1
|
Fang Z, Fu J, Chen X. A combined immune and exosome-related risk signature as prognostic biomakers in acute myeloid leukemia. Hematology 2024; 29:2300855. [PMID: 38186215 DOI: 10.1080/16078454.2023.2300855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is one of the common hematological diseases with low survival rates. Studies have highlighted the dysregulated expression of immune-related and exosome-related genes (ERGs) in cancers. Nevertheless, it remains to be determined whether combining these genes have a prognostic significance in AML. METHODS Immune-ERG profiles for 151 AML patients from TCGA were analyzed. A risk model was constructed and optimized through the combination of univariate Cox regression and LASSO regression analysis. GEO datasets were utilized as the external validation for the robustness of the risk model. In addition, we performed KEGG and GO enrichment analyses to investigate the role played by these genes in AML. The variations in immune cell infiltrations among risk groups were assessed through four algorithms. Expression of hub gene in specific cell was analyzed by single-cell RNA seq. RESULTS A total of 85 immune-ERGs associated with prognosis were identified, enabling the construction of a risk model for AML. The risk model based on five immune-ERGs (CD37, NUCB2, LSP1, MGST1, and PLXNB1) demonstrated a correlation with the clinical outcomes. Additionally, age, FAB classification, cytogenetics risk, and risk score were identified as independent prognostic factors. The five immune-ERGs exhibited correlations with cytokine-cytokine receptor interaction, and antigen processing and presentation. Notably, the risk model demonstrated significant associations with immune responses and the expression of immune checkpoints. CONCLUSIONS An immune-ERG-based risk model was developed to effectively predict prognostic outcomes for AML patients. There is potential for immune therapy in AML targeting the five hub genes.
Collapse
Affiliation(s)
- Zenghui Fang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| | - Jiali Fu
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| | - Xin Chen
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| |
Collapse
|
2
|
Imai K, Takeuchi Y, Terakura S, Okuno S, Adachi Y, Osaki M, Umemura K, Hanajiri R, Shimada K, Murata M, Kiyoi H. Dual CAR-T Cells Targeting CD19 and CD37 Are Effective in Target Antigen Loss B-cell Tumor Models. Mol Cancer Ther 2024; 23:381-393. [PMID: 37828726 DOI: 10.1158/1535-7163.mct-23-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells targeting multiple antigens (Ag), may reduce the risk of immune escape following the loss of the target Ag and further increase the efficacy of treatment. We developed dual-targeting CAR-T cells that target CD19 and CD37 Ags and evaluated their antitumor effects. CD19/CD37 dual CAR-T cells were generated using cotransduction and simultaneous gene transfer of two types of lentiviral vectors transferring CD19CAR or CD37CAR genes, including the intracellular domains of CD28 and CD3ζ signaling domains. These dual CAR-T cells contained three fractions: CD19/CD37 bispecific CAR-T cells, single CD19CAR-T cells, and single CD37CAR-T cells. In the functional evaluation of CAR-T cells in vitro, CD19/CD37 dual CAR-T cells showed adequate proliferation and cytokine production in response to CD19 and CD37 antigen stimulation alone or in combination. Evaluation of intracellular signaling revealed that dual CAR-T cell-mediated signals were comparable with single CAR-T cells in response to CD19- and CD37-positive B-cell tumors. Although the cytotoxicity of CD19/CD37 dual CAR-T cells in both CD19- and CD37-positive B-cell tumors was similar to that of single CD19 and CD37CAR-T cells, against CD19 and CD37 Ag-heterogeneous tumor, dual CAR-T cells demonstrated significantly superior tumor lysis compared with single CAR-T cells. Furthermore, CD19/CD37 dual CAR-T cells effectively suppressed Ag-heterogeneous Raji cells in a xenograft mouse model. Collectively, these results suggest that CD19/CD37 dual CAR-T cells may be effective target-Ag-loss B-cell tumor models in vitro and in vivo, which represents a promising treatment for patients with relapsed/refractory B-cell malignancies.
