1
|
Xiao Y, Wang J, Sun P, Ding T, Li J, Deng Y. Formation and resuscitation of viable but non-culturable (VBNC) yeast in the food industry: A review. Int J Food Microbiol 2025; 426:110901. [PMID: 39243533 DOI: 10.1016/j.ijfoodmicro.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The viable but non-culturable (VBNC) state is a survival strategy adopted by microorganisms in response to unfavorable conditions in the environment. VBNC cells are unable to form colonies but still maintain a low level of activity, posing a potential threat to food safety and public health. Therefore, the development of effective strategies to prevent the formation and resuscitation of VBNC cells of microorganisms is a key challenge in food science and microbiology research. However, current research on VBNC cells has primarily focused on bacteria, with relatively limited reports on fungi. This paper provides a comprehensive and systematic review of yeast in the VBNC state, discussing various factors that induce and facilitate resuscitation, along with detection methods and formation and recovery mechanisms. A comprehensive understanding of the induction and resuscitation of yeast in the VBNC state and exploration of its molecular mechanism hold significant implications for food safety and public health. It is imperative to enhance our comprehension of the underlying mechanisms and contributory factors pertaining to VBNC yeast, thereby facilitating the efficient management of the food fermentation process and ensuring the integrity of food quality and safety.
Collapse
Affiliation(s)
- Yang Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; School of Food Engineering, Qingdao Institute of Technology, Qingdao 266300, China
| | - Jiayang Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Pengdong Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Ting Ding
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jingyuan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
2
|
Patel KM, Seed KD. Sporadic phage defense in epidemic Vibrio cholerae mediated by the toxin-antitoxin system DarTG is countered by a phage-encoded antitoxin mimic. mBio 2024; 15:e0011124. [PMID: 39287445 PMCID: PMC11481870 DOI: 10.1128/mbio.00111-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Bacteria and their viral predators (phages) are constantly evolving to subvert one another. Many bacterial immune systems that inhibit phages are encoded on mobile genetic elements that can be horizontally transmitted to diverse bacteria. Despite the pervasive appearance of immune systems in bacteria, it is not often known if these immune systems function against phages that the host encounters in nature. Additionally, there are limited examples demonstrating how these phages counter-adapt to such immune systems. Here, we identify clinical isolates of the global pathogen Vibrio cholerae harboring a novel genetic element encoding the bacterial immune system DarTG and reveal the immune system's impact on the co-circulating lytic phage ICP1. We show that DarTG inhibits ICP1 genome replication, thus preventing ICP1 plaquing. We further characterize the conflict between DarTG-mediated defense and ICP1 by identifying an ICP1-encoded protein that counters DarTG and allows ICP1 progeny production. Finally, we identify this protein, AdfB, as a functional antitoxin that abrogates the toxin DarT likely through direct interactions. Following the detection of the DarTG system in clinical V. cholerae isolates, we observed a rise in ICP1 isolates with the functional antitoxin. These data highlight the use of surveillance of V. cholerae and its lytic phages to understand the co-evolutionary arms race between bacteria and their phages in nature.IMPORTANCEThe global bacterial pathogen Vibrio cholerae causes an estimated 1 to 4 million cases of cholera each year. Thus, studying the factors that influence its persistence as a pathogen is of great importance. One such influence is the lytic phage ICP1, as once infected by ICP1, V. cholerae is destroyed. To date, we have observed that the phage ICP1 shapes V. cholerae evolution through the flux of anti-phage bacterial immune systems. Here, we probe clinical V. cholerae isolates for novel anti-phage immune systems that can inhibit ICP1 and discover the toxin-antitoxin system DarTG as a potent inhibitor. Our results underscore the importance of V. cholerae and ICP1 surveillance to elaborate novel means by which V. cholerae can persist in both the human host and aquatic reservoir in the face of ICP1.
Collapse
Affiliation(s)
- Kishen M. Patel
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Madi N, Cato ET, Abu Sayeed M, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIU, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity, and pathogen genetic diversity in cholera patients. Science 2024; 384:eadj3166. [PMID: 38669570 DOI: 10.1126/science.adj3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of bacteriophage (phage)-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. In this work, we report a year-long, nationwide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative polymerase chain reaction while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of antiphage defenses, predation was "effective," with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of antiphage defenses, predation was "ineffective," with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Imam Ul Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Madi N, Cato ET, Sayeed MA, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIUL, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity and pathogen genetic diversity in cholera patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544933. [PMID: 37398242 PMCID: PMC10312676 DOI: 10.1101/2023.06.14.544933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of phage-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. Here we report a year-long, nation-wide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative PCR, while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of anti-phage defenses, predation was 'effective,' with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of anti-phage defenses, predation was 'ineffective,' with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T. Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md. Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Imam UL. Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Taufiqur R. Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A. Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S. Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I. Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B. Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J. Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Mason G, Footer MJ, Rojas ER. Mechanosensation induces persistent bacterial growth during bacteriophage predation. mBio 2023; 14:e0276622. [PMID: 37909775 PMCID: PMC10746221 DOI: 10.1128/mbio.02766-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria and bacteriophage form one of the most important predator-prey relationships on earth, yet how the long-term stability of this ecological interaction is achieved is unclear. Here, we demonstrate that Escherichia coli can rapidly grow during bacteriophage predation if they are doing so in spatially confined environments. This discovery revises our understanding of bacteria-bacteriophage population dynamics in many real-world environments where bacteria grow in confinement, such as the gut and the soil. Additionally, this result has clear implications for the potential of bacteriophage therapy and the role of mechanosensation during bacterial pathogenesis.
Collapse
Affiliation(s)
- Guy Mason
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Matthew J. Footer
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Enrique R. Rojas
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| |
Collapse
|
6
|
Netter Z, Dunham DT, Seed KD. Adaptation to bile and anaerobicity limits Vibrio cholerae phage adsorption. mBio 2023; 14:e0198523. [PMID: 37882540 PMCID: PMC10746206 DOI: 10.1128/mbio.01985-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Vibrio cholerae is the bacterial pathogen responsible for cholera, a diarrheal disease that impacts people in areas without access to potable water. In regions that lack such infrastructure, cholera represents a large proportion of disease outbreaks. Bacteriophages (phages, viruses that infect bacteria) have recently been examined as potential therapeutic and prophylactic agents to treat and prevent bacterial disease outbreaks like cholera due to their specificity and stability. This work examines the interaction between V. cholerae and vibriophages in consideration for a cholera prophylaxis regimen (M. Yen, L. S. Cairns, and A. Camilli, Nat Commun 8:14187, 2017, https://doi.org/10.1038/ncomms14187) in the context of stimuli found in the intestinal environment. We discover that common signals in the intestinal environment induce cell surface modifications in V. cholerae that also restrict some phages from binding and initiating infection. These findings could impact considerations for the design of phage-based treatments, as phage infection appears to be limited by bacterial adaptations to the intestinal environment.
Collapse
Affiliation(s)
- Zoe Netter
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
7
|
Patel KM, Seed KD. Sporadic phage defense in epidemic Vibrio cholerae mediated by the toxin-antitoxin system DarTG is countered by a phage-encoded antitoxin mimic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571748. [PMID: 38168179 PMCID: PMC10760071 DOI: 10.1101/2023.12.14.571748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacteria and their viral predators (phages) are constantly evolving to subvert one another. Many bacterial immune systems that inhibit phages are encoded on mobile genetic elements that can be horizontally transmitted to diverse bacteria. Despite the pervasive appearance of immune systems in bacteria, it is not often known if these immune systems function against phages that the host encounters in nature. Additionally, there are limited examples demonstrating how these phages counter-adapt to such immune systems. Here, we identify clinical isolates of the global pathogen Vibrio cholerae harboring a novel genetic element encoding the bacterial immune system DarTG and reveal the immune system's impact on the co-circulating lytic phage ICP1. We show that DarTG inhibits ICP1 genome replication, thus preventing ICP1 plaquing. We further characterize the conflict between DarTG-mediated defense and ICP1 by identifying an ICP1-encoded protein that counters DarTG and allows ICP1 progeny production. Finally, we identify this protein as a functional antitoxin that abrogates the toxin DarT likely through direct interactions. Following the detection of the DarTG system in clinical V. cholerae isolates, we observed a rise in ICP1 isolates with the functional antitoxin. These data highlight the use of surveillance of V. cholerae and its lytic phages to understand the co-evolutionary arms race between bacteria and their phages in nature.
