PMC7009867 DOI: 10.2903/j.efsa.2017.4991] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non-negligible risk of AI introduction. The transmission rate between animals within a flock is assessed to be higher for HPAIV than LPAIV. In very few cases, it could be proven that HPAI outbreaks were caused by intrinsic mutation of LPAIV to HPAIV but current knowledge does not allow a prediction as to if, and when this could occur. In gallinaceous poultry, passive surveillance through notification of suspicious clinical signs/mortality was identified as the most effective method for early detection of HPAI outbreaks. For effective surveillance in anseriform poultry, passive surveillance through notification of suspicious clinical signs/mortality needs to be accompanied by serological surveillance and/or a virological surveillance programme of birds found dead (bucket sampling). Serosurveillance is unfit for early warning of LPAI outbreaks at the individual holding level but could be effective in tracing clusters of LPAIV-infected holdings. In wild birds, passive surveillance is an appropriate method for HPAIV surveillance if the HPAIV infections are associated with mortality whereas active wild bird surveillance has a very low efficiency for detecting HPAIV. Experts estimated and emphasised the effect of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures.
Collapse
|
41
|
Dong J, Bo H, Zhang Y, Dong L, Zou S, Huang W, Liu J, Wang D, Shu Y. Characteristics of influenza H13N8 subtype virus firstly isolated from Qinghai Lake Region, China. Virol J 2017; 14:180. [PMID: 28923071 PMCID: PMC5604506 DOI: 10.1186/s12985-017-0842-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Since the highly pathogenic H5N1 influenza caused thousands of deaths of wild bird in this area in 2005, Qinghai Lake in China has become a hot spot for study of the influence of avian influenza to migratory wild birds. However, the ecology and evolution of low pathogenic avian influenza virus in this region are limited. This project-based avian influenza surveillance in Qinghai lake region was initiated in year 2012. Method Samples of wild bird feces and lake surface water were collected in Qinghai Lake in year 2012.Virus isolation was conducted on embryonated chicken eggs. The influenza A virus was determined by rRT-PCR. Virus sequences were acquired by deep sequencing. The phylogenetic correlation and molecular characteristics of the viruses were analyzed. The virus growth and infection features, receptor binding preference were studied, and pathogenicity in vitro as well as. Results Two H13N8 subtype influenza viruses were isolated. The viruses are phylogenetically belong to Eurasian lineage. Most of the genes are associated with gull origin influenza virus except PB1 gene, which is most probably derived from Anseriformes virus. The evidence of interspecies reassortment was presented. The two viruses have limited growth capacity on MDCK and A549 cells while grow well in embryonated eggs. The dual receptor binding features of the two viruses was shown up. The low pathogenic features were determined by trypsin dependence plaque formation assay. Conclusions The two H13N8 subtype influenza viruses are highly associated with gull origin. The interspecies reassortment of H13 subtype virus among Anseriforme sand Charadriiformes wild birds emphasizes the importance of strengthening avian influenza surveillance in this region. This study is helpful to understand the ecology, evolution and transmission pattern of H13 subtype influenza virus globally. Electronic supplementary material The online version of this article (10.1186/s12985-017-0842-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Dong
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Libo Dong
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China.
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
42
|
Afanador-Villamizar A, Gomez-Romero C, Diaz A, Ruiz-Saenz J. Avian influenza in Latin America: A systematic review of serological and molecular studies from 2000-2015. PLoS One 2017. [PMID: 28632771 PMCID: PMC5478137 DOI: 10.1371/journal.pone.0179573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Avian influenza or bird flu is a highly contagious acute viral disease that can occur in epidemics and cross-border forms in poultry and wild birds. The characteristics of avian influenza viruses (AIVs) allow the emergence of new viral variants, some with zoonotic and pandemic potential. AIVs have been identified in Latin America; however, there is a lack of understanding of these viruses at the regional level. We performed a systematic literature review on serological or molecular evidence of AIVs circulation in Latin America. Methods were designed based on the PRISMA and STROME guidelines. Only peer-reviewed studies published between 2000 to 2015 and data was analysed based on country, viral subtype, avian species, and phylogenetic origins. From 271 studies initially found only twenty-six met our inclusion criteria. Evidence of AIVs infection was found in most Latin American countries, with Mexico as the country with the largest number of conducted studies and reported cases during the period analysed, followed by Chile and Argentina. Most of the AIVs were early reported through surveillance systems and at least 14 different subtypes of influenza viruses were reported in birds, and the presence of both low (92.9%) and high (7.1%) pathogenic AIVs was shown in Latin America. Of the reported AIVs in Latin America, 43.7% belong to migratory birds, 28.1% to local wild birds, and 28.1% to poultry. The migratory bird population mainly comprises families belonging to the orders Anseriformes and Charadriformes. We highlight the importance of epidemiological surveillance systems and the possible role of different migratory birds in the transmission of AIVs within the Americas. Our findings demonstrate the limited information on AIVs in Latin America and highlight the need of more studies on AIVs at the regional level, particularly those focused on identifying the endemic subtypes in regional wild birds.