Collapse
Affiliation(s)
- Kanae Imai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Osaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Umemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Querol Cano L, Dunlock VME, Schwerdtfeger F, van Spriel AB. Membrane organization by tetraspanins and galectins shapes lymphocyte function. Nat Rev Immunol 2024; 24:193-212. [PMID: 37758850 DOI: 10.1038/s41577-023-00935-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/29/2023]
Abstract
Immune receptors are not randomly distributed at the plasma membrane of lymphocytes but are segregated into specialized domains that function as platforms to initiate signalling, as exemplified by the B cell or T cell receptor complex and the immunological synapse. 'Membrane-organizing proteins' and, in particular, tetraspanins and galectins, are crucial for controlling the spatiotemporal organization of immune receptors and other signalling proteins. Deficiencies in specific tetraspanins and galectins result in impaired immune synapse formation, lymphocyte proliferation, antibody production and migration, which can lead to impaired immunity, tumour development and autoimmunity. In contrast to conventional ligand-receptor interactions, membrane organizers interact in cis (on the same cell) and modulate receptor clustering, receptor dynamics and intracellular signalling. New findings have uncovered their complex and dynamic nature, revealing shared binding partners and collaborative activity in determining the composition of membrane domains. Therefore, immune receptors should not be envisaged as independent entities and instead should be studied in the context of their spatial organization in the lymphocyte membrane. We advocate for a novel approach to study lymphocyte function by globally analysing the role of membrane organizers in the assembly of different membrane complexes and discuss opportunities to develop therapeutic approaches that act via the modulation of membrane organization.
Collapse
Affiliation(s)
- Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera-Marie E Dunlock
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabian Schwerdtfeger
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Rabaan AA, Alfaraj AH, Alshengeti A, Alawfi A, Alwarthan S, Alhajri M, Al-Najjar AH, Al Fares MA, Najim MA, Almuthree SA, AlShurbaji ST, Alofi FS, AlShehail BM, AlYuosof B, Alynbiawi A, Alzayer SA, Al Kaabi N, Abduljabbar WA, Bukhary ZA, Bueid AS. Antibodies to Combat Fungal Infections: Development Strategies and Progress. Microorganisms 2023; 11:microorganisms11030671. [PMID: 36985244 PMCID: PMC10051215 DOI: 10.3390/microorganisms11030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The finding that some mAbs are antifungal suggests that antibody immunity may play a key role in the defense of the host against mycotic infections. The discovery of antibodies that guard against fungi is a significant advancement because it gives rise to the possibility of developing vaccinations that trigger protective antibody immunity. These vaccines might work by inducing antibody opsonins that improve the function of non-specific (such as neutrophils, macrophages, and NK cells) and specific (such as lymphocyte) cell-mediated immunity and stop or aid in eradicating fungus infections. The ability of antibodies to defend against fungi has been demonstrated by using monoclonal antibody technology to reconsider the function of antibody immunity. The next step is to develop vaccines that induce protective antibody immunity and to comprehend the mechanisms through which antibodies mediate protective effects against fungus.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence:
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Sultan T. AlShurbaji
- Outpatient Pharmacy, Dr. Sulaiman Alhabib Medical Group, Diplomatic Quarter, Riyadh 91877, Saudi Arabia
| | - Fadwa S. Alofi
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Suha A. Alzayer
- Parasitology Laboratory Department, Qatif Comprehensive Inspection Center, Qatif 31911, Saudi Arabia
| | - Nawal Al Kaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Zakiyah A. Bukhary
- Department of Internal Medicine, King Fahad General Hospital, Jeddah 23325, Saudi Arabia
| | - Ahmed S. Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
5
|
Mata-Martínez P, Bergón-Gutiérrez M, del Fresno C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front Immunol 2022; 13:812148. [PMID: 35237264 PMCID: PMC8882614 DOI: 10.3389/fimmu.2022.812148] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
The C-type lectin receptor Dectin-1 was originally described as the β-glucan receptor expressed in myeloid cells, with crucial functions in antifungal responses. However, over time, different ligands both of microbial-derived and endogenous origin have been shown to be recognized by Dectin-1. The outcomes of this recognition are diverse, including pro-inflammatory responses such as cytokine production, reactive oxygen species generation and phagocytosis. Nonetheless, tolerant responses have been also attributed to Dectin-1, depending on the specific ligand engaged. Dectin-1 recognition of their ligands triggers a plethora of downstream signaling pathways, with complex interrelationships. These signaling routes can be modulated by diverse factors such as phosphatases or tetraspanins, resulting either in pro-inflammatory or regulatory responses. Since its first depiction, Dectin-1 has recently gained a renewed attention due to its role in the induction of trained immunity. This process of long-term memory of innate immune cells can be triggered by β-glucans, and Dectin-1 is crucial for its initiation. The main signaling pathways involved in this process have been described, although the understanding of the above-mentioned complexity in the β-glucan-induced trained immunity is still scarce. In here, we have reviewed and updated all these factors related to the biology of Dectin-1, highlighting the gaps that deserve further research. We believe on the relevance to fully understand how this receptor works, and therefore, how we could harness it in different pathological conditions as diverse as fungal infections, autoimmunity, or cancer.