Collapse
Affiliation(s)
- Kishen M Patel
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
8
|
Liu J, Yang L, Kjellerup BV, Xu Z. Viable but nonculturable (VBNC) state, an underestimated and controversial microbial survival strategy. Trends Microbiol 2023; 31:1013-1023. [PMID: 37225640 DOI: 10.1016/j.tim.2023.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
As a unique microbial response to adverse circumstances, the viable but nonculturable (VBNC) state is characterized by the loss of culturability of microbial cells on/in nutrient media that normally support their growth, while maintaining metabolic activity. These cells can resuscitate to a culturable state under suitable conditions. Given the intrinsic importance of the VBNC state and recent debates surrounding it, there is a need to redefine and standardize the term, and to address essential questions such as 'How to differentiate VBNC from other similar terms?' and 'How can VBNC cells be standardly and accurately determined?'. This opinion piece aims at contributing to an improved understanding of the VBNC state and promoting its proper handling as an underestimated and controversial microbial survival strategy.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
9
|
Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, Carreño LJ, García-Betancourt R, O’Ryan M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne) 2023; 10:1155751. [PMID: 37215733 PMCID: PMC10196187 DOI: 10.3389/fmed.2023.1155751] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Sergio George
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yalda Lucero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Roberto del Rio, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo A. Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Development of a Monoclonal Antibody to a Vibriophage as a Proxy for Vibrio cholerae Detection. Infect Immun 2022; 90:e0016122. [PMID: 35862704 PMCID: PMC9387236 DOI: 10.1128/iai.00161-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cholera is an acute watery, diarrheal disease that causes high rates of morbidity and mortality without treatment. Early detection of the etiologic agent of toxigenic Vibrio cholerae is important to mobilize treatment and mitigate outbreaks. Monoclonal antibody (mAb) based rapid diagnostic tests (RDTs) enable early detection in settings without laboratory capacity. However, the odds of an RDT testing positive are reduced by nearly 90% when the common virulent bacteriophage ICP1 is present. We hypothesize that adding a mAb for the common, and specific, virulent bacteriophage ICP1 as a proxy for V. cholerae to an RDT will increase diagnostic sensitivity when virulent ICP1 phage is present. In this study, we used an in-silico approach to identify immunogenic ICP1 protein targets that were conserved across disparate time periods and locations. Specificity of targets to cholera patients with known ICP1 was determined, and specific targets were used to produce mAbs in a murine model. Candidate mAbs to the head protein demonstrated specificity to ICP1 by Enzyme linked immunosorbent assay (ELISA) and an ICP1 phage neutralization assay. The limit of detection of the final mAb candidate for ICP1 phage particles spiked into cholera stool matrix was 8 × 105 PFU by Western blotting analysis. This mAb will be incorporated into a RDT prototype for evaluation in a future diagnostic study to test the guiding hypothesis behind this study.
Collapse
|
11
|
Hiruy AM, Mohammed J, Haileselassie MM, Acharya K, Butte G, Haile AT, Walsh C, Werner D. Spatiotemporal variation in urban wastewater pollution impacts on river microbiomes and associated hazards in the Akaki catchment, Addis Ababa, Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153912. [PMID: 35183630 DOI: 10.1016/j.scitotenv.2022.153912] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
In Addis Ababa and its environs, most urban wastewater is discharged into rivers without treatment. This study related urban wastewater characteristics to the prevalence of faecal, antibiotic resistant, and potentially pathogenic bacteria in rivers of the Akaki catchment across six locations, for the dry and wet season. Spatiotemporal variation in bacterial hazards across the catchment was up to 6 log10 units. Cooccurrence of sewage pollution marker gene HF183 in all river samples testing positive for the Vibrio cholerae marker gene ompW, and high levels of these two genes in untreated wastewater, identified human sewage as the likely source of Vibrio cholerae hazards in the catchment. Levels of the marker genes rodA for E. coli, HF183 for human host associated Bacteroides, ciaB for Arcobacter, and ompW for Vibrio cholerae were all higher in the dry season than in the wet season. Marker gene gyrB for Pseudomonas aeruginosa was not detected in the samples. From the sequencing data, notable bacterial genera in the dry season included wastewater pollution indicators Arcobacter and Aeromonas, whereas soil erosion may explain the greater prominence of Legionella, Vicinamibacter, and Sphingomonas during the wet season. Except for the most upstream location, all faecal coliform (FC) counts exceeded WHO standards of 1000 CFU/100 mL for unrestricted irrigation. Concerningly, 0.6-20% of FC had ESBL producing antimicrobial resistance traits. In conclusion, multiple bacterial hazards were of concern for river water users in the Akaki catchment, and elevated in the dry season, when the river water is being used for irrigation of vegetable fields that supply the markets of Addis Ababa. This reflects inadequate treatment and limited dilution of urban wastewater by the natural river flows during periods of low rainfall.
Collapse
Affiliation(s)
- Andualem Mekonnen Hiruy
- Center for Environmental Science, Addis Ababa University, P.O. Box 33348, Addis Ababa, Ethiopia.
| | - Jemila Mohammed
- Center for Environmental Science, Addis Ababa University, P.O. Box 33348, Addis Ababa, Ethiopia; Addis Ababa Water and Sewerage Authority (AAWSA), Addis Ababa, Ethiopia
| | | | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Giacomo Butte
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | | | - Claire Walsh
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
12
|
Zhang Z, Yang Z, Zhen J, Xiang X, Liao P, Xie J. Insertion Mutation of MSMEG_0392 Play an Important Role in Resistance of M. smegmatis to Mycobacteriophage SWU1. Infect Drug Resist 2022; 15:347-357. [PMID: 35140480 PMCID: PMC8818766 DOI: 10.2147/idr.s341494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Phage is a new choice for the treatment of multi-drug-resistant bacteria, and phage resistance is also an issue of concern. SWU1 is a mycobacteriophage, and the mechanism of its resistance remain poorly understood. Methods The mutant strains which were stably resistant to SWU1 were screened by transposon mutation library. The stage of phage resistance was observed by transmission electron microscope (TEM). The insertion site of transposon was identified by thermal asymmetric interlaced PCR (TAIL-PCR). The possible relationship between insertion site and phage resistance was verified by gene knockout technique. The fatty acid composition of bacterial cell wall was analyzed by Gas Chromatography-Mass Spectrometer (GC-MS). Through the amplification and sequencing of target genes and gene complement techniques to find the mechanism of SWU1 resistance. Results The transposon mutant M12 which was stably resistant to mycobacteriophage SWU1 was successfully screened. It was confirmed that resistance occurred in the adsorption stage of bacteriophage. It was verified that the insertion site of the transposon was located in the MSMEG_3705 gene, but after knocking out the gene in the wild type M. smegmatis mc2 155, the resistance of the knockout strain to SWU1 was not observed. Through the amplification and sequencing of the target gene MSMEG_0392, it was found that there was an adenine insertion mutation at position 817. After complementing MSMEG_0392 in M12, it was found that M12 returned to sensitivity to SWU1. Conclusion We confirmed that the resistance of M12 to SWU1 was related to the functional inactivation of MSMEG_0392 and this phenomenon may be caused by the change of cell wall of M. smegmatis.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Three Gorges Eco-Environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Zhulan Yang
- Department of Clinical Laboratory, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Junfeng Zhen
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, People’s Republic of China
| | - Pu Liao
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Three Gorges Eco-Environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
- Correspondence: Jianping Xie; Pu Liao, Tel/Fax +8623-68367108, Email ;
| |
Collapse
|
13
|
Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD. Bacteriophage ICP1: A Persistent Predator of Vibrio cholerae. Annu Rev Virol 2021; 8:285-304. [PMID: 34314595 PMCID: PMC9040626 DOI: 10.1146/annurev-virology-091919-072020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages or phages—viruses of bacteria—are abundant and considered to be highly diverse. Interestingly, a particular group of lytic Vibrio cholerae–specific phages (vibriophages) of the International Centre for Diarrheal Disease Research, Bangladesh cholera phage 1 (ICP1) lineage show high levels of genome conservation over large spans of time and geography, despite a constant coevolutionary arms race with their host. From a collection of 67 sequenced ICP1 isolates, mostly from clinical samples, we find these phages have mosaic genomes consisting of large, conserved modules disrupted by variable sequences that likely evolve mostly through mobile endonuclease-mediated recombination during coinfection. Several variable regions have been associated with adaptations against antiphage elements in V. cholerae; notably, this includes ICP1’s CRISPR-Cas system. The ongoing association of ICP1 and V. cholerae in cholera-endemic regions makes this system a rich source for discovery of novel defense and counterdefense strategies in bacteria-phage conflicts in nature.
Collapse
Affiliation(s)
- Caroline M Boyd
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Stephanie G Hays
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Kishen M Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
14
|
Chebotar' IV, Emelyanova MA, Bocharova JA, Mayansky NA, Kopantseva EE, Mikhailovich VM. The classification of bacterial survival strategies in the presence of antimicrobials. Microb Pathog 2021; 155:104901. [PMID: 33930413 DOI: 10.1016/j.micpath.2021.104901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023]
Abstract
The survival of bacteria under antibiotic therapy varies in nature and is based on the bacterial ability to employ a wide range of fundamentally different resistance mechanisms. This great diversity requires a disambiguation of the term 'resistance' and the development of a more precise classification of bacterial survival strategies during contact with antibiotics. The absence of a unified definition for the terms 'resistance', 'tolerance' and 'persistence' further aggravates the imperfections of the current classification system. This review suggests a number of original classification criteria that will take into account (1) the bacterial ability to replicate in the presence of antimicrobial agents, (2) existing evolutionary stability of a trait within a species, and (3) the presence or absence of specialized genes that determine the ability of a microorganism to decrease its own metabolism or switch it completely off. This review describes potential advantages of the suggested classification system, which include a better understanding of the relationship between bacterial survival in the presence of antibiotics and molecular mechanisms of cellular metabolism suppression, the opportunity to pinpoint targets to identify a true bacterial resistance profile. The true resistance profile in turn, could be used to develop effective diagnostic and antimicrobial therapy methods, while taking into consideration specific bacterial survival mechanisms.
