1
|
Verneret M, Leroux C, Faraut T, Navratil V, Lerat E, Turpin J. A genome-wide study of ruminants uncovers two endogenous retrovirus families recently active in goats. Mob DNA 2025; 16:4. [PMID: 39962507 PMCID: PMC11831830 DOI: 10.1186/s13100-024-00337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Endogenous retroviruses (ERV) are traces of ancestral retroviral germline infections that constitute a significant portion of mammalian genomes and are classified as LTR-retrotransposons. The exploration of their dynamics and evolutionary history in ruminants remains limited, highlighting the need for a comprehensive and thorough investigation of the ERV landscape in the genomes of cattle, sheep and goat. RESULTS Through a de novo bioinformatic analysis, we characterized 24 Class I and II ERV families across four reference assemblies of domestic and wild sheep and goats, and one assembly of cattle. Among these families, 13 are represented by consensus sequences identified in the five analyzed species, while eight are exclusive to small ruminants and three to cattle. The similarity-based approach used to search for the presence of these families in other ruminant species revealed multiple endogenization events over the last 40 million years and distinct evolutionary dynamics among species. The ERV annotation resulted in a high-resolution dataset of 100,534 ERV insertions across the five genomes, representing between 0.5 and 1% of their genomes. Solo-LTRs account for 83.2% of the annotated insertions demonstrating that most of the ERVs are relics of past events. Two Class II families showed higher abundance and copy conservation in small ruminants. One of them is closely related to circulating exogenous retroviruses and is represented by 22 copies sharing identical LTRs and 12 with complete coding capacities in the domestic goat. CONCLUSIONS Our results suggest the presence of two ERV families with recent transpositional activity in ruminant genomes, particularly in the domestic goat, illustrating distinct evolutionary dynamics among the analyzed species. This work highlights the ongoing influence of ERVs on genomic landscapes and call for further investigation of their evolutionary trajectories in these genomes.
Collapse
Affiliation(s)
- Marie Verneret
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, PSL Research University, 69007, Lyon, France
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, 69622, Villeurbanne, France
| | - Caroline Leroux
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, PSL Research University, 69007, Lyon, France
| | - Thomas Faraut
- GenPhySE, Universite de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Vincent Navratil
- PRABI, Pôle Rhône-Alpes Bioinformatics Center, Universite Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Emmanuelle Lerat
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, 69622, Villeurbanne, France.
| | - Jocelyn Turpin
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, PSL Research University, 69007, Lyon, France.
| |
Collapse
|
2
|
Riocreux-Verney B, Verneret M, Diesler R, Dolmazon C, Gineys B, Cadoré JL, Turpin J, Leroux C. Association between genetic clades and cancer prevalence suggested by French-wide study of oncogenic small ruminant β-retrovirus diversity. Front Cell Infect Microbiol 2024; 14:1466333. [PMID: 39583158 PMCID: PMC11582038 DOI: 10.3389/fcimb.2024.1466333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction ENTV (Enzootic Nasal Tumor Virus) and JSRV (Jaagsiekte Sheep Retrovirus) are β-retroviruses responsible for respiratory cancers in sheep and goats. In this study, we analyzed the genetic features of the sheep and goat β-Retroviruses (29 JSRV and 24 ENTV strains) circulating in France to identify molecular signatures associated with disease severity in flocks. Methods We developed a highly specific PCR to amplify and sequence exogenous targeted regions or near full length proviruses based on limited discriminating motifs along their genomes. Results The phylogenetic reconstructions based on the Long Terminal Repeat (LTR) and env regions suggest that one major strain is circulating on the French territory for ENTV-1 and ENTV-2 while not clustering with already published Spanish, Canadian or Chinese strains. JSRV strains circulating in French sheep flocks were distributed in 2 distinct genetic clades clustering with sequences originating from North America, Africa and United-Kingdom. JSRV clade I was found to be associated with a higher incidence of cancer in French flocks. Specific motifs spanning the entire JSRV genome particularly in the LTRs and in the intracytoplasmic domain of the envelope were detected between the two genetic subtypes. Discussion This work represents the first nationwide study describing the circulation of the three closely related β-oncogenic retroviruses JSRV, ENTV-1 and ENTV-2 in French sheep and goat flocks. Better characterization of strain genetics is a critical step in monitoring circulating - retroviruses, especially those associated with higher cancer incidence in small ruminants.
Collapse
Affiliation(s)
- Benjamin Riocreux-Verney
- Viral Infections and Comparative Pathology (IVPC) UMR754, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Universite Claude Bernard Lyon 1, École Pratique des Hautes Études (EPHE), Université Paris Sciences & Lettres (PSL), Lyon, France
| | - Marie Verneret
- Viral Infections and Comparative Pathology (IVPC) UMR754, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Universite Claude Bernard Lyon 1, École Pratique des Hautes Études (EPHE), Université Paris Sciences & Lettres (PSL), Lyon, France
- Universite Claude Bernard Lyon 1, Laboratory of Biometry and Evolutionary Biology (LBBE), UMR 5558, Centre national de la recherche scientifique (CNRS), VetAgro Sup, Villeurbanne, France
| | - Rémi Diesler
- Viral Infections and Comparative Pathology (IVPC) UMR754, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Universite Claude Bernard Lyon 1, École Pratique des Hautes Études (EPHE), Université Paris Sciences & Lettres (PSL), Lyon, France
| | - Christine Dolmazon
- Viral Infections and Comparative Pathology (IVPC) UMR754, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Universite Claude Bernard Lyon 1, École Pratique des Hautes Études (EPHE), Université Paris Sciences & Lettres (PSL), Lyon, France
| | - Barbara Gineys
- Viral Infections and Comparative Pathology (IVPC) UMR754, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Universite Claude Bernard Lyon 1, École Pratique des Hautes Études (EPHE), Université Paris Sciences & Lettres (PSL), Lyon, France
| | - Jean-Luc Cadoré
- Viral Infections and Comparative Pathology (IVPC) UMR754, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Universite Claude Bernard Lyon 1, École Pratique des Hautes Études (EPHE), Université Paris Sciences & Lettres (PSL), Lyon, France
- VetAgro Sup, Veterinary Campus of Lyon, Marcy L’Etoile, France
| | - Jocelyn Turpin
- Viral Infections and Comparative Pathology (IVPC) UMR754, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Universite Claude Bernard Lyon 1, École Pratique des Hautes Études (EPHE), Université Paris Sciences & Lettres (PSL), Lyon, France
| | - Caroline Leroux
- Viral Infections and Comparative Pathology (IVPC) UMR754, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Universite Claude Bernard Lyon 1, École Pratique des Hautes Études (EPHE), Université Paris Sciences & Lettres (PSL), Lyon, France
| |
Collapse
|
3
|
Kitazawa M. Evolution of the nervous system by acquisition of retrovirus-derived genes in mammals. Genes Genet Syst 2024; 98:321-336. [PMID: 38220159 DOI: 10.1266/ggs.23-00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
In the course of evolution, the most highly developed organ is likely the brain, which has become more complex over time and acquired diverse forms and functions in different species. In particular, mammals have developed complex and high-functioning brains, and it has been reported that several genes derived from retroviruses were involved in mammalian brain evolution, that is, generating the complexity of the nervous system. Especially, the sushi-ichi-related retrotransposon homolog (SIRH)/retrotransposon gag-like (RTL) genes have been suggested to play a role in the evolutionary processes shaping brain morphology and function in mammals. Genetic mutation and altered expression of genes are linked to neurological disorders, highlighting how the acquisition of virus-derived genes in mammals has both driven brain evolution and imposed a susceptibility to diseases. This review provides an overview of the functions, diversity, evolution and diseases associated with SIRH/RTL genes in the nervous system. The contribution of retroviruses to brain evolution is an important research topic in evolutionary biology and neuroscience, and further insights are expected to be gained through future studies.
Collapse
Affiliation(s)
- Moe Kitazawa
- School of BioSciences, Faculty of Science, The University of Melbourne
| |
Collapse
|
4
|
Liu Q, Yu YY, Wang HY. Differences in CpG island distribution between exogenous and endogenous jaagsiekte sheep retrovirus strains. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:531-539. [PMID: 37901353 PMCID: PMC10612397 DOI: 10.30466/vrf.2022.552748.3454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2023]
Abstract
The jaagsiekte sheep retrovirus (JSRV), belonging to the betaretrovirus genus of the retroviridae family, includes both exogenous and endogenous jaagsiekte sheep retroviruses (exJSRV and enJSRV, respectively). At the proviral genome level, exJSRV and enJSRV strains have a high degree of similarity with their main variation regions being the LTR, gag, and env genes. In this study, for the first time, we investigated and compared the distribution of CpG islands between these enJSRV and exJSRV strains. Specifically, we analyzed a total of 42 full-length JSRV genomic sequences obtained from the GenBank® database to identify CpG islands in the exJSRV and enJSRV genomes using the MethPrimer software. Our results showed that the CpG islands in the two JSRV strains were mainly distributed in the LTR, gag, and env genes. In exJSRVs, 66.66% (6/9), 33.33% (3/9), and 100% (9/9) of the sequences presented at least one CpG island in LTR, gag, env genes, respectively, and for enJSRVs, 84.84% (28/33), 57.57% (19/33), and 96.96% (32/33) of the sequences presented at least one CpG island in the LTR, gag, and env genes. These findings suggested that the distribution, length, and genetic traits of CpG islands were different for the exJSRV and enJSRV strains. In future, it would be necessary to demonstrate the biological significance of CpG islands within these genes in exJSRV and enJSRV genomes. This will enhance understanding regarding the potential role of CpG islands in epigenetic regulation.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Agricultural Science and Technology, Nanchong Vocational and Technical College, Nanchong, China.
| | | | | |
Collapse
|
5
|
Shimode S. Acquisition and Exaptation of Endogenous Retroviruses in Mammalian Placenta. Biomolecules 2023; 13:1482. [PMID: 37892164 PMCID: PMC10604696 DOI: 10.3390/biom13101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) are retrovirus-like sequences that were previously integrated into the host genome. Although most ERVs are inactivated by mutations, deletions, or epigenetic regulation, some remain transcriptionally active and impact host physiology. Several ERV-encoded proteins, such as Syncytins and Suppressyn, contribute to placenta acquisition, a crucial adaptation in mammals that protects the fetus from external threats and other risks while enabling the maternal supply of oxygen, nutrients, and antibodies. In primates, Syncytin-1 and Syncytin-2 facilitate cell-cell fusion for placental formation. Suppressyn is the first ERV-derived protein that inhibits cell fusion by binding to ASCT2, the receptor for Syncytin-1. Furthermore, Syncytin-2 likely inserted into the genome of the common ancestor of Anthropoidea, whereas Syncytin-1 and Suppressyn likely inserted into the ancestor of catarrhines; however, they were inactivated in some lineages, suggesting that multiple exaptation events had occurred. This review discusses the role of ERV-encoded proteins, particularly Syncytins and Suppressyn, in placental development and function, focusing on the integration of ERVs into the host genome and their contribution to the genetic mechanisms underlying placentogenesis. This review provides valuable insights into the molecular and genetic aspects of placentation, potentially shedding light on broader evolutionary and physiological processes in mammals.