Collapse
Affiliation(s)
| | | | - Carlos del Fresno
- Immune response and Immunomodulation Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
6
|
Transcriptome profiles discriminate between Gram-positive and Gram-negative sepsis in preterm neonates. Pediatr Res 2022; 91:637-645. [PMID: 33767373 DOI: 10.1038/s41390-021-01444-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Genome-wide expression profiles have been previously employed as clinical research diagnostic tools for newborn sepsis. We aimed to determine if transcriptomic profiles could discriminate between Gram-positive and Gram-negative bacterial sepsis in preterm infants. METHODS Prospective, observational, double-cohort study was conducted in very low birth weight infants with clinical signs and culture-positive sepsis. Blood samples were collected when clinical signs became apparent. Total RNA was processed for transcriptomic analysis. Results were validated by both reverse-transcription polymerase chain reaction and a mathematical model. RESULTS We included 25 septic preterm infants, 17 with Gram-positive and 8 with Gram-negative bacteria. The principal component analysis identified these two clusters of patients. We performed a predictive model based on 21 genes that showed an area under the receiver-operating characteristic curve of 1. Eight genes were overexpressed in Gram-positive septic infants: CD37, CSK, MAN2B2, MGAT1, MOB3A, MYO9B, SH2D3C, and TEP1. The most significantly overexpressed pathways were related to metabolic and immunomodulating responses that translated into an equilibrium between pro- and anti-inflammatory responses. CONCLUSIONS The transcriptomic profile allowed identification of whether the causative agent was Gram-positive or Gram-negative bacteria. The overexpression of genes such as CD37 and CSK, which control cytokine production and cell survival, could explain the better clinical outcome in sepsis caused by Gram-positive bacteria. IMPACT Transcriptomic profiles not only enable an early diagnosis of sepsis in very low birth weight infants but also discriminate between Gram-positive and Gram-negative bacteria as causative agents. The overexpression of some genes related to cytokine production and cell survival could explain the better clinical outcome in sepsis caused by Gram-positive bacteria, and could lead us to a future, targeted therapy.
Collapse
|
7
|
Okuno S, Adachi Y, Terakura S, Julamanee J, Sakai T, Umemura K, Miyao K, Goto T, Murase A, Shimada K, Nishida T, Murata M, Kiyoi H. Spacer Length Modification Facilitates Discrimination between Normal and Neoplastic Cells and Provides Clinically Relevant CD37 CAR T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:2862-2874. [PMID: 34099546 DOI: 10.4049/jimmunol.2000768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022]
Abstract
Despite the remarkable initial efficacy of CD19 chimeric Ag receptor T (CAR-T) cell therapy, a high incidence of relapse has been observed. To further increase treatment efficacy and reduce the rate of escape of Ag-negative cells, we need to develop CAR-T cells that target other Ags. Given its restricted expression pattern, CD37 was considered a preferred novel target for immunotherapy in hematopoietic malignancies. Therefore, we designed a CD37-targeting CAR-T (CD37CAR-T) using the single-chain variable fragment of a humanized anti-CD37 Ab, transmembrane and intracellular domains of CD28, and CD3ζ signaling domains. High levels of CD37 expression were confirmed in B cells from human peripheral blood and bone marrow B cell precursors at late developmental stages; by contrast, more limited expression of CD37 was observed in early precursor B cells. Furthermore, we found that human CD37CAR-T cells with longer spacer lengths exhibited high gene transduction efficacy but reduced capacity to proliferate; this may be due to overactivation and fratricide. Spacer length optimization resulted in a modest transduction efficiency together with robust capacity to proliferate. CD37CAR-T cells with optimized spacer length efficiently targeted various CD37+ human tumor cell lines but had no impact on normal leukocytes both in vitro and in vivo. CD37CAR-T cells effectively eradicated Raji cells in xenograft model. Collectively, these results suggested that spacer-optimized CD37CAR-T cells could target CD37-high neoplastic B cells both in vitro and in vivo, with only limited interactions with their normal leukocyte lineages, thereby providing an additional promising therapeutic intervention for patients with B cell malignancies.