Collapse
Affiliation(s)
- Alejandra Afanador-Villamizar
- Semillero de Investigación en enfermedades Infecciosas - InfeKto, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Carlos Gomez-Romero
- Semillero de Investigación en enfermedades Infecciosas - InfeKto, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Andres Diaz
- PIC - Pig Improvement Company LATAM, Querétaro, Mexico
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- * E-mail:
| |
Collapse
|
43
|
Sarker RD, Giasuddin M, Chowdhury EH, Islam MR. Serological and virological surveillance of avian influenza virus in domestic ducks of the north-east region of Bangladesh. BMC Vet Res 2017. [PMID: 28623934 PMCID: PMC5474003 DOI: 10.1186/s12917-017-1104-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Wild waterfowl are considered as the natural reservoir for avian influenza (AI) viruses. Bangladesh has been experiencing highly pathogenic avian influenza (HPAI) outbreaks since 2007, mostly in chickens and occasionally in ducks. Ducks play an important role in the persistence and genetic recombination of AI viruses. This paper presents the results of serological and virological monitoring of AI in domestic ducks in 2013 in the north-east region of Bangladesh. Results A total of 871 and 662 serum samples and 909 and 302 pairs of cloacal and oropharyngeal swabs from domestic ducks of Mymensingh and Sylhet division, respectively, were analysed. Antibodies to type A influenza virus were detected by blocking ELISA in 60.73 and 47.73% serum samples of Mymensingh and Sylhet division, respectively. On haemagglutination-inhibition (HI) test 17.5% of ELISA positive serum samples were found to be seropositive to H5 avian influenza virus. Five cloacal swabs and one oropharyngeal swab were positive for M gene of type A influenza virus by real time RT-PCR (rRT-PCR), but all of them were negative for H5 influenza virus. Three of the six viruses were successfully characterized as H1N5, H2N5 and H7N5 subtype of AI virus, the other three remained uncharacterized. On sequencing and phylogenetic analysis the HA and NA genes were found to be of Eurasian avian lineage. The H7 virus had cleavage site motif of low pathogenic virus. Conclusions Low pathogenic avian influenza viruses were detected from apparently healthy domestic ducks. A small proportion of domestic ducks were found seropositive to H5 AI virus.
Collapse
Affiliation(s)
- Rahul Deb Sarker
- Department of Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Giasuddin
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | | | | |
Collapse
|
44
|
Fourment M, Darling AE, Holmes EC. The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evol Biol 2017; 17:118. [PMID: 28545432 PMCID: PMC5445350 DOI: 10.1186/s12862-017-0965-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
Background Wild birds are the major reservoir hosts for influenza A viruses (AIVs) and have been implicated in the emergence of pandemic events in livestock and human populations. Understanding how AIVs spread within and across continents is therefore critical to the development of successful strategies to manage and reduce the impact of influenza outbreaks. In North America many bird species undergo seasonal migratory movements along a North-South axis, thereby providing opportunities for viruses to spread over long distances. However, the role played by such avian flyways in shaping the genetic structure of AIV populations remains uncertain. Results To assess the relative contribution of bird migration along flyways to the genetic structure of AIV we performed a large-scale phylogeographic study of viruses sampled in the USA and Canada, involving the analysis of 3805 to 4505 sequences from 36 to 38 geographic localities depending on the gene segment data set. To assist in this we developed a maximum likelihood-based genetic algorithm to explore a wide range of complex spatial models, depicting a more complete picture of the migration network than determined previously. Conclusions Based on phylogenies estimated from nucleotide sequence data sets, our results show that AIV migration rates are significantly higher within than between flyways, indicating that the migratory patterns of birds play a key role in viral dispersal. These findings provide valuable insights into the evolution, maintenance and transmission of AIVs, in turn allowing the development of improved programs for surveillance and risk assessment.