Collapse
Affiliation(s)
- Sayumi Shimode
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan;
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
6
|
Martins YC, Jurberg AD, Daniel-Ribeiro CT. Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity. Microorganisms 2023; 11:1472. [PMID: 37374974 DOI: 10.3390/microorganisms11061472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
The concept of molecular mimicry describes situations in which antigen sharing between parasites and hosts could benefit pathogen evasion from host immune responses. However, antigen sharing can generate host responses to parasite-derived self-like peptides, triggering autoimmunity. Since its conception, molecular mimicry and the consequent potential cross-reactivity following infections have been repeatedly described in humans, raising increasing interest among immunologists. Here, we reviewed this concept focusing on the challenge of maintaining host immune tolerance to self-components in parasitic diseases. We focused on the studies that used genomics and bioinformatics to estimate the extent of antigen sharing between proteomes of different organisms. In addition, we comparatively analyzed human and murine proteomes for peptide sharing with proteomes of pathogenic and non-pathogenic organisms. We conclude that, although the amount of antigenic sharing between hosts and both pathogenic and non-pathogenic parasites and bacteria is massive, the degree of this antigen sharing is not related to pathogenicity or virulence. In addition, because the development of autoimmunity in response to infections by microorganisms endowed with cross-reacting antigens is rare, we conclude that molecular mimicry by itself is not a sufficient factor to disrupt intact self-tolerance mechanisms.
Collapse
Affiliation(s)
- Yuri Chaves Martins
- Department of Anesthesiology, Saint Louis University School of Medicine, St. Louis, MO 63110, USA
| | - Arnon Dias Jurberg
- Instituto de Educação Médica, Campus Vista Carioca, Universidade Estácio de Sá, Rio de Janeiro 20071-004, RJ, Brazil
- Laboratório de Animais Transgênicos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária and Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
7
|
Perucatti A, Iannuzzi A, Armezzani A, Palmarini M, Iannuzzi L. Comparative Fluorescence In Situ Hybridization (FISH) Mapping of Twenty-Three Endogenous Jaagsiekte Sheep Retrovirus (enJSRVs) in Sheep ( Ovis aries) and River Buffalo ( Bubalus bubalis) Chromosomes. Animals (Basel) 2022; 12:ani12202834. [PMID: 36290220 PMCID: PMC9597706 DOI: 10.3390/ani12202834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of ancient infections of host germline cells, thus representing key tools to study host and viral evolution. Homologous ERV sequences often map at the same genomic locus of different species, indicating that retroviral integration occurred in the genomes of the common ancestors of those species. The genome of domestic sheep (Ovis aries) harbors at least twenty-seven copies of ERVs related to the exogenous and pathogenic Jaagsiekte sheep retrovirus (JSRVs), thus referred to as enJSRVs. Some of these loci are unequally distributed between breeds and individuals of the host species due to polymorphic insertions, thereby representing invaluable tools to trace the evolutionary dynamics of virus populations within their hosts. In this study, we extend the cytogenetic physical maps of sheep and river buffalo by performing fluorescent in situ hybridization (FISH) mapping of twenty-three genetically characterized enJSRVs. Additionally, we report the first comparative FISH mapping of enJSRVs in domestic sheep (2n = 54) and river buffalo (Bubalus bubalis, 2n = 50). Finally, we demonstrate that enJSRV loci are conserved in the homologous chromosomes and chromosome bands of both species. Altogether, our results support the hypothesis that enJSRVs were present in the genomes of both species before they differentiated within the Bovidae family.
Collapse
Affiliation(s)
- Angela Perucatti
- National Research Council (CNR), Institute of Animal Production System on Mediterranean Environment (ISPAAM), Piazzale E. Fermi, 1, 80055 Portici, Italy
| | - Alessandra Iannuzzi
- National Research Council (CNR), Institute of Animal Production System on Mediterranean Environment (ISPAAM), Piazzale E. Fermi, 1, 80055 Portici, Italy
- Correspondence: ; Tel.: +39-32-8961-7073
| | - Alessia Armezzani
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61-1QH, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61-1QH, UK
| | - Leopoldo Iannuzzi
- National Research Council (CNR), Institute of Animal Production System on Mediterranean Environment (ISPAAM), Piazzale E. Fermi, 1, 80055 Portici, Italy
| |
Collapse
|
8
|
Wang X, Liu S. Endogenous Jaagsiekte sheep retrovirus envelope protein promotes sheep trophoblast cell fusion by activating PKA/MEK/ERK1/2 signaling. Theriogenology 2022; 193:58-67. [PMID: 36152587 DOI: 10.1016/j.theriogenology.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Endogenous Jaagsiekte sheep retrovirus envelope protein (enJSRV-Env) plays an important role in trophoblast cell fusion in sheep. However, the underlying mechanism remains unclear. METHODS Primary endometrial luminal epithelial cells (LECs) were isolated from the sheep uterus and cocultured with sheep trophoblast cells (STCs). Giemsa staining was conducted to count multinucleated cells in the coculture system. Gain- and loss-of-function assays were performed to explore the role of enJSRV-Env in trophoblast cell fusion in the coculture system. Co-immunoprecipitation and mass spectrometry were carried out to identify the interacting partner of enJSRV-Env in the cocultures. Western blot analysis were conducted to determine the activation of protein kinase A (PKA)/mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. RESULTS Primary LECs were identified by the expression of epithelial marker cytokeratin 18. Overexpression of enJSRV-Env promoted the formation of multinucleated cells in the coculture system. enJSRV-Env activated and physically interacted with PKA, along with the activation of MEK/ERK1/2 signaling. PKA inhibition completely reversed enJSRV-Env-induced MEK/ERK1/2 activation, and ERK1/2 inhibition abolished enJSRV-Env-induced formation of multinucleated cells in the coculture system. CONCLUSION enJSRV-Env promotes trophoblast cell fusion in the sheep placenta by activating PKA/MEK/ERK1/2 signaling. This finding reveals a novel mechanism underlying the contribution of enJSRV-Env to trophoblast cell fusion during placental morphogenesis.
Collapse
Affiliation(s)
- Xiaojuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010018, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China.
| |
Collapse
|
9
|
Cesarani A, Gaspa G, Correddu F, Dimauro C, Macciotta NPP. Unravelling the effect of environment on the genome of Sarda breed ewes using Runs of Homozygosity. J Anim Breed Genet 2022; 139:292-306. [PMID: 34984736 DOI: 10.1111/jbg.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023]
Abstract
Natural adaptation and artificial selection have shaped the genome of modern livestock breeds. Among SNP-based metrics that are used to detect signatures of selection at genome-wide level, runs of homozygosity (ROH) are getting increasing popularity. In this paper, ROH distribution and features of a sample of 823 Sarda breed ewes farmed at different levels of altitude are analysed to investigate the effect of the environment on the patterns of homozygosity. A total of 46,829 (33,087 unique) ROH were detected. OAR2 exhibited the largest average number of ROH per animal. The most frequent ROH (OAR27, 38.9-44.2 Mb) was shared by 327. ROH length was statistically affected (p < 0.001) by both the altitude and temperature of the place where the flock was located. The highest probability of a SNP falling in a ROH was observed for hill ewes, whereas the smallest one for mountain. A total of 457 SNP exceeded the 99th percentile of the ROH count per SNP distribution and were considered significant. These markers mapped in eight chromosomes and they clustered into 17 ROH islands, where 80 candidate genes were mapped. Results of this study highlighted differences in the ROH distribution and features among sheep farmed in flocks located at different levels of altitude, confirming the role of environmental adaptability in shaping the genome of this breed.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Fabio Correddu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | | |
Collapse
|
10
|
Zheng J, Wei Y, Han GZ. The diversity and evolution of retroviruses: perspectives from viral “fossils”. Virol Sin 2022; 37:11-18. [PMID: 35234634 PMCID: PMC8922424 DOI: 10.1016/j.virs.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Retroviruses exclusively infect vertebrates, causing a variety of diseases. The replication of retroviruses requires reverse transcription and integration into host genomes. When infecting germline cells, retroviruses become inherited vertically, forming endogenous retroviruses (ERVs). ERVs document past viral infections, providing molecular fossils for studying the evolutionary history of retroviruses. In this review, we summarize the recent advances in understanding the diversity and evolution of retroviruses from the perspectives of viral fossils, and discuss the effects of ERVs on the evolution of host biology. Recent advances in understanding the diversity and evolution of retroviruses. Methods to analyze ERVs. The effects of ERVs on the evolution of host biology.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yutong Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Yang L, Malhotra R, Chikhi R, Elleder D, Kaiser T, Rong J, Medvedev P, Poss M. Recombination marks the evolutionary dynamics of a recently endogenized retrovirus. Mol Biol Evol 2021; 38:5423-5436. [PMID: 34480565 PMCID: PMC8662619 DOI: 10.1093/molbev/msab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
All vertebrate genomes have been colonized by retroviruses along their evolutionary trajectory. Although endogenous retroviruses (ERVs) can contribute important physiological functions to contemporary hosts, such benefits are attributed to long-term coevolution of ERV and host because germline infections are rare and expansion is slow, and because the host effectively silences them. The genomes of several outbred species including mule deer (Odocoileus hemionus) are currently being colonized by ERVs, which provides an opportunity to study ERV dynamics at a time when few are fixed. We previously established the locus-specific distribution of cervid ERV (CrERV) in populations of mule deer. In this study, we determine the molecular evolutionary processes acting on CrERV at each locus in the context of phylogenetic origin, genome location, and population prevalence. A mule deer genome was de novo assembled from short- and long-insert mate pair reads and CrERV sequence generated at each locus. We report that CrERV composition and diversity have recently measurably increased by horizontal acquisition of a new retrovirus lineage. This new lineage has further expanded CrERV burden and CrERV genomic diversity by activating and recombining with existing CrERV. Resulting interlineage recombinants then endogenize and subsequently expand. CrERV loci are significantly closer to genes than expected if integration were random and gene proximity might explain the recent expansion of one recombinant CrERV lineage. Thus, in mule deer, retroviral colonization is a dynamic period in the molecular evolution of CrERV that also provides a burst of genomic diversity to the host population.