Collapse
Affiliation(s)
- Igor V Chebotar'
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Marina A Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation
| | - Julia A Bocharova
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Nikolay A Mayansky
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Elena E Kopantseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation
| | - Vladimir M Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation.
| |
Collapse
|
15
|
Nelson EJ, Grembi JA, Chao DL, Andrews JR, Alexandrova L, Rodriguez PH, Ramachandran VV, Sayeed MA, Wamala JF, Debes AK, Sack DA, Hryckowian AJ, Haque F, Khatun S, Rahman M, Chien A, Spormann AM, Schoolnik GK. Gold Standard Cholera Diagnostics Are Tarnished by Lytic Bacteriophage and Antibiotics. J Clin Microbiol 2020; 58:e00412-20. [PMID: 32611794 PMCID: PMC7448619 DOI: 10.1128/jcm.00412-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
A fundamental, clinical, and scientific concern is how lytic bacteriophage, as well as antibiotics, impact diagnostic positivity. Cholera was chosen as a model disease to investigate this important question, because cholera outbreaks enable large enrollment, field methods are well established, and the predatory relationship between lytic bacteriophage and the etiologic agent Vibrio cholerae share commonalities across bacterial taxa. Patients with diarrheal disease were enrolled at two remote hospitals in Bangladesh. Diagnostic performance was assessed as a function of lytic bacteriophage detection and exposure to the first-line antibiotic azithromycin, detected in stool samples by mass spectrometry. Among diarrheal samples positive by nanoliter quantitative PCR (qPCR) for V. cholerae (n = 78/849), the odds that a rapid diagnostic test (RDT) or qPCR was positive was reduced by 89% (odds ratio [OR], 0.108; 95% confidence interval [CI], 0.002 to 0.872) and 87% (OR, 0.130; 95% CI, 0.022 to 0.649), respectively, when lytic bacteriophage were detected. The odds that an RDT or qPCR was positive was reduced by more than 99% (OR, 0.00; 95% CI, 0.00 to 0.28) and 89% (OR, 0.11; 95% CI, 0.03 to 0.44), respectively, when azithromycin was detected. Analysis of additional samples from South Sudan found similar phage effects on RDTs; antibiotics were not assayed. Cholera burden estimates may improve by accommodating for the negative effects of lytic bacteriophage and antibiotic exposure on diagnostic positivity. One accommodation is using bacteriophage detection as a proxy for pathogen detection. These findings have relevance for other diagnostic settings where bacterial pathogens are vulnerable to lytic bacteriophage predation.
Collapse
Affiliation(s)
- E J Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, Florida, USA
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, USA
| | - J A Grembi
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - D L Chao
- Institute for Disease Modeling, Bellevue, Washington, USA
| | - J R Andrews
- Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - L Alexandrova
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, California, USA
| | - P H Rodriguez
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, Florida, USA
| | - V V Ramachandran
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, USA
| | - M A Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, Florida, USA
| | - J F Wamala
- Country Preparedness and IHR (CPI), World Health Organization (South Sudan), Juba, South Sudan
| | - A K Debes
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - D A Sack
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - A J Hryckowian
- Department of Microbiology, School of Medicine, Stanford University, Stanford, California, USA
| | - F Haque
- Institute of Epidemiology, Disease Control and Research, Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
| | - S Khatun
- Institute of Epidemiology, Disease Control and Research, Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
| | - M Rahman
- Institute of Epidemiology, Disease Control and Research, Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
| | - A Chien
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, California, USA
| | - A M Spormann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - G K Schoolnik
- Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Chebotar IV, Bocharova YA, Gur'ev AS, Mayansky NA. [Bacteria survival strategies in contact with antibiotics.]. Klin Lab Diagn 2020; 65:116-121. [PMID: 32159310 DOI: 10.18821/0869-2084-2020-65-2-116-121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023]
Abstract
Bacteria survival in the conditions of antimicrobial therapy is the global problem of health care. This review highlights the complexity and diversity of mechanisms used by bacteria to neutralize antibiotics. To analyze the problem, the search was made using PubMed database, Russian scientific electronic library eLIBRARY, search system of World Health Organization and European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Based on the analysis of survival strategies in the conditions of antibiotics action we propose new classification of resistant bacteria. Classification criteria include the ability to divide under antibiotics action, the survival strategies application as a species trait, the presence of specialized genes determining the transition to the state with reduced/stopped metabolism. Two main groups are resistant bacteria and bacteria with reduced/stopped metabolism, which survive but do not divide in the presence of antibiotic. The first group includes two subgroups: bacteria with intrinsic and adaptive resistance. The second group includes (1) bacteria with specialized genes responsible for cell transformation to the state with reduced/stopped metabolism, (2) bacteria transforming to the state with reduced/stopped metabolism without involvement of special genes, and (3) cell forms with special morphology - spores, cysts and cyst-like cells. We described the usefulness of proposed classification including improved understanding of the correlation between bacteria survival in the presence of antibiotics and molecular mechanism of cell metabolism inhibition, presence or absence of targets for using molecular-genetic methods of bacteria resistant variant determination, the possibility for development of rational antimicrobial therapy methods.
Collapse
Affiliation(s)
- I V Chebotar
- Pirogov Russian National Research Medical University, 119571, Moscow
| | - Y A Bocharova
- National Medical Research Center for Children's Health, 119296, Moscow
| | - A S Gur'ev
- M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), 129110, Moscow.,Medtechnopark Ltd., 117292, Moscow, Russia
| | - N A Mayansky
- Pirogov Russian National Research Medical University, 119571, Moscow
| |
Collapse
|
17
|
Castillo D, Rørbo N, Jørgensen J, Lange J, Tan D, Kalatzis PG, Svenningsen SL, Middelboe M. Phage defense mechanisms and their genomic and phenotypic implications in the fish pathogen Vibrio anguillarum. FEMS Microbiol Ecol 2020; 95:5281231. [PMID: 30624625 DOI: 10.1093/femsec/fiz004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/08/2019] [Indexed: 01/21/2023] Open
Abstract
Vibrio anguillarum is a marine bacterium that can cause vibriosis in many fish and shellfish species. Although phage therapy has been proposed as an alternative treatment, the defense mechanisms against phage infection in V. anguillarum and their impact on host function are not fully understood. Here, we examined phage defense strategies in four V. anguillarum strains during exposure to the broad-host-range bacteriophage KVP40. Whole-genome sequences of phage-resistant V. anguillarum isolates showed mutations causing premature stop codons, frameshifts and amino acid changes in the OmpK phage receptor. Moreover, certain phage-resistant variants recovered susceptibility to phage infection following re-culturing, suggesting alternative protection mechanisms, such as formation of biofilm, receptor downregulation and phage inactivation by proteases. Also, the lack of phage production by some strains despite strong phage control suggested an abortive infection mechanism was in play. In addition, examination of the virulence properties and extracellular enzyme secretion of the phage-resistant variants suggested that phage resistance was associated with reduced virulence in V. anguillarum. Altogether, the results identified a variety of phage resistance mechanisms in V. anguillarum including both mutational and non-mutational defenses and demonstrated a significant fitness loss associated with mutational changes, which may explain the selection for alternative defense mechanisms.
Collapse
Affiliation(s)
- Daniel Castillo
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Nanna Rørbo
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jóhanna Jørgensen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Janina Lange
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark.,Zoological Institute, Christian-Albrechts-University, Am botanischen Garten 1-9, G-24116 Kiel, Germany
| | - Demeng Tan
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark.,Section for Biomolecular Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, København N, Denmark
| | - Panos G Kalatzis
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Sine Lo Svenningsen
- Section for Biomolecular Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, København N, Denmark
| | - Mathias Middelboe
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| |
Collapse
|
18
|
Hays SG, Seed KD. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. eLife 2020; 9:e53200. [PMID: 32329714 PMCID: PMC7182436 DOI: 10.7554/elife.53200] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Bacteria, bacteriophages that prey upon them, and mobile genetic elements (MGEs) compete in dynamic environments, evolving strategies to sense the milieu. The first discovered environmental sensing by phages, lysis inhibition, has only been characterized and studied in the limited context of T-even coliphages. Here, we discover lysis inhibition in the etiological agent of the diarrheal disease cholera, Vibrio cholerae, infected by ICP1, a phage ubiquitous in clinical samples. This work identifies the ICP1-encoded holin, teaA, and antiholin, arrA, that mediate lysis inhibition. Further, we show that an MGE, the defensive phage satellite PLE, collapses lysis inhibition. Through lysis inhibition disruption a conserved PLE protein, LidI, is sufficient to limit the phage produced from infection, bottlenecking ICP1. These studies link a novel incarnation of the classic lysis inhibition phenomenon with conserved defensive function of a phage satellite in a disease context, highlighting the importance of lysis timing during infection and parasitization.
Collapse
Affiliation(s)
- Stephanie G Hays
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
19
|
Toxigenic Vibrio cholerae evolution and establishment of reservoirs in aquatic ecosystems. Proc Natl Acad Sci U S A 2020; 117:7897-7904. [PMID: 32229557 PMCID: PMC7149412 DOI: 10.1073/pnas.1918763117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The spread of cholera in the midst of an epidemic is largely driven by direct transmission from person to person, although it is well-recognized that Vibrio cholerae is also capable of growth and long-term survival in aquatic ecosystems. While prior studies have shown that aquatic reservoirs are important in the persistence of the disease on the Indian subcontinent, an epidemiological view postulating that locally evolving environmental V. cholerae contributes to outbreaks outside Asia remains debated. The single-source introduction of toxigenic V. cholerae O1 in Haiti, one of the largest outbreaks occurring this century, with 812,586 suspected cases and 9,606 deaths reported through July 2018, provided a unique opportunity to evaluate the role of aquatic reservoirs and assess bacterial transmission dynamics across environmental boundaries. To this end, we investigated the phylogeography of both clinical and aquatic toxigenic V. cholerae O1 isolates and show robust evidence of the establishment of aquatic reservoirs as well as ongoing evolution of V. cholerae isolates from aquatic sites. Novel environmental lineages emerged from sequential population bottlenecks, carrying mutations potentially involved in adaptation to the aquatic ecosystem. Based on such empirical data, we developed a mixed-transmission dynamic model of V. cholerae, where aquatic reservoirs actively contribute to genetic diversification and epidemic emergence, which underscores the complexity of transmission pathways in epidemics and endemic settings and the need for long-term investments in cholera control at both human and environmental levels.