Collapse
Affiliation(s)
- Mathieu Fourment
- ithree institute, University of Technology Sydney, Sydney, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.
| | - Aaron E Darling
- ithree institute, University of Technology Sydney, Sydney, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
45
|
Preskenis LA, Ladman BS, Gelb J. Identification of Type A Influenza Viruses from Wild Birds on the Delmarva Peninsula, 2007–10. Avian Dis 2017; 61:83-89. [DOI: 10.1637/11461-062716-reg] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lauren A. Preskenis
- Department of Animal and Food Sciences, Avian Biosciences Center, University of Delaware, Newark, DE 19716
| | - Brian S. Ladman
- Department of Animal and Food Sciences, Avian Biosciences Center, University of Delaware, Newark, DE 19716
| | - Jack Gelb
- Department of Animal and Food Sciences, Avian Biosciences Center, University of Delaware, Newark, DE 19716
| |
Collapse
|
46
|
Yao Y, Shao Z, He B, Yang W, Chen J, Zhang T, Chen X, Chen J. Characterization of a reassortant H11N9 subtype avian influenza virus isolated from bean goose along the East Asian-Australian flyway. Virus Genes 2016; 53:126-129. [PMID: 27730427 DOI: 10.1007/s11262-016-1401-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/06/2016] [Indexed: 01/26/2023]
Abstract
During the surveillance of avian influenza viruses in the Dongxi Lake wetland of Hubei in 2015-2016, an H11N9 avian influenza virus was isolated from a bean goose (Anser fabalis). Phylogenetic analysis showed that the HA gene of this isolate belongs to the North American lineage; however, the NA and the internal genes of the isolate were generated from the Eurasian lineage. This strain had reduced pathogenicity in mice and was capable of replication in the mouse lung without prior adaptation. This is the first report detecting H11N9 subtype influenza virus from migratory birds in central China. These findings highlight the transmission of avian influenza virus along the East Asian-Australian flyway and the need for continuing surveillance in central China.
Collapse
Affiliation(s)
- Yanfeng Yao
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China
| | - Zhiyong Shao
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China
| | - Bin He
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China
| | - Wenhai Yang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology Chinese Academy of Sciences, Hubei, People's Republic of China
| | - Tao Zhang
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science Tsinghua University, Beijing, People's Republic of China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China
| | - Jie Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, 430208, Hubei, People's Republic of China.
| |
Collapse
|
47
|
Hill NJ, Runstadler JA. A Bird's Eye View of Influenza A Virus Transmission: Challenges with Characterizing Both Sides of a Co-Evolutionary Dynamic. Integr Comp Biol 2016; 56:304-16. [PMID: 27252222 PMCID: PMC5964799 DOI: 10.1093/icb/icw055] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In nature, wild birds and influenza A viruses (IAV) are continually co-evolving, locked into a back-and-forth of resistance and conquest that has approached a stable equilibrium over time. This co-evolutionary relationship between bird host and IAV may appear stable at the organismal level, but is highly dynamic at the molecular level manifesting in a constant trade-off between transmissibility and virulence of the virus. Characterizing both sides of the host-virus dynamic has presented a challenge for ecologists and virologists alike, despite the potential for this approach to provide insights into which conditions destabilize the equilibrium state resulting in outbreaks or mortality of hosts in extreme cases. The use of different methods that are either host-centric or virus-centric has made it difficult to reconcile the disparate fields of host ecology and virology for investigating and ultimately predicting wild bird-mediated transmission of IAV. This review distills some of the key lessons learned from virological and ecological studies and explores the promises and pitfalls of both approaches. Ultimately, reconciling ecological and virological approaches hinges on integrating scales for measuring host-virus interactions. We argue that prospects for finding common scales for measuring wild bird-influenza dynamics are improving due to advances in genomic sequencing, host-tracking technology and remote sensing data, with the unit of time (months, year, or seasons) providing a starting point for crossover.