Collapse
Affiliation(s)
- Lei Yang
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Raunaq Malhotra
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rayan Chikhi
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel Elleder
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 1083, 14220, Czech Republic Vídeňská Prague
| | - Theodora Kaiser
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse Rong
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Paul Medvedev
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mary Poss
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
12
|
Srinivasachar Badarinarayan S, Sauter D. Switching Sides: How Endogenous Retroviruses Protect Us from Viral Infections. J Virol 2021; 95:e02299-20. [PMID: 33883223 PMCID: PMC8315955 DOI: 10.1128/jvi.02299-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
Long disregarded as junk DNA or genomic dark matter, endogenous retroviruses (ERVs) have turned out to represent important components of the antiviral immune response. These remnants of once-infectious retroviruses not only regulate cellular immune activation, but may even directly target invading viral pathogens. In this Gem, we summarize mechanisms by which retroviral fossils protect us from viral infections. One focus will be on recent advances in the role of ERVs as regulators of antiviral gene expression.
Collapse
MESH Headings
- Animals
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/physiology
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Humans
- Immunity, Cellular
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Pattern Recognition/metabolism
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/metabolism
- Retroelements
- Viral Proteins/metabolism
- Virion/metabolism
- Virus Diseases/genetics
- Virus Diseases/immunology
- Virus Diseases/virology
Collapse
Affiliation(s)
- Smitha Srinivasachar Badarinarayan
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Germany
| |
Collapse
|
13
|
Artesi M, Hahaut V, Cole B, Lambrechts L, Ashrafi F, Marçais A, Hermine O, Griebel P, Arsic N, van der Meer F, Burny A, Bron D, Bianchi E, Delvenne P, Bours V, Charlier C, Georges M, Vandekerckhove L, Van den Broeke A, Durkin K. PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads. Genome Biol 2021; 22:97. [PMID: 33823910 PMCID: PMC8025556 DOI: 10.1186/s13059-021-02307-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
The integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.
Collapse
Affiliation(s)
- Maria Artesi
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
- Laboratory of Human Genetics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
| | - Vincent Hahaut
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Basiel Cole
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium
| | - Laurens Lambrechts
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Fereshteh Ashrafi
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ambroise Marçais
- Service d’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Olivier Hermine
- Service d’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Philip Griebel
- Vaccine and Infectious Disease Organization, VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3 Canada
| | - Natasa Arsic
- Vaccine and Infectious Disease Organization, VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3 Canada
| | - Frank van der Meer
- Faculty of Veterinary Medicine: Ecosystem and Public Health, Calgary, AB Canada
| | - Arsène Burny
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Elettra Bianchi
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Department of Human Genetics, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Carole Charlier
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium
| | - Anne Van den Broeke
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | - Keith Durkin
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Avenue de l’Hôpital 11, 4000 Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, 1000 Brussels, Belgium
| |
Collapse
|
14
|
Tengs T, Delwiche CF, Monceyron Jonassen C. A genetic element in the SARS-CoV-2 genome is shared with multiple insect species. J Gen Virol 2021; 102. [PMID: 33427605 PMCID: PMC8515862 DOI: 10.1099/jgv.0.001551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 is a member of the subgenus Sarbecovirus and thus contains the genetic element s2m. We have extensively mined nucleotide data in GenBank in order to obtain a comprehensive list of s2m sequences both in the four virus families where s2m has previously been described and in other groups of organisms. Surprisingly, there seems to be a xenologue of s2m in a large number of insect species. The function of s2m is unknown, but our data show a very high degree of sequence conservation both in insects and in viruses and that the version of s2m found in SARS-CoV-2 has unique features, not seen in any other virus or insect strains.
Collapse
Affiliation(s)
- Torstein Tengs
- Section of Molecular Toxicology, Department of Environmental Health, Norwegian Institute of Public Health, Norway
| | - Charles F Delwiche
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
15
|
Quigley BL, Wedrowicz F, Hogan F, Timms P. Phylogenetic and geographical analysis of a retrovirus during the early stages of endogenous adaptation and exogenous spread in a new host. Mol Ecol 2020; 30:2626-2640. [PMID: 33219558 PMCID: PMC8246579 DOI: 10.1111/mec.15735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
Most retroviral endogenization and host adaptation happened in the distant past, with the opportunity to study these processes as they occurred lost to time. An exception exists with the discovery that koala retrovirus (KoRV) has recently begun its endogenization into the koala (Phascolarctos cinereus) genome. What makes this opportunity remarkable is the fact that Northern Australian koalas appear to be undergoing endogenization with one KoRV subtype (KoRV‐A), while all subtypes (KoRV‐A‐I) coexist exogenously, and Southern Australian koalas appear to carry all KoRV subtypes as an exogenous virus. To understand the distribution and relationship of all KoRV variants in koalas, the proviral KoRV envelope gene receptor binding domain was assessed across the koala's natural range. Examination of KoRV subtype‐specific proviral copy numbers per cell found that KoRV‐A proviral integration levels were consistent with endogenous incorporation in Northern Australia (southeast Queensland and northeast New South Wales) while revealing lower levels of KoRV‐A proviral integration (suggestive of exogenous incorporation) in southern regions (southeast New South Wales and Victoria). Phylogeographical analysis indicated that several major KoRV‐A variants were distributed uniformly across the country, while non‐KoRV‐A variants appeared to have undergone lineage diversification in geographically distinct regions. Further analysis of the major KoRV‐A variants revealed a distinct shift in variant proportions in southeast New South Wales, suggesting this as the geographical region where KoRV‐A transitions from being predominantly endogenous to exogenous in Australian koalas. Collectively, these findings advance both our understanding of KoRV in koalas and of retroviral endogenization and diversification in general. see also the Perspective by Elliott S. Chiu and Roderick B. Gagne.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Faye Wedrowicz
- School of Science, Psychology and Sport, Federation University Australia, Churchill, Vic., Australia
| | - Fiona Hogan
- School of Science, Psychology and Sport, Federation University Australia, Churchill, Vic., Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
16
|
Casseb J, Janini LM, Barros Kanzaki LI, Lopes LR, Paiva AM. Is the human T-cell lymphotropic virus type 2 in the process of endogenization into the human genome? J Virus Erad 2020; 6:100009. [PMID: 33294211 PMCID: PMC7695812 DOI: 10.1016/j.jve.2020.100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Human T-cell lymphotropic virus type 2 (HTLV-2) infection has been shown to be endemic among intravenous drug users in parts of North America, Europe and Southeast Asia and in a number of Amerindian populations. Despite a 65% genetic similarity and common host humoral response, the human T-cell lymphotropic viruses type 1 (HTLV-1) and 2 display different mechanisms of host interaction and capacity for disease development. While HTLV-1 pathogenicity is well documented, HTLV-2 etiology in human disease is not clearly established. From an evolutionary point of view, its introduction and integration into the germ cell chromosomes of host species could be considered as the final stage of parasitism and evasion from host immunity. The extraordinary abundance of endogenous viral sequences in all vertebrate species genomes, including the hominid family, provides evidence of this invasion. Some of these gene sequences still retain viral characteristics and the ability to replicate and hence are potentially able to elicit responses from the innate and adaptive host immunity, which could result in beneficial or pathogenic effects. Taken together, this data may indicate that HTLV-2 is more likely to progress towards endogenization as has happened to the human endogenous retroviruses millions of years ago. Thus, this intimate association (HTLV-2/human genome) may provide protection from the immune system with better adaptation and low pathogenicity.
Collapse
Affiliation(s)
- Jorge Casseb
- Institute of Tropical Medicine of Sao Paulo - University of Sao Paulo, Laboratory of Medical Investigation LIM-56 / Faculty of Medicine -USP, Brazil
| | - Luiz Mario Janini
- Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo - Unifesp, Sao Paulo, SP, Brazil
| | - Luis Isamu Barros Kanzaki
- Laboratory of Bioprospection, Department of Pharmacy, Faculty of Health. Sciences, University of Brasilia, DF, Brazil
| | - Luciano Rodrigo Lopes
- Bioinformatics and Biomedical Data Science Division, Health Informatics Department, Federal University of Sao Paulo - Unifesp, São Paulo, SP, Brazil
| | - Arthur Maia Paiva
- Institute of Tropical Medicine of Sao Paulo - University of Sao Paulo, Laboratory of Medical Investigation LIM-56 / Faculty of Medicine -USP, Brazil.,University Hospital Alberto Antunes / Federal University of Alagoas, Brazil
| |
Collapse
|
17
|
Chiu ES, VandeWoude S. Endogenous Retroviruses Drive Resistance and Promotion of Exogenous Retroviral Homologs. Annu Rev Anim Biosci 2020; 9:225-248. [PMID: 33290087 DOI: 10.1146/annurev-animal-050620-101416] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV-XRV interactions have been documented and include (a) recombination to result in ERV-XRV chimeras, (b) ERV induction of immune self-tolerance to XRV antigens, (c) ERV antigen interference with XRV receptor binding, and (d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV-XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| |
Collapse
|
18
|
Retroviral analysis reveals the ancient origin of Kihnu native sheep in Estonia: implications for breed conservation. Sci Rep 2020; 10:17340. [PMID: 33060653 PMCID: PMC7566594 DOI: 10.1038/s41598-020-74415-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/01/2020] [Indexed: 12/04/2022] Open
Abstract
Native animal breeds constitute an invaluable pool of genetic resources in a changing environment. Discovering native breeds and safeguarding their genetic diversity through specific conservation programs is therefore of high importance. Endogenous retroviruses have proved to be a reliable genetic marker for studying the demographic history of sheep (Ovis aries). Previous research has revealed two migratory episodes of domesticated sheep from the Middle East to Europe. The first episode included predominantly ‘primitive populations’, while the second and most recent is hypothesised to have included sheep with markedly improved wool production. To examine whether the recently discovered Kihnu native sheep in Estonia have historically been part of the first migratory episode and to what extent they have preserved primitive genetic characters, we analysed retroviral insertions in 80 modern Kihnu sheep and 83 ancient sheep from the Bronze Age to Modern Period (850 BCE–1950 CE). We identified that the Kihnu sheep have preserved ‘primitive’, ‘Nordic’, and other ‘ancient’ retrotypes that were present both in archaeological and modern samples, confirming their shared ancestry and suggesting that contemporary Kihnu native sheep originate from the first migratory episode. However, over the course of history, there has been a gradual decrease in the frequency of primitive retrotypes. Furthermore, Kihnu sheep possessed several ‘novel’ retrotypes that were absent in archaeological individuals, but were shared with improvement breeds, suggesting recent crossing within the last two centuries. To preserve these ancient lineages, our results are being applied in the conservation program of the Kihnu Native Sheep Society.