Collapse
|
20
|
Somova LM, Andryukov BG, Lyapun IN. Cell geteromorphism in the conditions of persistence of sapronoses causative agents in various environments. AIMS Microbiol 2019; 5:147-157. [PMID: 31384709 PMCID: PMC6642906 DOI: 10.3934/microbiol.2019.2.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022] Open
Abstract
The paper discusses the issues of morphofunctional variability of causative agents of sapronoses under stressful environmental conditions. In the current century, sapronoses infections attract more and more attention. Under unfavorable habitat conditions, their pathogens use a strategy for the formation of resting (stable) states: viable but non-cultured cell forms and the persistence of bacteria, which are characterized by reduced metabolism, changes in the morphology and physiology of microorganisms, and termination of their replication. With the formation of resistant forms of bacteria, the possibility of survival of sapronoses causative agents in the interepidemic period, the formation of their antibiotic resistance, which plays an important role in the chronicity of infections, is associated. The literature widely discusses the mechanisms and conditions for the formation of resistant states of pathogenic bacteria, their pathogenetic significance in infectious pathology, whereas the ultrastructural organization and morphological variability of resistant cellular forms, as well as their differentiation, causing the heterogeneity of the pathogens population, are not yet well covered. The emergence of molecular cell biology methods and the discovery of genetic modules of toxin-antitoxin systems revealed a single mechanism for regulating the formation of resistant cellular forms of bacteria. This served as the basis for the development of fundamentally new technologies for the study of the mechanisms for the conservation of the pathogenic potential of resistant cellular forms of pathogens of natural focal sapronosis in interepidemic periods. Based on the analysis of current data, as well as their own experience, the authors assess the role of morphofunctional changes in resistant cellular forms of bacteria and their significance in the adaptation strategies of causative agents of sapronoses (on the example of Yersinia pseudotuberculosis). The study of the manifestations of heteromorphism of causative agents of sapronoses forms the paradigm of the need to improve methods for detecting resistant forms of these bacteria in human and animal biomaterial in order to diagnose chronic recurrent and persistent infections, create effective strategies for monitoring and monitoring the environment.
Collapse
Affiliation(s)
- Larisa M. Somova
- Somov Research Institute of Epidemiology and Microbiology, 690087, Selskaya St., 1, Vladivostok, Russia
| | - Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology, 690087, Selskaya St., 1, Vladivostok, Russia
- Far Eastern Federal University, Department of Molecular Microbiology690950, Sukhanova St., 8, Vladivostok, Russia
| | - Irina N. Lyapun
- Somov Research Institute of Epidemiology and Microbiology, 690087, Selskaya St., 1, Vladivostok, Russia
| |
Collapse
|
21
|
Brenzinger S, van der Aart LT, van Wezel GP, Lacroix JM, Glatter T, Briegel A. Structural and Proteomic Changes in Viable but Non-culturable Vibrio cholerae. Front Microbiol 2019; 10:793. [PMID: 31057510 PMCID: PMC6479200 DOI: 10.3389/fmicb.2019.00793] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments are reservoirs of the human pathogen Vibrio cholerae O1, which causes the acute diarrheal disease cholera. Upon low temperature or limited nutrient availability, the cells enter a viable but non-culturable (VBNC) state. Characteristic of this state are an altered morphology, low metabolic activity, and lack of growth under standard laboratory conditions. Here, for the first time, the cellular ultrastructure of V. cholerae VBNC cells raised in natural waters was investigated using electron cryo-tomography. This was complemented by a comparison of the proteomes and the peptidoglycan composition of V. cholerae from LB overnight cultures and VBNC cells. The extensive remodeling of the VBNC cells was most obvious in the passive dehiscence of the cell envelope, resulting in improper embedment of flagella and pili. Only minor changes of the peptidoglycan and osmoregulated periplasmic glucans were observed. Active changes in VBNC cells included the production of cluster I chemosensory arrays and change of abundance of cluster II array proteins. Components involved in iron acquisition and storage, peptide import and arginine biosynthesis were overrepresented in VBNC cells, while enzymes of the central carbon metabolism were found at lower levels. Finally, several pathogenicity factors of V. cholerae were less abundant in the VBNC state, potentially limiting their infectious potential. This study gives unprecedented insight into the physiology of VBNC cells and the drastically altered presence of their metabolic and structural proteins.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Lizah T. van der Aart
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Gilles P. van Wezel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université de Lille Sciences et Technologies, Villeneuve d'Ascq, France
| | - Timo Glatter
- Facility for Bacterial Proteomics and Mass Spectrometry, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
22
|
Silva-Valenzuela CA, Camilli A. Niche adaptation limits bacteriophage predation of Vibrio cholerae in a nutrient-poor aquatic environment. Proc Natl Acad Sci U S A 2019; 116:1627-1632. [PMID: 30635420 PMCID: PMC6358685 DOI: 10.1073/pnas.1810138116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, has reservoirs in fresh and brackish water where it interacts with virulent bacteriophages. Phages are the most abundant biological entity on earth and coevolve with bacteria. It was reported that concentrations of phage and V. cholerae inversely correlate in aquatic reservoirs and in the human small intestine, and therefore that phages may quench cholera outbreaks. Although there is strong evidence for phage predation in cholera patients, evidence is lacking for phage predation of V. cholerae in aquatic environments. Here, we used three virulent phages, ICP1, ICP2, and ICP3, commonly shed by cholera patients in Bangladesh, as models to understand the predation dynamics in microcosms simulating aquatic environments. None of the phages were capable of predation in fresh water, and only ICP1 was able to prey on V. cholerae in estuarine water due to a requirement for salt. We conclude that ICP2 and ICP3 are better adapted for predation in a nutrient rich environment. Our results point to the evolution of niche-specific predation by V. cholerae-specific virulent phages, which complicates their use in predicting or monitoring cholera outbreaks as well as their potential use in reducing aquatic reservoirs of V. cholerae in endemic areas.
Collapse
Affiliation(s)
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| |
Collapse
|
23
|
Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells. J Bacteriol 2018; 200:JB.00249-18. [PMID: 30082460 DOI: 10.1128/jb.00249-18] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria have evolved numerous means of survival in adverse environments with dormancy, as represented by "persistence" and the "viable but nonculturable" (VBNC) state, now recognized to be common modes for such survival. VBNC cells have been defined as cells which, induced by some stress, become nonculturable on media that would normally support their growth but which can be demonstrated by various methods to be alive and capable of returning to a metabolically active and culturable state. Persister cells have been described as a population of cells which, while not being antibiotic resistant, are antibiotic tolerant. This drug-tolerant phenotype is thought to be a result of stress-induced and stochastic physiological changes as opposed to mutational events leading to true resistance. In this review, we describe these two dormancy strategies, characterize the molecular underpinnings of each state, and highlight the similarities and differences between them. We believe these survival modes represent a continuum between actively growing and dead cells, with VBNC cells being in a deeper state of dormancy than persister cells.
Collapse
|
24
|
In vivo repressed genes of Vibrio cholerae reveal inverse requirements of an H +/Cl - transporter along the gastrointestinal passage. Proc Natl Acad Sci U S A 2018; 115:E2376-E2385. [PMID: 29463743 PMCID: PMC5877934 DOI: 10.1073/pnas.1716973115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The facultative human pathogen Vibrio cholerae changes its transcriptional profile upon oral ingestion by the host to facilitate survival and colonization fitness. Here, we used a modified version of recombination-based in vivo expression technology to investigate gene silencing during the in vivo passage, which has been understudied. Using a murine model of cholera, we screened a V. cholerae transposon library composed of 10,000 randomly generated reporter fusions and identified 101 in vivo repressed (ivr) genes. Our data indicate that constitutive expression of ivr genes reduces colonization fitness, highlighting the necessity to down-regulate these genes in vivo. For example, the ivr gene clcA, encoding an H+/Cl- transporter, could be linked to the acid tolerance response against hydrochloric acid. In a chloride-dependent manner, ClcA facilitates survival under low pH (e.g., the stomach), but its presence becomes detrimental under alkaline conditions (e.g., lower gastrointestinal tract). This pH-dependent clcA expression is controlled by the LysR-type activator AphB, which acts in concert with AphA to initiate the virulence cascade in V. cholerae after oral ingestion. Thus, transcriptional networks dictating induction of virulence factors and the repression of ivr genes overlap to regulate in vivo colonization dynamics. Overall, the results presented herein highlight the impact of spatiotemporal gene silencing in vivo. The molecular characterization of the underlying mechanisms can provide important insights into in vivo physiology and virulence network regulation.
Collapse
|
25
|
Silva-Valenzuela CA, Lazinski DW, Kahne SC, Nguyen Y, Molina-Quiroz RC, Camilli A. Growth arrest and a persister state enable resistance to osmotic shock and facilitate dissemination of Vibrio cholerae. THE ISME JOURNAL 2017; 11:2718-2728. [PMID: 28742070 PMCID: PMC5702728 DOI: 10.1038/ismej.2017.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/27/2017] [Accepted: 06/04/2017] [Indexed: 11/09/2022]
Abstract
Vibrio cholerae is a water-borne bacterial pathogen and causative agent of cholera. Although V. cholerae is a halophile, it can survive in fresh water, and this has a major role in cholera epidemics through consumption of contaminated water and subsequent fecal-oral spread. After dissemination from humans back into fresh water, V. cholerae encounters limited nutrient availability and an abrupt drop in conductivity but little is known about how V. cholerae adapts to, and survives in this environment. In this work, by abolishing or altering the expression of V. cholerae genes in a high-throughput manner, we observed that many osmotic shock tolerant mutants exhibited slowed or arrested growth, and/or generated a higher proportion of persister cells. In addition, we show that growth-arrested V. cholerae, including a persister subpopulation, are generated during infection of the intestinal tract and together allow for the successful dissemination to fresh water. Our results suggest that growth-arrested and persister subpopulations enable survival of V. cholerae upon shedding to the aquatic environment.