Collapse
Affiliation(s)
- Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Jakrawadee Julamanee
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and.,Division of Clinical Hematology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Toshiyasu Sakai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Koji Umemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Kotaro Miyao
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Tatsunori Goto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Atsushi Murase
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Kazuyuki Shimada
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Tetsuya Nishida
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| |
Collapse
|
8
|
Bobrowicz M, Kubacz M, Slusarczyk A, Winiarska M. CD37 in B Cell Derived Tumors-More than Just a Docking Point for Monoclonal Antibodies. Int J Mol Sci 2020; 21:ijms21249531. [PMID: 33333768 PMCID: PMC7765243 DOI: 10.3390/ijms21249531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
CD37 is a tetraspanin expressed prominently on the surface of B cells. It is an attractive molecular target exploited in the immunotherapy of B cell-derived lymphomas and leukemia. Currently, several monoclonal antibodies targeting CD37 as well as chimeric antigen receptor-based immunotherapies are being developed and investigated in clinical trials. Given the unique role of CD37 in the biology of B cells, it seems that CD37 constitutes more than a docking point for monoclonal antibodies, and targeting this molecule may provide additional benefit to relapsed or refractory patients. In this review, we aimed to provide an extensive overview of the function of CD37 in B cell malignancies, providing a comprehensive view of recent therapeutic advances targeting CD37 and delineating future perspectives.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Tetraspanins/immunology
- Tetraspanins/metabolism
Collapse
|
9
|
Ward RA, Vyas JM. The first line of defense: effector pathways of anti-fungal innate immunity. Curr Opin Microbiol 2020; 58:160-165. [PMID: 33217703 DOI: 10.1016/j.mib.2020.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
The innate immune system is critical to proper host defense against fungal pathogens, which is highlighted by increased susceptibility to invasive disease in immunocompromised patients. Innate cells (e.g. macrophages, neutrophils, dendritic cells, eosinophils) are equipped with intricate cell machinery to detect invading fungi and facilitate fungal killing, recruit additional immune cells, and direct the adaptive immune system responses. Understanding the mechanisms that govern a protective response will enable the development of novel treatment strategies. This review focuses on recent insights of signaling and regulation of C-type lectin receptors and their effector mechanisms enabling an effective host antifungal immunity.
Collapse
Affiliation(s)
- Rebecca A Ward
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Jatin M Vyas
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. Blood Adv 2020; 3:1230-1243. [PMID: 30979721 DOI: 10.1182/bloodadvances.2018029678] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
T cells modified to express chimeric antigen receptor (CAR) targeting CD19 (CD19CAR) have produced remarkable clinical responses in patients with relapsed/refractory B-cell acute lymphoblastic leukemia. CD19CAR T-cell therapy has also demonstrated prominent effects in B-cell non-Hodgkin lymphoma (B-NHL) patients. However, a subset of patients who relapse after CD19CAR T-cell therapy have outgrowth of CD19- tumor cells. Hence, development of alternative CARs targeting other B-cell markers represents an unmet medical need for B-cell acute lymphoblastic leukemia and B-NHL. Here, we confirmed previous data by showing that, overall, B-NHL has high expression of CD37. A second-generation CD37CAR was designed, and its efficacy in T cells was compared with that of CD19CAR. In vitro assessment of cytotoxicity and T-cell function upon coculture of the CAR T cells with different target B-cell lymphoma cell lines demonstrated comparable efficacy between the 2 CARs. In an aggressive B-cell lymphoma xenograft model, CD37CAR T cells were as potent as CD19CAR T cells in controlling tumor growth. In a second xenograft model, using U2932 lymphoma cells containing a CD19- subpopulation, CD37CAR T cells efficiently controlled tumor growth and prolonged survival, whereas CD19CAR T cells had limited effect. We further show that, unlike CD19CAR, CD37CAR was not sensitive to antigen masking. Finally, CD37CAR reactivity was restricted to B-lineage cells. Collectively, our results demonstrated that CD37CAR T cells also can effectively eradicate B-cell lymphoma tumors when CD19 antigen expression is lost and support further clinical testing for patients with relapsed/refractory B-NHL.