Collapse
|
19
|
Chelkha N, Levasseur A, La Scola B, Colson P. Host-virus interactions and defense mechanisms for giant viruses. Ann N Y Acad Sci 2020; 1486:39-57. [PMID: 33090482 DOI: 10.1111/nyas.14469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/28/2020] [Accepted: 07/26/2020] [Indexed: 12/26/2022]
Abstract
Giant viruses, with virions larger than 200 nm and genomes larger than 340 kilobase pairs, modified the now outdated perception of the virosphere. With virions now reported reaching up to 1.5 μm in size and genomes of up to 2.5 Mb encoding components shared with cellular life forms, giant viruses exhibit a complexity similar to microbes, such as bacteria and archaea. Here, we review interactions of giant viruses with their hosts and defense strategies of giant viruses against their hosts and coinfecting microorganisms or virophages. We also searched by comparative genomics for homologies with proteins described or suspected to be involved in defense mechanisms. Our search reveals that natural immunity and apoptosis seem to be crucial components of the host defense against giant virus infection. Conversely, giant viruses possess methods of hijacking host functions to counteract cellular antiviral responses. In addition, giant viruses may encode other unique and complex pathways to manipulate the host machinery and eliminate other competing microorganisms. Notably, giant viruses have evolved defense mechanisms against their virophages and they might trigger defense systems against other viruses through sequence integration. We anticipate that comparative genomics may help identifying genes involved in defense strategies of both giant viruses and their hosts.
Collapse
Affiliation(s)
- Nisrine Chelkha
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Anthony Levasseur
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
20
|
Hildebrandt E, Penzes JJ, Gifford RJ, Agbandje-Mckenna M, Kotin RM. Evolution of dependoparvoviruses across geological timescales-implications for design of AAV-based gene therapy vectors. Virus Evol 2020; 6:veaa043. [PMID: 32913662 PMCID: PMC7474932 DOI: 10.1093/ve/veaa043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endogenous viral elements (EVEs) are genetic remnants of viruses that have integrated into host genomes millions of years ago and retained as heritable elements passed on to offspring until present-day. As a result, EVEs provide an opportunity to analyse the genomes of extinct viruses utilizing these genomic viral fossils to study evolution of viruses over large timescales. Analysis of sequences from near full-length EVEs of dependoparvoviral origin identified within three mammalian taxa, Whippomorpha (whales and hippos), Vespertilionidae (smooth-nosed bats), and Lagomorpha (rabbits, hares, and pikas), indicates that distinct ancestral dependoparvovirus species integrated into these host genomes approximately 77 to 23 million years ago. These ancestral viruses are unique relative to modern adeno-associated viruses (AAVs), and distinct from extant species of genus Dependoparvovirus. These EVE sequences show characteristics previously unseen in modern, mammalian AAVs, but instead appear more similar to the more primitive, autonomously replicating and pathogenic waterfowl dependoparvoviruses. Phylogeny reconstruction suggests that the whippomorph EVE orthologue derives from exogenous ancestors of autonomous and highly pathogenic dependoparvovirus lineages, believed to have uniquely co-evolved with waterfowl birds to present date. In contrast, ancestors of the two other mammalian orthologues (Lagomorpha and Vespertilionidae) likely shared the same lineage as all other known mammalian exogenous AAVs. Comparative in silico analysis of the EVE genomes revealed remarkable overall conservation of AAV rep and cap genes, despite millions of years of integration within the host germline. Modelling these proteins identified unexpected variety, even between orthologues, in previously defined capsid viral protein (VP) variable regions, especially in those related to the three- and fivefold symmetry axes of the capsid. Moreover, the normally well-conserved phospholipase A2 domain of the predicted minor VP1 also exhibited a high degree of sequence variance. These findings may indicate unique biological properties for these virus ‘fossils’ relative to extant dependoparvoviruses and suggest key regions to explore within capsid sequences that may confer novel properties for engineered gene therapy vectors based on paleovirology data.
Collapse
Affiliation(s)
- Evin Hildebrandt
- University of Massachusetts Medical School, Department of Microbiology and Physiological Systems, Gene Therapy Center, 55 Lake Ave. North, Worcester, MA 01655, USA
| | - Judit J Penzes
- University of Florida, Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, 1200 Newell Drive, Gainesville, Florida, 32610, USA
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Genomics & Bioinformatics, Sir Michael Stoker Building Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
| | - Mavis Agbandje-Mckenna
- University of Florida, Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, 1200 Newell Drive, Gainesville, Florida, 32610, USA
| | - Robert M Kotin
- University of Massachusetts Medical School, Department of Microbiology and Physiological Systems, Gene Therapy Center, 55 Lake Ave. North, Worcester, MA 01655, USA
| |
Collapse
|
21
|
Skirmuntt EC, Escalera-Zamudio M, Teeling EC, Smith A, Katzourakis A. The Potential Role of Endogenous Viral Elements in the Evolution of Bats as Reservoirs for Zoonotic Viruses. Annu Rev Virol 2020; 7:103-119. [PMID: 32432980 DOI: 10.1146/annurev-virology-092818-015613] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite a small genome size, bats have comparable diversity of retroviral and non-retroviral endogenous sequences to other mammals. These include Class I and Class II retroviral sequences, foamy viruses, and deltaretroviruses, as well as filovirus, bornavirus, and parvovirus endogenous viral elements. Some of these endogenous viruses are sufficiently preserved in bat genomes to be expressed, with potential effects for host biology. It is clear that the bat immune system differs when compared with other mammals, yet the role that virus-derived endogenous elements may have played in the evolution of bat immunity is poorly understood. In this review, we discuss some of the bat-specific immune mechanisms that may have resulted in a virus-tolerant phenotype and link these to the long-standing virus-host coevolution that may have allowed a large diversity of endogenous retroviruses and other endogenous viral elements to colonize bat genomes. We also consider the possible effects of endogenization in the evolution of the bat immune system.
Collapse
Affiliation(s)
- Emilia C Skirmuntt
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom;
| | | | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Adrian Smith
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom;
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom;
| |
Collapse
|
22
|
Bergner LM, Orton RJ, Benavides JA, Becker DJ, Tello C, Biek R, Streicker DG. Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Mol Ecol 2019; 29:26-39. [PMID: 31561274 PMCID: PMC7004108 DOI: 10.1111/mec.15250] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023]
Abstract
Viruses infect all forms of life and play critical roles as agents of disease, drivers of biochemical cycles and sources of genetic diversity for their hosts. Our understanding of viral diversity derives primarily from comparisons among host species, precluding insight into how intraspecific variation in host ecology affects viral communities or how predictable viral communities are across populations. Here we test spatial, demographic and environmental hypotheses explaining viral richness and community composition across populations of common vampire bats, which occur in diverse habitats of North, Central and South America. We demonstrate marked variation in viral communities that was not consistently predicted by a null model of declining community similarity with increasing spatial or genetic distances separating populations. We also find no evidence that larger bat colonies host greater viral diversity. Instead, viral diversity follows an elevational gradient, is enriched by juvenile-biased age structure, and declines with local anthropogenic food resources as measured by livestock density. Our results establish the value of linking the modern influx of metagenomic sequence data with comparative ecology, reveal that snapshot views of viral diversity are unlikely to be representative at the species level, and affirm existing ecological theories that link host ecology not only to single pathogen dynamics but also to viral communities.
Collapse
Affiliation(s)
- Laura M Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Julio A Benavides
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Departamento de Ecología, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Department of Biology, Indiana University, Bloomington, IN, USA
| | - Carlos Tello
- Association for the Conservation and Development of Natural Resources, Lima, Peru.,Yunkawasi, Lima, Peru
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
23
|
Canli T. A model of human endogenous retrovirus (HERV) activation in mental health and illness. Med Hypotheses 2019; 133:109404. [PMID: 31557593 DOI: 10.1016/j.mehy.2019.109404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023]
Abstract
Despite strong evidence for the heritability of major depressive disorder (MDD), efforts to identify causal genes have been disappointing. Furthermore, although there is strong support for life stress as a major predictor of MDD, there are also considerable individual differences in susceptibility and resilience that remain poorly understood. Efforts to identify specific gene-by-environment risk factors produced results that were initially encouraging, but that were not supported by later large-scale studies. Here I propose a novel mechanism that could address the "missing heritability" of MDD, the role of environmental risk factors, and individual differences in susceptibility and resilience. This mechanism focuses on a class of transposable elements, Human Endogenous Retroviruses (HERVs), which make up approximately 8% of the human genome as the result of ancient retroviral infections that entered mammalian germ lines throughout the course of evolution. My primary hypothesis is that exposure to either exogenous viruses or traumatic experiences can activate HERVs in the brain to cause depressive (and possibly other psychiatric) symptoms. My secondary hypothesis is that individual differences in vulnerability or resilience result from the balance of activated HERVs with pathogenic versus protective functions in the brain. Future research can test these hypotheses by analysis of postmortem human brain tissue from donors with known viral or trauma histories; animal studies manipulating HERV expression; cell culture studies examining regulatory mechanisms of HERV expression; and from brain imaging studies of individuals with known HERV-expression. Such research may reveal novel functions of HERVs in neural tissue and may lead to a new generation of psychiatric interventions designed to target aberrant HERV activation.
Collapse
MESH Headings
- Animals
- Brain/virology
- Cells, Cultured
- Cytokines/physiology
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/immunology
- Depressive Disorder, Major/virology
- Disease Models, Animal
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/physiology
- Environmental Exposure
- Epigenesis, Genetic
- Gene Expression Regulation, Viral
- Gene-Environment Interaction
- Genes, Viral
- Humans
- Intercellular Signaling Peptides and Proteins/physiology
- Mice, Transgenic
- Models, Biological
- Models, Psychological
- Schizophrenia/pathology
- Schizophrenia/virology
- Stress, Psychological
- Terminal Repeat Sequences/genetics
- Virus Activation
- Virus Diseases/complications
- Virus Diseases/psychology
Collapse
Affiliation(s)
- Turhan Canli
- Departments of Psychology and Psychiatry, Stony Brook University, Stony Brook, NY 11794-2500, USA.
| |
Collapse
|
24
|
Skirmuntt EC, Katzourakis A. The evolution of endogenous retroviral envelope genes in bats and their potential contribution to host biology. Virus Res 2019; 270:197645. [PMID: 31271763 DOI: 10.1016/j.virusres.2019.197645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Bats are the primary reservoirs and carriers of a wide range of viruses of unknown infectivity and pathogenic potential. Some of those if transmitted to other species can cause enormous economic losses in agriculture, and mortality in humans. Bats can be persistently infected with viruses while not showing any symptoms of disease, despite having high virus titre levels in their tissues and shedding virions for months or years after primary infection. It has been suggested that the lack of symptoms of viral infections and low mortality rate in bats might be due to immune adaptations that result from their long-term co-evolution with viruses. In this study, we screened all publicly available bat genomes from six bat families within which we have identified several envelope sequences of retroviral origin (gammaretroviruses). We analysed the identified sequences with Bayesian methods and maximum-likelihood inference to generate a phylogenetic tree with additional reference sequences of known endogenous and exogenous viral envelope genes. We also identified groups of orthologous viral envelopes and analysed them to determine if any of them might be an EVE (endogenous virus element) with an EDI (EVE- derived immunity) function or a candidate for a bat syncytin gene, which is an endogenized viral envelope, mostly known from its function in placentation in animals. Our study shows that bat genomes contain a substantial number of large, intact envelopes with open reading frames, which were found clustering closely on a phylogenetic tree reconstruction with syncytin sequences of other species. That might indicate that such sequences are good candidates for further bat-syncytin/EDI search.