Collapse
Affiliation(s)
- Cecilia A Silva-Valenzuela
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - David W Lazinski
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Shoshanna C Kahne
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Y Nguyen
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Roberto C Molina-Quiroz
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology and Howard Hughes Medical Institute, Tufts University, Boston, MA, USA
| |
Collapse
|
26
|
Sinha-Ray S, Ali A. Mutation in flrA and mshA Genes of Vibrio cholerae Inversely Involved in vps-Independent Biofilm Driving Bacterium Toward Nutrients in Lake Water. Front Microbiol 2017; 8:1770. [PMID: 28959249 PMCID: PMC5604084 DOI: 10.3389/fmicb.2017.01770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
Many bacterial pathogens promote biofilms that confer resistance against stressful survival conditions. Likewise Vibrio cholerae O1, the causative agent of cholera, and ubiquitous in aquatic environments, produces vps-dependent biofilm conferring resistance to environmental stressors and predators. Here we show that a 49-bp deletion mutation in the flrA gene of V. cholerae N16961S strain resulted in promotion of vps-independent biofilm in filter sterilized lake water (FSLW), but not in nutrient-rich L-broth. Complementation of flrA mutant with the wild-type flrA gene inhibited vps-independent biofilm formation. Our data demonstrate that mutation in the flrA gene positively contributed to vps-independent biofilm production in FSLW. Furthermore, inactivation of mshA gene, encoding the main pilin of mannose sensitive hemagglutinin (MSHA pilus) in the background of a ΔflrA mutant, inhibited vps-independent biofilm formation. Complementation of ΔflrAΔmshA double mutant with wild-type mshA gene restored biofilm formation, suggesting that mshA mutation inhibited ΔflrA-driven biofilm. Taken together, our data suggest that V. cholerae flrA and mshA act inversely in promoting vps-independent biofilm formation in FSLW. Using a standard chemotactic assay, we demonstrated that vps-independent biofilm of V. cholerae, in contrast to vps-dependent biofilm, promoted bacterial movement toward chitin and phosphate in FSLW. A ΔflrAΔmshA double mutant inhibited the bacterium from moving toward nutrients; this phenomenon was reversed with reverted mutants (complemented with wild-type mshA gene). Movement to nutrients was blocked by mutation in a key chemotaxis gene, cheY-3, although, cheY-3 had no effect on vps-independent biofilm. We propose that in fresh water reservoirs, V. cholerae, on repression of flagella, enhances vps-independent biofilm that aids the bacterium in acquiring nutrients, including chitin and phosphate; by doing so, the microorganism enhances its ability to persist under nutrient-limited conditions.
Collapse
Affiliation(s)
- Shrestha Sinha-Ray
- Emerging Pathogens Institute, University of Florida, GainesvilleFL, United States.,Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, GainesvilleFL, United States
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, GainesvilleFL, United States.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, GainesvilleFL, United States
| |
Collapse
|
27
|
Yen M, Camilli A. Mechanisms of the evolutionary arms race between Vibrio cholerae and Vibriophage clinical isolates. Int Microbiol 2017; 20:116-120. [PMID: 29446802 PMCID: PMC7114818 DOI: 10.2436/20.1501.01.292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/30/2017] [Indexed: 11/15/2022]
Abstract
This review highlights recent findings on the evolutionary arms race between the causative agent of cholera Vibrio cholerae and virulent bacteriophages (phages) ICP1, ICP2, and ICP3 isolated from cholera patient stool samples. We discuss mechanisms of phage resistance such as a unique phage-inhibitory chromosomal island and mutations that affect phage receptor expression. We also discuss the molecular characterization of ICP1 and its unique CRISPR-Cas system, which it uses to combat the phage-inhibitory chromosomal island. The role of phages in the life cycle of V. cholerae has been increasingly recognized and investigated in the past decade. This article will review hypotheses as to how the predator-prey relationship may have an impact on infections within individuals and on the self-limiting nature of cholera epidemics. In addition, we put forth a strategy of using phages as an intervention to reduce household transmission of cholera within a community.
Collapse
Affiliation(s)
- Minmin Yen
- Department of Molecular Biology & Microbiology and Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Andrew Camilli
- Department of Molecular Biology & Microbiology and Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
28
|
Abstract
Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases, and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide. Increasingly, the crucial role of nonhost environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, because these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen Vibrio cholerae to describe recent advances in our understanding of how pathogens survive between hosts and to highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of V. cholerae to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry into and exit from human hosts.
Collapse
|
29
|
Using Spatial Video to Analyze and Map the Water-Fetching Path in Challenging Environments: A Case Study of Dar es Salaam, Tanzania. Trop Med Infect Dis 2017; 2:tropicalmed2020008. [PMID: 30270867 PMCID: PMC6082071 DOI: 10.3390/tropicalmed2020008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/11/2017] [Accepted: 04/04/2017] [Indexed: 01/27/2023] Open
Abstract
Access to clean drinking water remains a significant health problem in the developing world. Traditional definitions of water access oversimplify the geographic context of water availability, the burden of water collection, and challenges faced along the path, mainly due to a lack of fine scale spatial data. This paper demonstrates how spatial video collected in three informal areas of Dar es Salaam, Tanzania, can be used to quantify aspects of the walk to water. These include impediments encountered along the path such as changes in elevation and proximity to traffic. All are mapped along with classic health-related environmental and social information, such as standing water, drains, and trash. The issue of GPS error was encountered due to the built environment that is typical of informal settlements. The spatial video allowed for the correction of the path to gain a more accurate estimate of time and distance for each walk. The resulting mapped health risks at this fine scale of detail reveal micro-geographies of concern. Spatial video is a useful tool for visualizing and analyzing the challenges of water collection. It also allows for data generated along the walk to become part of both a household and local area risk assessment.
Collapse
|
30
|
Stringent factor and proteolysis control of sigma factor RpoS expression in Vibrio cholerae. Int J Med Microbiol 2017; 307:154-165. [PMID: 28228329 DOI: 10.1016/j.ijmm.2017.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 11/21/2022] Open
Abstract
Vibrio cholerae can colonize the gastrointestinal track of humans and cause the disease cholera. During colonization, the alternative sigma factor, RpoS, controls a process known as "mucosal escape response," defining a specific spatial and temporal response and effecting chemotaxis and motility. In this report, the expression and proteolytic control of RpoS in V. cholerae was characterized. To date, aspects of proteolysis control, the involved components, and proteolysis regulation have not been addressed for RpoS in V. cholerae. Similar to Escherichia coli, we find that the RpoS protein is subjected to regulated intracellular proteolysis, which is mediated by homologues of the proteolysis-targeting factor RssB and the protease complex ClpXP. As demonstrated, RpoS expression transiently peaks after cells are shifted from rich to minimal growth medium. This peak level is dependent on (p)ppGpp-activated rpoS transcription and controlled RpoS proteolysis. The RpoS peak level also correlates with induction of a chemotaxis gene, encoding a methyl-accepting chemotaxis protein, earlier identified to belong to the mucosal escape response pathway. These results suggest that the RpoS expression peak is linked to (p)ppGpp alarmone increase, leading to enhanced motility and chemotaxis, and possibly contributing to the mucosal escape response.
Collapse
|
31
|
Farhana I, Hossain ZZ, Tulsiani SM, Jensen PKM, Begum A. Survival of Vibrio cholerae O1 on fomites. World J Microbiol Biotechnol 2016; 32:146. [DOI: 10.1007/s11274-016-2100-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
|
32
|
Abstract
Cholera remains an important global cause of morbidity and mortality, which is capable of causing periodic epidemic disease. A number of mathematical models have been developed to help in understanding the dynamics of cholera outbreaks and for use as a tool in planning interventions, including vaccination campaigns. We have explored the utility of models in assessing the spread of cholera in the recent epidemics in Zimbabwe and Haiti. In both instances, a mathematical model was formulated and fitted to cumulative cholera cases to estimate the basic reproductive number ℛ0, and the partial reproductive numbers reflecting potential differences in environmental-to-human versus human-to-human transmission were quantified. In Zimbabwe, estimated ℛ0 for the epidemic using aggregated data at the national level was 1.15; in Haiti, it was 1.55. However, when calculated at a provincial/departmental level, estimated basic reproductive numbers were highly heterogeneous, with a range of 1.11 to 2.72 in Zimbabwe and 1.06 to 2.63 in Haiti. Our models suggest that the underlying patterns of cholera transmission varied widely from region to region, with a corresponding variation in the amenability of outbreaks to control measures such as immunization. These data underscore the heterogeneity of transmission dynamics, potentially linked to differences in environment, socio-economic conditions, and cultural practices. They also highlight the potential utility of these types of models in guiding development of public health intervention strategies.
Collapse
|
33
|
Ayrapetyan M, Oliver JD. The viable but non-culturable state and its relevance in food safety. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.04.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Igbinosa EO. Detection and Antimicrobial Resistance of Vibrio Isolates in Aquaculture Environments: Implications for Public Health. Microb Drug Resist 2015; 22:238-45. [PMID: 26540391 DOI: 10.1089/mdr.2015.0169] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to evaluate the presence of Vibrio isolates recovered from four different fish pond facilities in Benin City, Nigeria, determine their antibiogram profiles, and evaluate the public health implications of these findings. Fish pond water samples were collected from four sampling sites between March and September 2014. A total of 56 samples were collected and screened for the isolation of Vibrio species using standard culture-based methods. Polymerase chain reaction (PCR) was used to confirm the identities of the Vibrio species using the genus-specific and species-specific primers. Vibrio species were detected at all the study sites at a concentration on the order of 10(3) and 10(6) CFU/100 ml. A total of 550 presumptive Vibrio isolates were subjected to PCR confirmation. Of these isolates, 334 isolates tested positive, giving an overall Vibrio prevalence rate of 60.7%. The speciation of the 334 Vibrio isolates from fish ponds yielded 32.63% Vibrio fluvialis, 20.65% Vibrio parahaemolyticus, 18.26% Vibrio vulnificus, and 28.44% other Vibrio species. In all, 167 confirmed Vibrio isolates were selected from a pool of 334 confirmed Vibrio isolates for antibiogram profiling. The susceptibility profiles of 20 antimicrobial agents on the isolates revealed a high level of resistance for AMP(R), ERY(R), NAL(R), SUL(R), TMP(R), SXT(R), TET(R), OTC(R), and CHL(R). The percentage of multiple drug resistance Vibrio isolates was 67.6%. The multiple antibiotic resistance index mean value of 0.365 for the Vibrio isolates found in this study indicated that the Vibrio isolates were exposed to high-risk sources of contamination when antibiotics were frequently used. The resistant Vibrio strains could be transmitted through the food chain to humans and therefore constitutes a risk to public health.