Collapse
Affiliation(s)
- Nichola J Hill
- Massachusetts Institute of Technology, Division of Comparative Medicine & Department of Biological Engineering, 77 Massachusetts Ave, Cambridge 02139
| | - Jonathan A Runstadler
- Massachusetts Institute of Technology, Division of Comparative Medicine & Department of Biological Engineering, 77 Massachusetts Ave, Cambridge 02139
| |
Collapse
|
48
|
The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl. Proc Natl Acad Sci U S A 2016; 113:9033-8. [PMID: 27457948 DOI: 10.1073/pnas.1608853113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the major unresolved questions in influenza A virus (IAV) ecology is exemplified by the apparent disappearance of highly pathogenic (HP) H5N1, H5N2, and H5N8 (H5Nx) viruses containing the Eurasian hemagglutinin 2.3.4.4 clade from wild bird populations in North America. The introduction of Eurasian lineage HP H5 clade 2.3.4.4 H5N8 IAV and subsequent reassortment with low-pathogenic H?N2 and H?N1 North American wild bird-origin IAVs in late 2014 resulted in widespread HP H5Nx IAV infections and outbreaks in poultry and wild birds across two-thirds of North America starting in November 2014 and continuing through June 2015. Although the stamping out strategies adopted by the poultry industry and animal health authorities in Canada and the United States-which included culling, quarantining, increased biosecurity, and abstention from vaccine use-were successful in eradicating the HP H5Nx viruses from poultry, these activities do not explain the apparent disappearance of these viruses from migratory waterfowl. Here we examine current and historical aquatic bird IAV surveillance and outbreaks of HP H5Nx in poultry in the United States and Canada, providing additional evidence of unresolved mechanisms that restrict the emergence and perpetuation of HP avian influenza viruses in these natural reservoirs.
Collapse
|
49
|
Fleming-Canepa X, Jensen SM, Mesa CM, Diaz-Satizabal L, Roth AJ, Parks-Dely JA, Moon DA, Wong JP, Evseev D, Gossen DA, Tetrault DG, Magor KE. Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks. THE JOURNAL OF IMMUNOLOGY 2016; 197:783-94. [PMID: 27342841 DOI: 10.4049/jimmunol.1502450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
Abstract
MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species.
Collapse
Affiliation(s)
- Ximena Fleming-Canepa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Shawna M Jensen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Christine M Mesa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Alexa J Roth
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Julie A Parks-Dely
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Debra A Moon
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Janet P Wong
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danyel Evseev
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Desolie A Gossen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - David G Tetrault
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Katharine E Magor
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
50
|
Co-circulation of H5N6, H3N2, H3N8, and Emergence of Novel Reassortant H3N6 in a Local Community in Hunan Province in China. Sci Rep 2016; 6:25549. [PMID: 27151540 PMCID: PMC4858758 DOI: 10.1038/srep25549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/19/2016] [Indexed: 12/15/2022] Open
Abstract
Multiple infections of avian influenza viruses (AIVs) in poultry or wild birds contribute to the continued evolution of H5 subtype viruses in nature and provide potential recombination of AIVs of different origins. In this study, we carried out surveillance of AIVs in ducks, geese and the environment of a community in Hunan province, China, from 2014–2015. We isolated multiple co-circulated AIVs including H3N2, H3N8, and H5N6, and, most importantly, a novel reassortant: H3N6. Phylogenetic analyses suggest that H3N6 is highly likely derived from H5N6, which has recently been shown to have zoonotic potential with human infections. Studies with mammalian cell lines and a mouse model indicate that four selected AIVs of duck or goose origin can infect MDCK and A549 cells but have low pathogenicity in mice. We propose that a potential co-circulation of multiple subtypes including H5N6 in local area may result in the production of novel subtypes such as H3N6 by gene reassortment.
Collapse
|