Collapse
Affiliation(s)
- Emilia Cecylia Skirmuntt
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK.
| |
Collapse
|
25
|
Hron T, Fabryova H, Elleder D. Insight into the epigenetic landscape of a currently endogenizing gammaretrovirus in mule deer (Odocoileus hemionus). Genomics 2019; 112:886-896. [PMID: 31175981 DOI: 10.1016/j.ygeno.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Accepted: 06/03/2019] [Indexed: 01/22/2023]
Abstract
Endogenous retroviruses (ERVs) constitute a significant part of vertebrate genomes. They originated from past retroviral infections and some of them retain transcriptional activity. The key mechanism avoiding uncontrolled ERV transcription is DNA methylation-mediated epigenetic silencing. Despite numerous studies describing the involvement of ERV activity in cellular processes, epigenetic regulation of ERVs is still poorly understood. We previously described a cervid endogenous retrovirus (CrERV) in the mule deer genome. This virus exhibits massive insertional polymorphism, suggesting recent activity. Here we employed NGS-based strategy to determine the methylation pattern of CrERV integrations in four mule deer. Besides the vast majority of methylated integrations, we identified a tiny fraction of demethylated proviral copies. These copies represent evolutionary older integrations located near gene promoters. In general, our work is a first attempt to characterize the epigenetic landscape of insertionally polymorphic ERV on a whole-genome scale and offers insight into its interactions with a host.
Collapse
Affiliation(s)
- Tomas Hron
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic; Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic.
| | - Helena Fabryova
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic; Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic
| | - Daniel Elleder
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic.
| |
Collapse
|
26
|
Gray ME, Meehan J, Sullivan P, Marland JRK, Greenhalgh SN, Gregson R, Clutton RE, Ward C, Cousens C, Griffiths DJ, Murray A, Argyle D. Ovine Pulmonary Adenocarcinoma: A Unique Model to Improve Lung Cancer Research. Front Oncol 2019; 9:335. [PMID: 31106157 PMCID: PMC6498990 DOI: 10.3389/fonc.2019.00335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Lung cancer represents a major worldwide health concern; although advances in patient management have improved outcomes for some patients, overall 5-year survival rates are only around 15%. In vitro studies and mouse models are commonly used to study lung cancer and their use has increased the molecular understanding of the disease. Unfortunately, mouse models are poor predictors of clinical outcome and seldom mimic advanced stages of the human disease. Animal models that more accurately reflect human disease are required for progress to be made in improving treatment outcomes and prognosis. Similarities in pulmonary anatomy and physiology potentially make sheep better models for studying human lung function and disease. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer that is caused by the jaagsiekte sheep retrovirus. The disease is endemic in many countries throughout the world and has several features in common with human lung adenocarcinomas, including histological classification and activation of common cellular signaling pathways. Here we discuss the in vivo and in vitro OPA models that are currently available and describe the advantages of using pre-clinical naturally occurring OPA cases as a translational animal model for human lung adenocarcinoma. The challenges and options for obtaining these OPA cases for research purposes, along with their use in developing novel techniques for the evaluation of chemotherapeutic agents or for monitoring the tumor microenvironment in response to treatment, are also discussed.
Collapse
Affiliation(s)
- Mark E. Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- School of Engineering and Physical Sciences, Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, United Kingdom
| | - Paul Sullivan
- School of Engineering, Institute for Integrated Micro and Nano Systems, The King's Buildings, Edinburgh, United Kingdom
| | - Jamie R. K. Marland
- School of Engineering, Institute for Integrated Micro and Nano Systems, The King's Buildings, Edinburgh, United Kingdom
| | - Stephen N. Greenhalgh
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachael Gregson
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Eddie Clutton
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carol Ward
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| | - David J. Griffiths
- Moredun Research Institute, Pentlands Science Park, Midlothian, United Kingdom
| | - Alan Murray
- School of Engineering, Institute for Integrated Micro and Nano Systems, The King's Buildings, Edinburgh, United Kingdom
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Iacolina L, Corlatti L, Buzan E, Safner T, Šprem N. Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm Rev 2018. [DOI: 10.1111/mam.12140] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Laura Iacolina
- Department of Chemistry and Bioscience; Aalborg University; Frederik Bajers Vej 7H 9220 Aalborg Denmark
- Aalborg Zoo; Mølleparkvej 63 9000 Aalborg Denmark
| | - Luca Corlatti
- Wildlife Ecology and Management; University of Freiburg; Tennenbacher Straße 4 79106 Freiburg Germany
- Institute of Wildlife Biology and Game Management; University of Natural Resources and Life Sciences Vienna; Gregor-Mendel-Straße 33 1180 Vienna Austria
| | - Elena Buzan
- Department of Biodiversity; Faculty of Mathematics, Natural Sciences and Information Technologies; University of Primorska; Glagoljaška 8 6000 Koper Slovenia
| | - Toni Safner
- Faculty of Agriculture; Department of Plant Breeding, Genetics and Biometrics; University of Zagreb; Svetošimunska cesta 25 10000 Zagreb Croatia
| | - Nikica Šprem
- Faculty of Agriculture; Department of Fisheries, Beekeeping, Game Management and Special Zoology; University of Zagreb; Svetošimunska cesta 25 10000 Zagreb Croatia
| |
Collapse
|
28
|
Abstract
The co-option of endogenous retroviruses (ERVs) is increasingly recognized as a recurrent theme in placental biology, which has far-reaching implications for our understanding of mammalian evolution and reproductive health. Most research in this area has focused on ERV-derived proteins, which have been repeatedly co-opted to promote cell–cell fusion and immune modulation in the placenta. ERVs also harbor regulatory sequences that can potentially control placental gene expression, but there has been limited evidence to support this role. In a recent study, Dunn-Fletcher and colleagues discover a striking example of an ERV-derived enhancer element that has been co-opted to regulate a gene important for human pregnancy. Using genomic and experimental approaches, they firmly establish that a primate-specific ERV functions as a placenta-specific enhancer for corticotropin-releasing hormone (CRH), a hormone linked to the control of birth timing in humans. Their findings implicate an extensive yet understudied role for retroviruses in shaping the evolution of placental gene regulatory networks.
Collapse
Affiliation(s)
- Edward B. Chuong
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
29
|
Old origin of a protective endogenous retrovirus (enJSRV) in the Ovis genus. Heredity (Edinb) 2018; 122:187-194. [PMID: 29976957 DOI: 10.1038/s41437-018-0112-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 06/15/2018] [Indexed: 11/08/2022] Open
Abstract
Sheep, the Jaagsiekte sheep retrovirus (JSRV) and its endogenous forms (enJSRVs) are a good model to study long-time relationships between retroviruses and their hosts. Taking advantage of 76 whole genome resequencing data of wild and domestic Ovis, we investigated the evolution of this relationship. An innovative analysis of re-sequencing data allowed characterizing 462 enJSRVs insertion sites (including 435 newly described insertions) in the Ovis genus. We focused our study on endogenous copies inserted in the q13 locus of chromosome 6 (6q13). Those copies are known to confer resistance against exogenous JSRV thanks to alleles bearing a mutation in the gag gene. We characterized (i) the distribution of protective and non-protective alleles across Ovis species and (ii) the copy number variation of the 6q13 locus. Our results challenged the previous hypothesis of fixation and amplification of the protective copies in relation with domestication, and allowed building a new model for the evolution of the 6q13 locus. JSRV would have integrated the 6q13 locus after the Ovis-Capra divergence (5-11 MYA) and before the Ovis diversification (2.4-5 MYA). The protective mutation in the enJSRV 6q13 copy appeared shortly after its insertion and was followed by genomic amplifications, after the divergence between Pachyform lineage on one side and the Argaliform and moufloniform lineages on the other (2.4-5 MYA). Considering the potential selective advantage of the protective mutation, its fixation in both sheep and its closest wild relative Ovis orientalis may be due to natural selection before domestication from O. orientalis populations.