Collapse
Affiliation(s)
- Etinosa O Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Department of Microbiology, Faculty of Life Sciences, University of Benin , Benin City, Nigeria
| |
Collapse
|
35
|
Gumpenberger T, Vorkapic D, Zingl FG, Pressler K, Lackner S, Seper A, Reidl J, Schild S. Nucleoside uptake in Vibrio cholerae and its role in the transition fitness from host to environment. Mol Microbiol 2015. [PMID: 26202476 DOI: 10.1111/mmi.13143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As it became evident recently, extracellular DNA could be a versatile nutrient source of the facultative pathogen Vibrio cholerae along the different stages of its life cycle. By the use of two extracellular nucleases and periplasmic phosphatases, V. cholerae degrades extracellular DNA to nucleosides. In this study, we investigated the nucleoside uptake via identification and characterization of VCA0179, VC1953 and VC2352 representing the three nucleoside transport systems in V. cholerae. Based on our results VC2352 seems to be the dominant nucleoside transporter. Nevertheless, all three transporters are functional and can contribute to the utilization of nucleosides as a sole source of carbon or nitrogen. We found that the transcriptional activity of these three distal genes is equally promoted or antagonized by CRP or CytR respectively. Finally, mutants impaired for nucleoside uptake exhibit decreased transition fitness from the host into low carbon environments along the life cycle of V. cholerae.
Collapse
Affiliation(s)
- Tanja Gumpenberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Katharina Pressler
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Stefanie Lackner
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Andrea Seper
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, Graz, 8010, Austria
| |
Collapse
|
36
|
Viable but Nonculturable and Persister Cells Coexist Stochastically and Are Induced by Human Serum. Infect Immun 2015; 83:4194-203. [PMID: 26283335 DOI: 10.1128/iai.00404-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/05/2015] [Indexed: 01/09/2023] Open
Abstract
Dormancy holds a vital role in the ecological dynamics of microorganisms. Specifically, entry into dormancy allows cells to withstand times of stress while maintaining the potential for reentry into an active existence. The viable but nonculturable (VBNC) state and antibiotic persistence are two well-recognized conditions of dormancy demonstrated to contribute to bacterial stress tolerance and, as a consequence, yield populations that are tolerant to high-dose antibiotics. Aside from this commonality, more evidence is being presented that indicates the relatedness of these two states. Here, we demonstrate that VBNC cells are present during persister isolation experiments, further indicating that these cells coexist and are induced by the same conditions. Interestingly, we reveal that VBNC cells can exist stochastically in unstressed growing cultures, a finding that is characteristic of persisters. Furthermore, human serum induces the formation of both VBNC cells and persisters, a finding not previously described for either dormancy state. Lastly, we describe the role of toxin-antitoxin systems (TAS) in the induction of the VBNC state and report that these TAS, which are classically implicated in persister cell formation, are also induced during incubation in human serum. This study provides evidence for the recently proposed "dormancy continuum hypothesis" and substantiates the physical and molecular relatedness of VBNC and persister cells in a standardized model organism. Notably, these results provide new evidence for the clinical significance of VBNC and persister cells.
Collapse
|
37
|
McDonough E, Kamp H, Camilli A. Vibrio cholerae phosphatases required for the utilization of nucleotides and extracellular DNA as phosphate sources. Mol Microbiol 2015; 99:453-69. [PMID: 26175126 PMCID: PMC4714964 DOI: 10.1111/mmi.13128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 01/18/2023]
Abstract
Phosphate is essential for life, being used in many core processes such as signal transduction and synthesis of nucleic acids. The waterborne agent of cholera, Vibrio cholerae, encounters phosphate limitation in both the aquatic environment and human intestinal tract. This bacterium can utilize extracellular DNA (eDNA) as a phosphate source, a phenotype dependent on secreted endo‐ and exonucleases. However, no transporter of nucleotides has been identified in V. cholerae, suggesting that in order for the organism to utilize the DNA as a phosphate source, it must first separate the phosphate and nucleoside groups before transporting phosphate into the cell. In this study, we investigated the factors required for assimilation of phosphate from eDNA. We identified PhoX, and the previously unknown proteins UshA and CpdB as the major phosphatases that allow phosphate acquisition from eDNA and nucleotides. We demonstrated separable but partially overlapping roles for the three phosphatases and showed that the activity of PhoX and CpdB is induced by phosphate limitation. Thus, this study provides mechanistic insight into how V. cholerae can acquire phosphate from extracellular DNA, which is likely to be an important phosphate source in the environment and during infection.
Collapse
Affiliation(s)
- EmilyKate McDonough
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Heather Kamp
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Andrew Camilli
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
38
|
Okoh AI, Sibanda T, Nongogo V, Adefisoye M, Olayemi OO, Nontongana N. Prevalence and characterisation of non-cholerae Vibrio spp. in final effluents of wastewater treatment facilities in two districts of the Eastern Cape Province of South Africa: implications for public health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2008-2017. [PMID: 25167817 PMCID: PMC4308643 DOI: 10.1007/s11356-014-3461-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 05/29/2023]
Abstract
Vibrios and other enteric pathogens can be found in wastewater effluents of a healthy population. We assessed the prevalence of three non-cholerae vibrios in wastewater effluents of 14 wastewater treatment plants (WWTP) in Chris Hani and Amathole district municipalities in the Eastern Cape Province of South Africa for a period of 12 months. With the exception of WWTP10 where presumptive vibrios were not detected in summer and spring, presumptive vibrios were detected in all seasons in other WWTP effluents. When a sample of 1,000 presumptive Vibrio isolates taken from across all sampling sites were subjected to molecular confirmation for Vibrio, 668 were confirmed to belong to the genus Vibrio, giving a prevalence rate of 66.8 %. Further, molecular characterisation of 300 confirmed Vibrio isolates revealed that 11.6 % (35) were Vibrio parahaemolyticus, 28.6 % (86) were Vibrio fluvialis and 28 % (84) were Vibrio vulnificus while 31.8 % (95) belonged to other Vibrio spp. not assayed for in this study. Antibiogram profiling of the three Vibrio species showed that V. parahaemolyticus was ≥50 % susceptible to 8 of the test antibiotics and ≥50 % resistant to only 5 of the 13 test antibiotics, while V. vulnificus showed a susceptibility profile of ≥50 % to 7 of the test antibiotics and a resistance profile of ≥50 % to 6 of the 13 test antibiotics. V. fluvialis showed ≥50 % resistance to 8 of the 13 antibiotics used while showing ≥50 % susceptibility to only 4 antibiotics used. All three Vibrio species were susceptible to gentamycin, cefuroxime, meropenem and imipenem. Multiple antibiotic resistance patterns were also evident especially against such antibiotics as tetracyclin, polymixin B, penicillin G, sulfamethazole and erythromycin against which all Vibrio species were resistant. These results indicate a significant threat to public health, more so in the Eastern Cape Province of South Africa which is characterised by widespread poverty, with more than a third of the population directly relying on surface water sources for drinking and daily use.