Collapse
|
30
|
Grandi N, Cadeddu M, Blomberg J, Mayer J, Tramontano E. HERV-W group evolutionary history in non-human primates: characterization of ERV-W orthologs in Catarrhini and related ERV groups in Platyrrhini. BMC Evol Biol 2018; 18:6. [PMID: 29351742 PMCID: PMC5775608 DOI: 10.1186/s12862-018-1125-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/14/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The genomes of all vertebrates harbor remnants of ancient retroviral infections, having affected the germ line cells during the last 100 million years. These sequences, named Endogenous Retroviruses (ERVs), have been transmitted to the offspring in a Mendelian way, being relatively stable components of the host genome even long after their exogenous counterparts went extinct. Among human ERVs (HERVs), the HERV-W group is of particular interest for our physiology and pathology. A HERV-W provirus in locus 7q21.2 has been coopted during evolution to exert an essential role in placenta, and the group expression has been tentatively linked to Multiple Sclerosis and other diseases. Following up on a detailed analysis of 213 HERV-W insertions in the human genome, we now investigated the ERV-W group genomic spread within primate lineages. RESULTS We analyzed HERV-W orthologous loci in the genome sequences of 12 non-human primate species belonging to Simiiformes (parvorders Catarrhini and Platyrrhini), Tarsiiformes and to the most primitive Prosimians. Analysis of HERV-W orthologous loci in non-human Catarrhini primates revealed species-specific insertions in the genomes of Chimpanzee (3), Gorilla (4), Orangutan (6), Gibbon (2) and especially Rhesus Macaque (66). Such sequences were acquired in a retroviral fashion and, in the majority of cases, by L1-mediated formation of processed pseudogenes. There were also a number of LTR-LTR homologous recombination events that occurred subsequent to separation of Catarrhini sub-lineages. Moreover, we retrieved 130 sequences in Marmoset and Squirrel Monkeys (family Cebidae, Platyrrhini parvorder), identified as ERV1-1_CJa based on RepBase annotations, which appear closely related to the ERV-W group. Such sequences were also identified in Atelidae and Pitheciidae, representative of the other Platyrrhini families. In contrast, no ERV-W-related sequences were found in genome sequence assemblies of Tarsiiformes and Prosimians. CONCLUSIONS Overall, our analysis now provides a detailed picture of the ERV-W sequences colonization of the primate lineages genomes, revealing the exact dynamics of ERV-W locus formations as well as novel insights into the evolution and origin of the group.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jens Mayer
- Institute of Human Genetics, University of Saarland, Homburg, Germany
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| |
Collapse
|
31
|
Kriesel JD, Bhetariya PJ, Chan BK, Wilson T, Fischer KF. Enrichment of Retroviral Sequences in Brain Tissue from Patients with Severe Demyelinating Diseases. ACTA ACUST UNITED AC 2017; 3. [PMID: 29202119 PMCID: PMC5707126 DOI: 10.16966/2473-1846.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Our group has used deep sequencing to identify viral RNA signatures in human brain specimens. We have previously used this method to detect HSV1, GBV-C, and measles virus sequence in brain tissue from deceased donors. Deep sequencing was performed on brain specimens from a cohort of patients who died with progressive forms of MS, revealing evidence of increased expression of some human endogenous retrovirus (HERV) domains. Objectives Identify RNA sequences and new antigens involved in the pathogenesis of MS Methods Deep sequencing was performed on RNA extracted from 12 progressive MS, 2 neuromyelitis optica (MS/NMO = demyelination group), 14 normal control, and 7 other neurologic disease (OND) control frozen brain specimens. The resulting single-ended 50 bp sequences (reads) were compared to a non redundant viral database representing (NRVDB) all 1.2 M viral records in GenBank. A retroviral gene catalog (RVGC) was prepared by identifying human genetic loci (GRCh37.p13) homologous to domains contained in the Gypsy 2.0 retro element database. Reads were aligned to the RVGC and human transcriptome with Bowtie2. The resulting viral hit rates (VHRs) were normalized by the number of high quality reads. The expression of human genes, including HERVs, was determined using Cufflinks. Comparisons between the groups were performed using the false discovery rate. Results Fifty to 131 million high quality reads per specimen were obtained. Comparison of the reads to the NRVDB suggested that the demyelination and OND specimens had higher VHRs against some retroviral sequences compared with the controls. This was confirmed by retroviral domain averaging. Gene expression analysis showed differential expression among some HERV sequences. Single read mapping revealed one envelope and one reverse transcriptase sequence record that were significantly enriched among the demyelination samples compared to the normal controls. Less restrictive (comprehensive) read mapping showed that 2 integrase, 2 core, 2 envelope, and 3 KRAB sequences that were overexpressed in the demyelination group. Conclusions These data demonstrate that some endogenous retroviral sequences are significantly overexpressed in these demyelination brain tissue specimens, but the magnitude of this overexpression is small. This is consistent with the concept of HERV activation as a part of the innate immune response.
Collapse
Affiliation(s)
- J D Kriesel
- Department of Internal Medicine, Division of Infectious Diseases, USA
| | - P J Bhetariya
- Department of Internal Medicine, Division of Infectious Diseases, USA
| | - B K Chan
- Yale University, Department of Ecology and Evolutionary Biology, New Haven, Connecticut, USA
| | - T Wilson
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - K F Fischer
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
32
|
Lemaître C, Tsang J, Bireau C, Heidmann T, Dewannieux M. A human endogenous retrovirus-derived gene that can contribute to oncogenesis by activating the ERK pathway and inducing migration and invasion. PLoS Pathog 2017. [PMID: 28651004 PMCID: PMC5501692 DOI: 10.1371/journal.ppat.1006451] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endogenous retroviruses are cellular genes of retroviral origin captured by their host during the course of evolution and represent around 8% of the human genome. Although most are defective and transcriptionally silenced, some are still able to generate retroviral-like particles and proteins. Among these, the HERV-K(HML2) family is remarkable since its members have amplified relatively recently and many of them still have full length coding genes. Furthermore, they are induced in cancers, especially in melanoma, breast cancer and germ cell tumours, where viral particles, as well as the envelope protein (Env), can be detected. Here we show that HERV-K(HML2) Env per se has oncogenic properties. Its expression in a non-tumourigenic human breast epithelial cell line induces epithelial to mesenchymal transition (EMT), often associated with tumour aggressiveness and metastasis. In our model, this is typified by key modifications in a set of molecular markers, changes in cell morphology and enhanced cell motility. Remarkably, microarrays performed in 293T cells reveal that HERV-K(HML2) Env is a strong inducer of several transcription factors, namely ETV4, ETV5 and EGR1, which are downstream effectors of the MAPK ERK1/2 and are associated with cellular transformation. We demonstrate that HERV-K(HML2) Env effectively activates the ERK1/2 pathway in our experimental setting and that this activation depends on the Env cytoplasmic tail. In addition, this phenomenon is very specific, being absent with every other retroviral Env tested, except for Jaagsiekte Sheep Retrovirus (JSRV) Env, which is already known to have transforming properties in vivo. Though HERV-K Env is not directly transforming by itself, the newly discovered properties of this protein may contribute to oncogenesis. Nearly half the DNA of mammals consists of reitarated, selfish elements that can move and amplify within the genome. With time, some of these elements are recruited by the host and the proteins they encode are used to fulfill physiological functions, whereas other elements have conserved some of their pathological properties and contribute to the development of diseases. The human HERV-K(HML2) elements originated from an ancestral infection of the primate germline by an infectious retrovirus that has been maintained and amplified in the human lineage. It is associated with several pathologies in modern humans, in particular cancer of the breast, germline and skin. We show that the HERV-K(HML2) envelope protein is able to activate a major cellular signalling pathway often involved in human cancers, and that its expression promotes a series of cellular changes that are characteristic of cancer development. Altogether, this study indicates that the expression of HERV-K(HML2) elements is not only a marker of cancer, but can also directly participate to tumourigenesis via the newly discovered oncogenic properties carried by the envelope protein.
Collapse
Affiliation(s)
- Cécile Lemaître
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- Université Paris Denis Diderot, Sorbonne Paris-Cité, Paris, France
| | - Jhen Tsang
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Caroline Bireau
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Thierry Heidmann
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- * E-mail: (MD); (TH)
| | - Marie Dewannieux
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- * E-mail: (MD); (TH)
| |
Collapse
|
33
|
Schroeder O, Benecke N, Frölich K, Peng Z, Kaniuth K, Sverchkov L, Reinhold S, Belinskiy A, Ludwig A. Endogenous Retroviral Insertions Indicate a Secondary Introduction of Domestic Sheep Lineages to the Caucasus and Central Asia between the Bronze and Iron Age. Genes (Basel) 2017. [PMID: 28632161 PMCID: PMC5485529 DOI: 10.3390/genes8060165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sheep were one of the first livestock species domesticated by humans. After initial domestication in the Middle East they were spread across Eurasia. The modern distribution of endogenous Jaagsiekte sheep retrovirus insertions in domestic sheep breeds suggests that over the course of millennia, successive introductions of improved lineages and selection for wool quality occurred in the Mediterranean region and most of Asia. Here we present a novel ancient DNA approach using data of endogenous retroviral insertions in Bronze and Iron Age domestic sheep from the Caucasus and Pamir mountain areas. Our findings support a secondary introduction of wool sheep from the Middle East between the Late Bronze Age and Iron Age into most areas of Eurasia.
Collapse
Affiliation(s)
- Oskar Schroeder
- Leibniz-Institute for Zoo and Wildlife Research, Department of Evolutionary Genetics, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany.
- German Archaeological Institute, Im Dol 2-6, 14195 Berlin, Germany.
| | - Norbert Benecke
- German Archaeological Institute, Im Dol 2-6, 14195 Berlin, Germany.
| | - Kai Frölich
- Tierpark Arche Warder e.V., Langwedeler Weg 11, 24646 Warder, Germany.
| | - Zuogang Peng
- Southwest University School of Life Sciences, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Chongqing 400715, China.
| | - Kai Kaniuth
- Institut für Vorderasiatische Archäologie, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
| | - Leonid Sverchkov
- Institute of Fine Arts, Academy of Sciences of the Republic of Uzbekistan, Afrosiab Street 5/19, Tashkent 100029, Uzbekistan.
| | - Sabine Reinhold
- German Archaeological Institute, Im Dol 2-6, 14195 Berlin, Germany.
| | - Andrey Belinskiy
- Nasledie Ltd., Prospekt Karla Marksa 56, 355017 Stavropol, Russia.
| | - Arne Ludwig
- Leibniz-Institute for Zoo and Wildlife Research, Department of Evolutionary Genetics, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany.
| |
Collapse
|
34
|
Existence of Two Distinct Infectious Endogenous Retroviruses in Domestic Cats and Their Different Strategies for Adaptation to Transcriptional Regulation. J Virol 2016; 90:9029-45. [PMID: 27466428 DOI: 10.1128/jvi.00716-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) are the remnants of ancient retroviral infections of germ cells. Previous work identified one of the youngest feline ERV groups, ERV-DC, and reported that two ERV-DC loci, ERV-DC10 and ERV-DC18 (ERV-DC10/DC18), can replicate in cultured cells. Here, we identified another replication-competent provirus, ERV-DC14, on chromosome C1q32. ERV-DC14 differs from ERV-DC10/DC18 in its phylogeny, receptor usage, and, most notably, transcriptional activities; although ERV-DC14 can replicate in cultured cells, it cannot establish a persistent infection owing to its low transcriptional activity. Furthermore, we examined ERV-DC transcription and its regulation in feline tissues. Quantitative reverse transcription-PCR (RT-PCR) detected extremely low ERV-DC10 expression levels in feline tissues, and bisulfite sequencing showed that 5' long terminal repeats (LTRs) of ERV-DC10/DC18 are significantly hypermethylated in feline blood cells. Reporter assays found that the 5'-LTR promoter activities of ERV-DC10/DC18 are high, whereas that of ERV-DC14 is low. This difference in promoter activity is due to a single substitution from A to T in the LTR, and reverse mutation at this nucleotide in ERV-DC14 enhanced its replication and enabled it to persistently infect cultured cells. Therefore, ERV-DC LTRs can be divided into two types based on this nucleotide, the A type or T type, which have strong or attenuated promoter activity, respectively. Notably, ERV-DCs with T-type LTRs, such as ERV-DC14, have expanded in the cat genome significantly more than A-type ERV-DCs, despite their low promoter activities. Our results provide insights into how the host controls potentially infectious ERVs and, conversely, how ERVs adapt to and invade the host genome. IMPORTANCE The domestic cat genome contains many endogenous retroviruses, including ERV-DCs. These ERV-DCs have been acquired through germ cell infections with exogenous retroviruses. Some of these ERV-DCs are still capable of producing infectious virions. Hosts must tightly control these ERVs because replication-competent viruses in the genome pose a risk to the host. Here, we investigated how ERV-DCs are adapted by their hosts. Replication-competent viruses with strong promoter activity, such as ERV-DC10 and ERV-DC18, were suppressed by promoter methylation in LTRs. On the other hand, replication-competent viruses with weak promoter activity, such as ERV-DC14, seemed to escape strict control via promoter methylation by the host. Interestingly, ERV-DCs with weak promoter activity, such as ERV-DC14, have expanded in the cat genome significantly more than ERV-DCs with strong promoter activity. Our results improve the understanding of the host-virus conflict and how ERVs adapt in their hosts over time.
Collapse
|
35
|
Genome-Wide Screening of Retroviral Envelope Genes in the Nine-Banded Armadillo (Dasypus novemcinctus, Xenarthra) Reveals an Unfixed Chimeric Endogenous Betaretrovirus Using the ASCT2 Receptor. J Virol 2016; 90:8132-49. [PMID: 27384664 DOI: 10.1128/jvi.00483-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Retroviruses enter host cells through the interaction of their envelope (Env) protein with a cell surface receptor, which triggers the fusion of viral and cellular membranes. The sodium-dependent neutral amino acid transporter ASCT2 is the common receptor of the large RD114 retrovirus interference group, whose members display frequent env recombination events. Germ line retrovirus infections have led to numerous inherited endogenous retroviruses (ERVs) in vertebrate genomes, which provide useful insights into the coevolutionary history of retroviruses and their hosts. Rare ERV-derived genes display conserved viral functions, as illustrated by the fusogenic syncytin env genes involved in placentation. Here, we searched for functional env genes in the nine-banded armadillo (Dasypus novemcinctus) genome and identified dasy-env1.1, which clusters with RD114 interference group env genes and with two syncytin genes sharing ASCT2 receptor usage. Using ex vivo pseudotyping and cell-cell fusion assays, we demonstrated that the Dasy-Env1.1 protein is fusogenic and can use both human and armadillo ASCT2s as receptors. This gammaretroviral env gene belongs to a provirus with betaretrovirus-like features, suggesting acquisition through recombination. Provirus insertion was found in several Dasypus species, where it has not reached fixation, whereas related family members integrated before diversification of the genus Dasypus >12 million years ago (Mya). This newly described ERV lineage is potentially useful as a population genetic marker. Our results extend the usage of ASCT2 as a retrovirus receptor to the mammalian clade Xenarthra and suggest that the acquisition of an ASCT2-interacting env gene is a major selective force driving the emergence of numerous chimeric viruses in vertebrates. IMPORTANCE Retroviral infection is initiated by the binding of the viral envelope glycoprotein to a host cell receptor(s), triggering membrane fusion. Ancient germ line infections have generated numerous endogenous retroviruses (ERVs) in nearly all vertebrate genomes. Here, we report a previously uncharacterized ERV lineage from the genome of a xenarthran species, the nine-banded armadillo (Dasypus novemcinctus). It entered the Dasypus genus >12 Mya, with one element being inserted more recently in some Dasypus species, where it could serve as a useful marker for population genetics. This element exhibits an env gene, acquired by recombination events, with conserved viral fusogenic properties through binding to ASCT2, a receptor used by a wide range of recombinant retroviruses infecting other vertebrate orders. This specifies the ASCT2 transporter as a successful receptor for ERV endogenization and suggests that ASCT2-binding env acquisition events have favored the emergence of numerous chimeric viruses in a wide range of species.
Collapse
|
36
|
Villarreal LP. Viruses and the placenta: the essential virus first view. APMIS 2016; 124:20-30. [PMID: 26818259 DOI: 10.1111/apm.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 01/05/2023]
Abstract
A virus first perspective is presented as an alternative hypothesis to explain the role of various endogenized retroviruses in the origin of the mammalian placenta. It is argued that virus-host persistence is a key determinant of host survival and the various ERVs involved have directly affected virus-host persistence.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
37
|
Limited hybridization between domestic sheep and the European mouflon in Western Germany. EUR J WILDLIFE RES 2016. [DOI: 10.1007/s10344-016-1003-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Sistiaga-Poveda M, Larruskain A, Mateo-Abad M, Jugo BM. Lack of association between polymorphic copies of endogenous Jaagsiekte sheep retrovirus (enJSRVs) and Ovine Pulmonary Adenocarcinoma. Vet Microbiol 2016; 185:49-55. [PMID: 26931391 DOI: 10.1016/j.vetmic.2016.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Ovine Pulmonary Adenocarcinoma (OPA) is a retrovirus-induced lung tumor of sheep, goat and mouflon, and its etiologic agent, Jaagsiekte sheep retrovirus (JSRV) is the only virus known to cause a naturally occurred lung adenocarcinoma. The oncogenic JSRV has several endogenous counterparts termed enJSRVs, some of which have been shown to interfere with JSRV replication at early and late stages of the retroviral cycle inhibiting JSRV exit from the cell, and thus, protecting sheep against the infection. In this work, Latxa sheep breed animals were classified depending on the presence/absence of OPA-characteristic clinical lesions in the lung. Using a PCR genotyping method and a logistic regression-based association study, five polymorphic enJSRV copies were analyzed in 49 OPA positive sheep and 124 control individuals. Our results showed that the frequency of the provirus enJSRV-16 is much higher in Latxa sheep breed than in other breeds, suggesting a recent proliferation of this provirus in the studied breed. However, no polymorphic enJSRV was found to be statistically associated with the susceptibility/resistance to OPA development.
Collapse
Affiliation(s)
- Maialen Sistiaga-Poveda
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Amaia Larruskain
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maider Mateo-Abad
- Applied Mathematics, Statistics and Operative Research Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña M Jugo
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
39
|
Naville M, Warren IA, Haftek-Terreau Z, Chalopin D, Brunet F, Levin P, Galiana D, Volff JN. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates. Clin Microbiol Infect 2016; 22:312-323. [PMID: 26899828 DOI: 10.1016/j.cmi.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/24/2022]
Abstract
Viruses and transposable elements, once considered as purely junk and selfish sequences, have repeatedly been used as a source of novel protein-coding genes during the evolution of most eukaryotic lineages, a phenomenon called 'molecular domestication'. This is exemplified perfectly in mammals and other vertebrates, where many genes derived from long terminal repeat (LTR) retroelements (retroviruses and LTR retrotransposons) have been identified through comparative genomics and functional analyses. In particular, genes derived from gag structural protein and envelope (env) genes, as well as from the integrase-coding and protease-coding sequences, have been identified in humans and other vertebrates. Retroelement-derived genes are involved in many important biological processes including placenta formation, cognitive functions in the brain and immunity against retroelements, as well as in cell proliferation, apoptosis and cancer. These observations support an important role of retroelement-derived genes in the evolution and diversification of the vertebrate lineage.
Collapse
Affiliation(s)
- M Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - I A Warren
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - Z Haftek-Terreau
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - D Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France; Department of Genetics, University of Georgia, Athens, GA, USA
| | - F Brunet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - P Levin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - D Galiana
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France
| | - J-N Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, Université Lyon 1, Lyon, France.
| |
Collapse
|
40
|
Ramírez H, Autran M, García MM, Carmona MÁ, Rodríguez C, Martínez HA. Genotyping of feline leukemia virus in Mexican housecats. Arch Virol 2016; 161:1039-45. [PMID: 26747244 PMCID: PMC4819734 DOI: 10.1007/s00705-015-2740-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023]
Abstract
Feline leukemia virus (FeLV) is a retrovirus with variable rates of infection globally. DNA was obtained from cats' peripheral blood mononuclear cells, and proviral DNA of pol and env genes was detected using PCR. Seventy-six percent of cats scored positive for FeLV using env-PCR; and 54 %, by pol-PCR. Phylogenetic analysis of both regions identified sequences that correspond to a group that includes endogenous retroviruses. They form an independent branch and, therefore, a new group of endogenous viruses. Cat gender, age, outdoor access, and cohabitation with other cats were found to be significant risk factors associated with the disease. This strongly suggests that these FeLV genotypes are widely distributed in the studied feline population in Mexico.
Collapse
Affiliation(s)
- Hugo Ramírez
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Campus 4, Cuautitlán Izcalli Estado de México, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, CP. 54714, Cuautitlán Izcalli, Estado de México, México.
| | - Marcela Autran
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Campus 4, Cuautitlán Izcalli Estado de México, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, CP. 54714, Cuautitlán Izcalli, Estado de México, México
| | - M Martha García
- Immuno-Virology Laboratory, Department of Immunological Research, UMAE Pediatrics Hospital, XXI Century National Medical Center, IMSS, Av. Cuauhtémoc 330, Col. Doctores, CP. 06725, Ciudad de México, México
| | - M Ángel Carmona
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Campus 4, Cuautitlán Izcalli Estado de México, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, CP. 54714, Cuautitlán Izcalli, Estado de México, México
| | - Cecilia Rodríguez
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Campus 4, Cuautitlán Izcalli Estado de México, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, CP. 54714, Cuautitlán Izcalli, Estado de México, México
| | - H Alejandro Martínez
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Campus 4, Cuautitlán Izcalli Estado de México, Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, CP. 54714, Cuautitlán Izcalli, Estado de México, México
| |
Collapse
|
41
|
Walsh SR, Stinson KJ, Wootton SK. Seroconversion of sheep experimentally infected with enzootic nasal tumor virus. BMC Res Notes 2016; 9:15. [PMID: 26744306 PMCID: PMC4704252 DOI: 10.1186/s13104-015-1824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Enzootic nasal tumor virus (ENTV-1) is an exogenous betaretrovirus of sheep that transforms epithelial cells lining the ethmoid turbinates leading to a disease called enzootic nasal adenocarcinoma (ENA). A unique feature of ENA is the apparent absence of a specific humoral immune response to the virus, despite the highly productive infection in nasal tumors. The sheep genome contains approximately 27 copies of endogenous ovine betaretroviral sequences (enJSRVs) and expression of enJSRVs in the ovine placenta and uterine endometrium throughout gestation is thought to induce immunological tolerance to exogenous ovine betaretroviruses, a factor that may influence the likelihood of exogenous ENTV infection and disease outcome. Nevertheless, we recently demonstrated the presence of neutralizing antibodies directed against the ENTV-1 envelope glycoprotein in sheep naturally exposed to ENTV-1. FINDINGS Here, we employed an ENTV-1 envelope glycoprotein surface subunit specific ELISA and a virus neutralization assay to monitor serum antibody responses to ENTV-1 in a group of lambs experimentally infected with ENTV-1 virus containing filtered ENA tumor homogenate. Seroconversion and development of neutralizing antibodies was detected in one of six experimentally infected lambs. CONCLUSIONS Our results demonstrate that sheep can respond immunologically and seroconvert following ENTV-1 infection suggesting that anti-viral immune responses may play a role in the development of ENA.