Collapse
Affiliation(s)
- Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, P Bag X1314, Alice, Eastern Cape 5700 South Africa
| | - Timothy Sibanda
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, P Bag X1314, Alice, Eastern Cape 5700 South Africa
| | - Vuyokazi Nongogo
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, P Bag X1314, Alice, Eastern Cape 5700 South Africa
| | - Martins Adefisoye
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, P Bag X1314, Alice, Eastern Cape 5700 South Africa
| | - Osuolale O. Olayemi
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, P Bag X1314, Alice, Eastern Cape 5700 South Africa
| | - Nolonwabo Nontongana
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, P Bag X1314, Alice, Eastern Cape 5700 South Africa
| |
Collapse
|
39
|
Seed KD, Yen M, Shapiro BJ, Hilaire IJ, Charles RC, Teng JE, Ivers LC, Boncy J, Harris JB, Camilli A. Evolutionary consequences of intra-patient phage predation on microbial populations. eLife 2014; 3:e03497. [PMID: 25161196 PMCID: PMC4141277 DOI: 10.7554/elife.03497] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The impact of phage predation on bacterial pathogens in the context of human disease is not currently appreciated. Here, we show that predatory interactions of a phage with an important environmentally transmitted pathogen, Vibrio cholerae, can modulate the evolutionary trajectory of this pathogen during the natural course of infection within individual patients. We analyzed geographically and temporally disparate cholera patient stool samples from Haiti and Bangladesh and found that phage predation can drive the genomic diversity of intra-patient V. cholerae populations. Intra-patient phage-sensitive and phage-resistant isolates were isogenic except for mutations conferring phage resistance, and moreover, phage-resistant V. cholerae populations were composed of a heterogeneous mix of many unique mutants. We also observed that phage predation can significantly alter the virulence potential of V. cholerae shed from cholera patients. We provide the first molecular evidence for predatory phage shaping microbial community structure during the natural course of infection in humans. DOI:http://dx.doi.org/10.7554/eLife.03497.001 Cholera epidemics occur seasonally in areas such as Bangladesh, and outbreaks can also strike in vulnerable regions, as has occurred recently in Haiti. The disease is caused by Vibrio cholerae, a water-borne bacterium that colonizes the small intestine, and its symptoms include severe diarrhea and vomiting which can lead to death if the patient is not treated promptly. Lytic phages are viruses that specifically attack and kill bacteria. After replicating many times inside the bacterial cell, the phages break open and destroy the cell. Over time a bacterial population can evolve to resist this phage ‘predation’; however, it is not known if bacterial pathogens need to defend themselves against phage attack when they infect humans. It had been suggested that phages might affect the progress of cholera infections in people, but molecular evidence that supports this hypothesis was lacking. When testing stool samples from Haitian cholera patients, Seed et al. found one sample contained a lot of lytic phage relative to the amount of V. cholerae present. This phage was very similar to—but distinct from—a phage found in Bangladeshi patients. The V. cholerae bacteria isolated from the stool sample were resistant to attack by the phage. Sequencing the genome of individual bacteria from this sample revealed that each had a mutation that made them resistant to the phage; and while many types of these mutations were found, these were the only differences between all the V. cholerae bacteria in this patient sample. This suggests that this resistance developed independently many different times within the patient due to strong selective pressure from phage predation. When Seed et al. looked at a phage-positive stool sample from a Bangladeshi patient, more mutations that made the bacteria resistant to this phage were found; however, these mutations were different again from the ones in the Haitian bacteria. Because of the nature of these mutations the bacteria from this patient were rendered unable to cause disease and non-transmissible. This work shows that phages can indeed have access to pathogenic bacteria during human infection. It also indicates that the pressure imposed by phage predation can, in some cases, be so strong that the bacteria lose their virulence and ability to spread to other humans in order to become resistant to the phage. DOI:http://dx.doi.org/10.7554/eLife.03497.002
Collapse
Affiliation(s)
- Kimberley D Seed
- Department of Molecular Biology and Microbiology, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, United States
| | - Minmin Yen
- Department of Molecular Biology and Microbiology, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, United States
| | - B Jesse Shapiro
- Département de sciences biologiques, Université de Montréal, Montreal, Canada
| | | | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States Department of Medicine, Harvard Medical School, Boston, United States
| | - Jessica E Teng
- Partners In Health, Boston, United States Division of Global Health Equity, Brigham and Women's Hospital, Boston, United States
| | - Louise C Ivers
- Partners In Health, Boston, United States Division of Global Health Equity, Brigham and Women's Hospital, Boston, United States Department of Global Health and Social Medicine, Harvard Medical School, Boston, United States
| | - Jacques Boncy
- National Public Health Laboratory, Port-au-Prince, Haiti
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States Department of Medicine, Harvard Medical School, Boston, United States Department of Pediatrics, Harvard Medical School, Boston, United States
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, United States
| |
Collapse
|
40
|
Rashed SM, Azman AS, Alam M, Li S, Sack DA, Morris JG, Longini I, Siddique AK, Iqbal A, Huq A, Colwell RR, Sack RB, Stine OC. Genetic variation of Vibrio cholerae during outbreaks, Bangladesh, 2010-2011. Emerg Infect Dis 2014; 20:54-60. [PMID: 24377372 PMCID: PMC3884724 DOI: 10.3201/eid2001.130796] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most isolates are closely related, but genetic variation implies accelerated transmission of some lineages. Cholera remains a major public health problem. To compare the relative contribution of strains from the environment with strains isolated from patients during outbreaks, we performed multilocus variable tandem repeat analyses on samples collected during the 2010 and 2011 outbreak seasons in 2 geographically distinct areas of Bangladesh. A total of 222 environmental and clinical isolates of V. cholerae O1 were systematically collected from Chhatak and Mathbaria. In Chhatak, 75 of 79 isolates were from the same clonal complex, in which extensive differentiation was found in a temporally consistent pattern of successive mutations at single loci. A total of 59 isolates were collected from 6 persons; most isolates from 1 person differed by sequential single-locus mutations. In Mathbaria, 60 of 84 isolates represented 2 separate clonal complexes. The small number of genetic lineages in isolates from patients, compared with those from the environment, is consistent with accelerated transmission of some strains among humans during an outbreak.
Collapse
|
41
|
Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S. Current Perspectives on Viable but Non-Culturable (VBNC) Pathogenic Bacteria. Front Public Health 2014; 2:103. [PMID: 25133139 PMCID: PMC4116801 DOI: 10.3389/fpubh.2014.00103] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/15/2014] [Indexed: 11/07/2022] Open
Abstract
Under stress conditions, many species of bacteria enter into starvation mode of metabolism or a physiologically viable but non-culturable (VBNC) state. Several human pathogenic bacteria have been reported to enter into the VBNC state under these conditions. The pathogenic VBNC bacteria cannot be grown using conventional culture media, although they continue to retain their viability and express their virulence. Though there have been debates on the VBNC concept in the past, several molecular studies have shown that not only can the VBNC state be induced under in vitro conditions but also that resuscitation from this state is possible under appropriate conditions. The most notable advance in resuscitating VBNC bacteria is the discovery of resuscitation-promoting factor (Rpf), which is a bacterial cytokines found in both Gram-positive and Gram-negative organisms. VBNC state is a survival strategy adopted by the bacteria, which has important implication in several fields, including environmental monitoring, food technology, and infectious disease management; and hence it is important to investigate the association of bacterial pathogens under VBNC state and the water/foodborne outbreaks. In this review, we describe various aspects of VBNC bacteria, which include their proteomic and genetic profiles under the VBNC state, conditions of resuscitation, methods of detection, antibiotic resistance, and observations on Rpf.
Collapse
Affiliation(s)
| | - Amit Ghosh
- National Institute of Cholera and Enteric Diseases (NICED) , Kolkata , India
| | - Gururaja P Pazhani
- National Institute of Cholera and Enteric Diseases (NICED) , Kolkata , India
| | - Sumio Shinoda
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED , Kolkata , India
| |
Collapse
|
42
|
Occurrence in Mexico, 1998-2008, of Vibrio cholerae CTX+ El Tor carrying an additional truncated CTX prophage. Proc Natl Acad Sci U S A 2014; 111:9917-22. [PMID: 24958870 DOI: 10.1073/pnas.1323408111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The seventh cholera pandemic caused by Vibrio cholerae O1 El Tor (ET) has been superseded in Asia and Africa by altered ET possessing the cholera toxin (CTX) gene of classical (CL) biotype. The CL biotype of V. cholerae was isolated, along with prototypic and altered ET, during the 1991 cholera epidemic in Mexico and subsequently remained endemic until 1997. Microbiological, molecular, and phylogenetic analyses of clinical and environmental V. cholerae isolated in Mexico between 1998 and 2008 revealed important genetic events favoring predominance of ET over CL and altered ET. V. cholerae altered ET was predominant after 1991 but not after 2000. V. cholerae strains isolated between 2001 and 2003 and a majority isolated in 2004 lacked CTX prophage (Φ) genes encoding CTX subunits A and B and repeat sequence transcriptional regulators of ET and CL biotypes: i.e., CTXΦ(-). Most CTXΦ(-) V. cholerae isolated in Mexico between 2001 and 2003 also lacked toxin coregulated pili tcpA whereas some carried either tcpA(ET) or a variant tcpA with noticeable sequence dissimilarity from tcpA(CL). The tcpA variants were not detected in 2005 after CTXΦ(+) ET became dominant. All clinical and environmental V. cholerae O1 strains isolated during 2005-2008 in Mexico were CTXΦ(+) ET, carrying an additional truncated CTXΦ instead of RS1 satellite phage. Despite V. cholerae CTXΦ(-) ET exhibiting heterogeneity in pulsed-field gel electrophoresis patterns, CTXΦ(+) ET isolated during 2004-2008 displayed homogeneity and clonal relationship with V. cholerae ET N16961 and V. cholerae ET isolated in Peru.
Collapse
|
43
|
Yingkajorn M, Sermwitayawong N, Palittapongarnpimp P, Nishibuchi M, Robins WP, Mekalanos JJ, Vuddhakul V. Vibrio parahaemolyticus and its specific bacteriophages as an indicator in cockles (Anadara granosa) for the risk of V. parahaemolyticus infection in Southern Thailand. MICROBIAL ECOLOGY 2014; 67:849-856. [PMID: 24682339 DOI: 10.1007/s00248-014-0382-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
Correlation between the numbers of Vibrio parahaemolyticus and its specific bacteriophages in cockles was investigated from June 2009 to May 2010 in Hat Yai, Songkhla, Thailand. Cockles obtained monthly from a local market were sampled to determine the numbers of V. parahaemolyticus and bacteriophages that could form plaques on ten strains of pandemic and nonpandemic V. parahaemolyticus. In addition, V. parahaemolyticus isolates from clinical samples from Hat Yai hospital over the same period were investigated. All 139 cockles sampled were positive for V. parahaemolyticus. However, only 76 of them were positive for bacteriophages. During the testing period, the number of bacteriophages was not significantly correlated with the incidence of V. parahaemolyticus-infected patients, but the numbers of V. parahaemolyticus isolates from the cockle samples were closely related to the number of infected patients. The bacteriophages isolated from V. parahaemolyticus also infected Vibrio alginolyticus and Vibrio mimicus, suggesting that the broad host range of phages may be a factor of providing the possibility of their participation in the processes of genetic exchange between V. parahaemolyticus and closely related Vibrio spp. In conclusion, this study indicated that the number of V. parahaemolyticus in cockles may be a useful tool for predicting the relative risk of infection by V. parahaemolyticus in this area of Thailand.