Collapse
Affiliation(s)
- Scott R Walsh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| | - Kevin J Stinson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
42
|
Qiu GH. Genome defense against exogenous nucleic acids in eukaryotes by non-coding DNA occurs through CRISPR-like mechanisms in the cytosol and the bodyguard protection in the nucleus. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:31-41. [DOI: 10.1016/j.mrrev.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/22/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023]
|
43
|
Tsangaras K, Mayer J, Alquezar-Planas DE, Greenwood AD. An Evolutionarily Young Polar Bear (Ursus maritimus) Endogenous Retrovirus Identified from Next Generation Sequence Data. Viruses 2015; 7:6089-107. [PMID: 26610552 PMCID: PMC4664997 DOI: 10.3390/v7112927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 01/13/2023] Open
Abstract
Transcriptome analysis of polar bear (Ursus maritimus) tissues identified sequences with similarity to Porcine Endogenous Retroviruses (PERV). Based on these sequences, four proviral copies and 15 solo long terminal repeats (LTRs) of a newly described endogenous retrovirus were characterized from the polar bear draft genome sequence. Closely related sequences were identified by PCR analysis of brown bear (Ursus arctos) and black bear (Ursus americanus) but were absent in non-Ursinae bear species. The virus was therefore designated UrsusERV. Two distinct groups of LTRs were observed including a recombinant ERV that contained one LTR belonging to each group indicating that genomic invasions by at least two UrsusERV variants have recently occurred. Age estimates based on proviral LTR divergence and conservation of integration sites among ursids suggest the viral group is only a few million years old. The youngest provirus was polar bear specific, had intact open reading frames (ORFs) and could potentially encode functional proteins. Phylogenetic analyses of UrsusERV consensus protein sequences suggest that it is part of a pig, gibbon and koala retrovirus clade. The young age estimates and lineage specificity of the virus suggests UrsusERV is a recent cross species transmission from an unknown reservoir and places the viral group among the youngest of ERVs identified in mammals.
Collapse
Affiliation(s)
- Kyriakos Tsangaras
- Department of Translational Genetics, The Cyprus Institute of Neurology and Genetics, 6 International Airport Ave., 2370 Nicosia, Cyprus.
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, 66421 Homburg, Germany.
| | - David E Alquezar-Planas
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research Berlin, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research Berlin, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
- Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany.
| |
Collapse
|
44
|
Gilbert C, Meik JM, Dashevsky D, Card DC, Castoe TA, Schaack S. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proc Biol Sci 2015; 281:20141122. [PMID: 25080342 DOI: 10.1098/rspb.2014.1122] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report the discovery of endogenous viral elements (EVEs) from Hepadnaviridae, Bornaviridae and Circoviridae in the speckled rattlesnake, Crotalus mitchellii, the first viperid snake for which a draft whole genome sequence assembly is available. Analysis of the draft assembly reveals genome fragments from the three virus families were inserted into the genome of this snake over the past 50 Myr. Cross-species PCR screening of orthologous loci and computational scanning of the python and king cobra genomes reveals that circoviruses integrated most recently (within the last approx. 10 Myr), whereas bornaviruses and hepadnaviruses integrated at least approximately 13 and approximately 50 Ma, respectively. This is, to our knowledge, the first report of circo-, borna- and hepadnaviruses in snakes and the first characterization of non-retroviral EVEs in non-avian reptiles. Our study provides a window into the historical dynamics of viruses in these host lineages and shows that their evolution involved multiple host-switches between mammals and reptiles.
Collapse
Affiliation(s)
- C Gilbert
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - J M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, TX, USA
| | - D Dashevsky
- Department of Biology, Reed College, Portland, OR, USA
| | - D C Card
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| | - T A Castoe
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA
| | - S Schaack
- Department of Biology, Reed College, Portland, OR, USA Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
45
|
Imakawa K, Nakagawa S, Miyazawa T. Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes Cells 2015; 20:771-88. [PMID: 26442811 DOI: 10.1111/gtc.12278] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/14/2015] [Indexed: 12/23/2022]
Abstract
It is well accepted that numerous RNAs derived from endogenous retroviruses (ERVs) are expressed in mammalian reproductive structures, particularly in the uterus, trophoblast, and placenta. Syncytin 1 and syncytin 2 in humans and syncytin A and syncytin B in mice are membrane proteins originating from Env genes of ERVs. These ERVs are involved in the fusion of trophoblast cells, resulting in multinucleated syncytiotrophoblast formation. Evidence accumulated indicates that syncytin-like fusogenic proteins are expressed in the placenta of rabbits, dogs/cats, ruminant ungulates, tenrecs, and opossums. The syncytin genes so far characterized are known to be endogenized to the host genome only within the past 12-80 million years, more recently than the appearance of mammalian placentas, estimated to be 160-180 million years ago. We speculate that ERVs including syncytin-like gene variants integrated into mammalian genomes in a locus-specific manner have replaced the genes previously responsible for cell fusion. We therefore propose the 'baton pass' hypothesis, in which multiple successive ERV variants 'take over' cell-fusion roles, resulting in increased trophoblast cell fusion, morphological variations in placental structures, and enhanced reproductive success in placental mammals.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan
| | - So Nakagawa
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
46
|
Abstract
Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.
Collapse
Affiliation(s)
- Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467;
| |
Collapse
|
47
|
Recent advances in the study of active endogenous retrovirus envelope glycoproteins in the mammalian placenta. Virol Sin 2015; 30:239-48. [PMID: 26311491 DOI: 10.1007/s12250-015-3617-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/14/2015] [Indexed: 01/03/2023] Open
Abstract
Endogenous retroviruses (ERVs) are a component of the vertebrate genome and originate from exogenous infections of retroviruses in the germline of the host. ERVs have coevolved with their hosts over millions of years. Envelope glycoproteins of endogenous retroviruses are often expressed in the mammalian placenta, and their potential function has aroused considerable research interest, including the manipulation of maternal physiology to benefit the fetus. In most mammalian species, trophoblast fusion in the placenta is an important event, involving the formation of a multinucleated syncytiotrophoblast layer to fulfill essential fetomaternal exchange functions. The key function in this process derives from the envelope genes of endogenous retroviruses, namely syncytins, which show fusogenic properties and placenta-specific expression. This review discusses the important role of the recognized endogenous retrovirus envelope glycoproteins in the mammalian placenta.
Collapse
|
48
|
Monot M, Archer F, Gomes M, Mornex JF, Leroux C. Advances in the study of transmissible respiratory tumours in small ruminants. Vet Microbiol 2015; 181:170-7. [PMID: 26340900 DOI: 10.1016/j.vetmic.2015.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sheep and goats are widely infected by oncogenic retroviruses, namely Jaagsiekte Sheep RetroVirus (JSRV) and Enzootic Nasal Tumour Virus (ENTV). Under field conditions, these viruses induce transformation of differentiated epithelial cells in the lungs for Jaagsiekte Sheep RetroVirus or the nasal cavities for Enzootic Nasal Tumour Virus. As in other vertebrates, a family of endogenous retroviruses named endogenous Jaagsiekte Sheep RetroVirus (enJSRV) and closely related to exogenous Jaagsiekte Sheep RetroVirus is present in domestic and wild small ruminants. Interestingly, Jaagsiekte Sheep RetroVirus and Enzootic Nasal Tumour Virus are able to promote cell transformation, leading to cancer through their envelope glycoproteins. In vitro, it has been demonstrated that the envelope is able to deregulate some of the important signaling pathways that control cell proliferation. The role of the retroviral envelope in cell transformation has attracted considerable attention in the past years, but it appears to be highly dependent of the nature and origin of the cells used. Aside from its health impact in animals, it has been reported for many years that the Jaagsiekte Sheep RetroVirus-induced lung cancer is analogous to a rare, peculiar form of lung adenocarcinoma in humans, namely lepidic pulmonary adenocarcinoma. The implication of a retrovirus related to Jaagsiekte Sheep RetroVirus is still controversial and under investigation, but the identification of an infectious agent associated with the development of lepidic pulmonary adenocarcinomas might help us to understand cancer development. This review explores the mechanisms of induction of respiratory cancers in small ruminants and the possible link between retrovirus and lepidic pulmonary adenocarcinomas in humans.
Collapse
Affiliation(s)
- M Monot
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France
| | - F Archer
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France
| | - M Gomes
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France
| | - J-F Mornex
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France; Hospices Civils de Lyon, France
| | - C Leroux
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France.
| |
Collapse
|
49
|
Fábryová H, Hron T, Kabíčková H, Poss M, Elleder D. Induction and characterization of a replication competent cervid endogenous gammaretrovirus (CrERV) from mule deer cells. Virology 2015. [PMID: 26218214 DOI: 10.1016/j.virol.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous retroviruses (ERVs) were acquired during evolution of their host organisms after infection and mendelian inheritance in the germline by their exogenous counterparts. The ERVs can spread in the host genome and in some cases they affect the host phenotype. The cervid endogenous gammaretrovirus (CrERV) is one of only a few well-defined examples of evolutionarily recent invasion of mammalian genome by retroviruses. Thousands of insertionally polymorphic CrERV integration sites have been detected in wild ranging mule deer (Odocoileus hemionus) host populations. Here, we describe for the first time induction of replication competent CrERV by cocultivation of deer and human cells. We characterize the physical properties and tropism of the induced virus. The genomic sequence of the induced virus is phylogenetically related to the evolutionarily young endogenous CrERVs described so far. We also describe the level of replication block of CrERV on deer cells and its capacity to establish superinfection interference.
Collapse
Affiliation(s)
- Helena Fábryová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Tomáš Hron
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Hana Kabíčková
- Military Health Institute, Department of Microbiology and Biological Research, 16001 Prague, Czech Republic
| | - Mary Poss
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16801, USA
| | - Daniel Elleder
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic.
| |
Collapse
|
50
|
Imakawa K, Bai R, Fujiwara H, Kusama K. Conceptus implantation and placentation: molecules related to epithelial-mesenchymal transition, lymphocyte homing, endogenous retroviruses, and exosomes. Reprod Med Biol 2015; 15:1-11. [PMID: 29259417 DOI: 10.1007/s12522-015-0215-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023] Open
Abstract
Processes of conceptus implantation and placentation, unique to mammalian reproduction, have been extensively studied. It was once thought that processes of these events varied greatly, notably between invasive and noninvasive modes of implantation and/or placentation. Regardless of the mode of implantation, however, physiological and biochemical processes in conceptus implantation to the maternal endometrium including the kinds of gene expression and their products are now considered not to differ so much. Recent progress has identified that in addition to the hormones, cytokines, proteases and cell adhesion molecules classically characterized, epithelial-mesenchymal transition, molecules related to lymphocyte homing, the expression of endogenous retroviruses and possibly exosomes are all required for the progression of conceptus implantation to placentation. In this review, therefore, new findings related to these events are integrated into the context of conceptus implantation to the maternal endometrium.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Rulan Bai
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medicine Science Kanazawa University 920-1192 Kanazawa Japan
| | - Kazuya Kusama
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| |
Collapse
|