Collapse
Affiliation(s)
- Mingkwan Yingkajorn
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | | | | | | | | | | |
Collapse
|
44
|
Jubair M, Atanasova KR, Rahman M, Klose KE, Yasmin M, Yilmaz Ö, Morris JG, Ali A. Vibrio cholerae persisted in microcosm for 700 days inhibits motility but promotes biofilm formation in nutrient-poor lake water microcosms. PLoS One 2014; 9:e92883. [PMID: 24667909 PMCID: PMC3965490 DOI: 10.1371/journal.pone.0092883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/26/2014] [Indexed: 11/26/2022] Open
Abstract
Toxigenic Vibrio cholerae, ubiquitous in aquatic environments, is responsible for cholera; humans can become infected after consuming food and/or water contaminated with the bacterium. The underlying basis of persistence of V. cholerae in the aquatic environment remains poorly understood despite decades of research. We recently described a “persister” phenotype of V. cholerae that survived in nutrient-poor “filter sterilized” lake water (FSLW) in excess of 700-days. Previous reports suggest that microorganisms can assume a growth advantage in stationary phase (GASP) phenotype in response to long-term survival during stationary phase of growth. Here we report a V. cholerae GASP phenotype (GASP-700D) that appeared to result from 700 day-old persister cells stored in glycerol broth at −80°C. The GASP-700D, compared to its wild-type N16961, was defective in motility, produced increased biofilm that was independent of vps (p<0.005) and resistant to oxidative stress when grown specifically in FSLW (p<0.005). We propose that V. cholerae GASP-700D represents cell populations that may better fit and adapt to stressful survival conditions while serving as a critical link in the cycle of cholera transmission.
Collapse
Affiliation(s)
- Mohammad Jubair
- Department of Environmental and Global Health, School of Public Health and Health Professions, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Kalina R. Atanasova
- Department of Periodontology, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Mustafizur Rahman
- Department of Environmental and Global Health, School of Public Health and Health Professions, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Karl E. Klose
- Department of Biology, The University of Texas at San Antonio, Texas, United States of America
| | - Mahmuda Yasmin
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Özlem Yilmaz
- Department of Periodontology, University of Florida at Gainesville, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Afsar Ali
- Department of Environmental and Global Health, School of Public Health and Health Professions, University of Florida at Gainesville, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
45
|
McDonough E, Lazinski DW, Camilli A. Identification of in vivo regulators of the Vibrio cholerae xds gene using a high-throughput genetic selection. Mol Microbiol 2014; 92:302-15. [PMID: 24673931 DOI: 10.1111/mmi.12557] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 01/20/2023]
Abstract
Vibrio cholerae, the causative agent of cholera, remains a threat to public health in areas with inadequate sanitation. As a waterborne pathogen, V. cholerae moves between two dissimilar environments, aquatic reservoirs and the intestinal tract of humans. Accordingly, this pathogen undergoes adaptive shifts in gene expression throughout the different stages of its lifecycle. One particular gene, xds, encodes a secreted exonuclease that was previously identified as being induced during infection. Here we sought to identify regulators responsible for the in vivo-specific induction of xds. A transcriptional fusion of xds to two consecutive antibiotic resistance genes was used to select transposon mutants that had inserted within or adjacent to regulatory genes and thereby caused increased expression of the xds fusion under non-inducing conditions. Large pools of selected insertion sites were sequenced in a high throughput manner using Tn-seq to identify potential mechanisms of xds regulation. Our selection identified the two-component system PhoB/R as the dominant activator of xds expression. In vitro validation confirmed that PhoB, a protein which is only active during phosphate limitation, was responsible for xds activation. Using xds expression as a biosensor of the extracellular phosphate level, we observed that the mouse small intestine is a phosphate-limited environment.
Collapse
Affiliation(s)
- Emilykate McDonough
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | | | | |
Collapse
|
46
|
Banerjee R, Das B, Balakrish Nair G, Basak S. Dynamics in genome evolution of Vibrio cholerae. INFECTION GENETICS AND EVOLUTION 2014; 23:32-41. [PMID: 24462909 DOI: 10.1016/j.meegid.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/31/2022]
Abstract
Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains.
Collapse
Affiliation(s)
- Rachana Banerjee
- Department of Bio-Physics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - G Balakrish Nair
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - Surajit Basak
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar 799 022, Tripura, India; Bioinformatics Centre, Tripura University, Suryamaninagar 799 022, Tripura, India.
| |
Collapse
|
47
|
Kamp HD, Patimalla-Dipali B, Lazinski DW, Wallace-Gadsden F, Camilli A. Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLoS Pathog 2013; 9:e1003800. [PMID: 24385900 PMCID: PMC3873450 DOI: 10.1371/journal.ppat.1003800] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022] Open
Abstract
Vibrio cholerae has evolved to adeptly transition between the human small intestine and aquatic environments, leading to water-borne spread and transmission of the lethal diarrheal disease cholera. Using a host model that mimics the pathology of human cholera, we applied high density transposon mutagenesis combined with massively parallel sequencing (Tn-seq) to determine the fitness contribution of >90% of all non-essential genes of V. cholerae both during host infection and dissemination. Targeted mutagenesis and validation of 35 genes confirmed our results for the selective conditions with a total false positive rate of 4%. We identified 165 genes never before implicated for roles in dissemination that reside within pathways controlling many metabolic, catabolic and protective processes, from which a central role for glycogen metabolism was revealed. We additionally identified 76 new pathogenicity factors and 414 putatively essential genes for V. cholerae growth. Our results provide a comprehensive framework for understanding the biology of V. cholerae as it colonizes the small intestine, elicits profuse secretory diarrhea, and disseminates into the aquatic environment.
Collapse
Affiliation(s)
- Heather D. Kamp
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Bharathi Patimalla-Dipali
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - David W. Lazinski
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Faith Wallace-Gadsden
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Andrew Camilli
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
48
|
Bari SMN, Roky MK, Mohiuddin M, Kamruzzaman M, Mekalanos JJ, Faruque SM. Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples. Proc Natl Acad Sci U S A 2013; 110:9926-31. [PMID: 23716683 PMCID: PMC3683778 DOI: 10.1073/pnas.1307697110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholera epidemics have long been known to spread through water contaminated with human fecal material containing the toxigenic bacterium Vibrio cholerae. However, detection of V. cholerae in water is complicated by the existence of a dormant state in which the organism remains viable, but resists cultivation on routine bacteriological media. Growth in the mammalian intestine has been reported to trigger "resuscitation" of such dormant cells, and these studies have prompted the search for resuscitation factors. Although some positive reports have emerged from these investigations, the precise molecular signals that activate dormant V. cholerae have remained elusive. Quorum-sensing autoinducers are small molecules that ordinarily regulate bacterial gene expression in response to cell density or interspecies bacterial interactions. We have found that isolation of pathogenic clones of V. cholerae from surface waters in Bangladesh is dramatically improved by using enrichment media containing autoinducers either expressed from cloned synthase genes or prepared by chemical synthesis. These results may contribute to averting future disasters by providing a strategy for early detection of V. cholerae in surface waters that have been contaminated with the stools of cholera patients or asymptomatic infected human carriers.
Collapse
Affiliation(s)
- S. M. Nayeemul Bari
- Centre for Food and Water Borne Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh; and
| | - M. Kamruzzaman Roky
- Centre for Food and Water Borne Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh; and
| | - M. Mohiuddin
- Centre for Food and Water Borne Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh; and
| | - M. Kamruzzaman
- Centre for Food and Water Borne Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh; and
| | - John J. Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Shah M. Faruque
- Centre for Food and Water Borne Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh; and
| |
Collapse
|
49
|
Abstract
The activities of DNA methyltransferases are important for a variety of cellular functions in bacteria. In this study, we developed a modified high-throughput technique called methyl homopolymer tail mediated sequencing (methyl HTM-seq) to identify the undermethylated sites in the Vibrio cholerae genome for the two DNA methyltransferases, Dam, an adenine methyltransferase, and VchM, a cytosine methyltransferase, during growth in rich medium in vitro. Many of the undermethylated sites occurred in intergenic regions, and for most of these sites, we identified the transcription factors responsible for undermethylation. This confirmed the presence of previously hypothesized DNA-protein interactions for these transcription factors and provided insight into the biological state of these cells during growth in vitro. DNA adenine methylation has previously been shown to mediate heritable epigenetic switches in gene regulation. However, none of the undermethylated Dam sites tested showed evidence of regulation by this mechanism. This study is the first to identify undermethylated adenines and cytosines genomewide in a bacterium using second-generation sequencing technology.
Collapse
|
50
|
Characterizing the hexose-6-phosphate transport system of Vibrio cholerae, a utilization system for carbon and phosphate sources. J Bacteriol 2013; 195:1800-8. [PMID: 23417487 DOI: 10.1128/jb.01952-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The facultative human pathogen Vibrio cholerae transits between the gastrointestinal tract of its host and aquatic reservoirs. V. cholerae adapts to different situations by the timely coordinated expression of genes during its life cycle. We recently identified a subclass of genes that are induced at late stages of infection. Initial characterization demonstrated that some of these genes facilitate the transition of V. cholerae from host to environmental conditions. Among these genes are uptake systems lacking detailed characterization or correct annotation. In this study, we comprehensively investigated the function of the VCA0682-to-VCA0687 gene cluster, which was previously identified as in vivo induced. The results presented here demonstrate that the operon encompassing open reading frames VCA0685 to VCA0687 encodes an ABC transport system for hexose-6-phosphates with Km values ranging from 0.275 to 1.273 μM for glucose-6P and fructose-6P, respectively. Expression of the operon is induced by the presence of hexose-6P controlled by the transcriptional activator VCA0682, representing a UhpA homolog. Finally, we provide evidence that the operon is essential for the utilization of hexose-6P as a C and P source. Thereby, a physiological role can be assigned to hexose-6P uptake, which correlates with increased fitness of V. cholerae after a transition from the host into phosphate-limiting environments.
Collapse
|