Collapse
|
11
|
Malamon JS, Kriete A. Erosion of Gene Co-expression Networks Reveal Deregulation of Immune System Processes in Late-Onset Alzheimer's Disease. Front Neurosci 2020; 14:228. [PMID: 32265636 PMCID: PMC7099620 DOI: 10.3389/fnins.2020.00228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
We have applied a novel and integrative analysis framework for next-generation sequencing (NGS) data to 503 human subjects provided by the Religious Orders Study and Memory and Aging Project (ROSMAP) to examine changes in transcriptomic organization and common variants in association with late-onset Alzheimer's disease (LOAD). Our framework identified seven reproducible, co-regulated modules after quality control (QC), clinical segregation, preservation filtering, and functional ontology analysis. These modules were specifically enriched in several innate and adaptive immune system processes, the synaptic vesicle cycle, and Hippo signaling. Topological and functional erosion of these modules due to shedding of genes and loss of in-module connectivity was diagnostic of disease progression. Perturbation analysis revealed that only 1% of eQTLs overlapped genes participating in these co-regulated modules. Common variants nevertheless identified components of the immune systems like human leukocyte antigen (HLA) complex and microtubule-associated protein tau (MAPT) regions in association with LOAD. Our results implicate microglial function, adaptive immune response, and the structural degeneration of neurons as contributors to the transcriptional deregulation observed along with common genetic variants in the progression of LOAD.
Collapse
Affiliation(s)
- John Stephen Malamon
- Bossone Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Andres Kriete
- Bossone Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Tam JM, Reedy JL, Lukason DP, Kuna SG, Acharya M, Khan NS, Negoro PE, Xu S, Ward RA, Feldman MB, Dutko RA, Jeffery JB, Sokolovska A, Wivagg CN, Lassen KG, Le Naour F, Matzaraki V, Garner EC, Xavier RJ, Kumar V, van de Veerdonk FL, Netea MG, Miranti CK, Mansour MK, Vyas JM. Tetraspanin CD82 Organizes Dectin-1 into Signaling Domains to Mediate Cellular Responses to Candida albicans. THE JOURNAL OF IMMUNOLOGY 2019; 202:3256-3266. [PMID: 31010852 DOI: 10.4049/jimmunol.1801384] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 11/19/2022]
Abstract
Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate β-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1β) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.
Collapse
Affiliation(s)
- Jenny M Tam
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Jennifer L Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Daniel P Lukason
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sunnie G Kuna
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Mridu Acharya
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Nida S Khan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114.,Biomedical Engineering and Biotechnology, University of Massachusetts Medical School, Worcester, MA 01655.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Paige E Negoro
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Shuying Xu
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Rebecca A Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Michael B Feldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Richard A Dutko
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Jane B Jeffery
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Anna Sokolovska
- Department of Developmental Immunology, Massachusetts General Hospital, Boston, MA 02114
| | - Carl N Wivagg
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Kara G Lassen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | | | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ethan C Garner
- Center for Systems Biology, Harvard University, Boston, MA 02115
| | - Ramnik J Xavier
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Broad Institute of Harvard and MIT, Cambridge, MA 02142.,Gastrointestinal Unit/Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114; and
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Cindy K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ 85724
| | - Michael K Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jatin M Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; .,Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
13
|
Liberti A, Cannon JP, Litman GW, Dishaw LJ. A Soluble Immune Effector Binds Both Fungi and Bacteria via Separate Functional Domains. Front Immunol 2019; 10:369. [PMID: 30894858 PMCID: PMC6414549 DOI: 10.3389/fimmu.2019.00369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
The gut microbiome of animals consists of diverse microorganisms that include both prokaryotes and eukaryotes. Complex interactions occur among these inhabitants, as well as with the immune system of the host, and profoundly influence the overall health of both the host and its microbial symbionts. Despite the enormous importance for the host to regulate its gut microbiome, the extent to which animals generate immune-related molecules with the capacity to directly influence polymicrobial interactions remains unclear. The urochordate, Ciona robusta, is a model organism that has been adapted to experimental studies of host/microbiome interactions. Ciona variable-region containing chitin-binding proteins (VCBPs) are innate immune effectors, composed of immunoglobulin (Ig) variable regions and a chitin-binding domain (CBD) and are expressed in high abundance in the gut. It was previously shown that VCBP-C binds bacteria and influences both phagocytosis by granular amoebocytes and biofilm formation via its Ig domains. We show here that the CBD of VCBP-C independently recognizes chitin molecules present in the cell walls, sporangia (spore-forming bodies), and spores of a diverse set of filamentous fungi isolated from the gut of Ciona. To our knowledge, this is the first description of a secreted Ig-containing immune molecule with the capacity to directly promote transkingdom interactions through simultaneous binding by independent structural domains and could have broad implications in modulating the establishment, succession, and homeostasis of gut microbiomes.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - John P. Cannon
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Gary W. Litman
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Molecular Genetics, Children's Research Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Larry J. Dishaw
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
14
|
Zou F, Wang X, Han X, Rothschild G, Zheng SG, Basu U, Sun J. Expression and Function of Tetraspanins and Their Interacting Partners in B Cells. Front Immunol 2018; 9:1606. [PMID: 30072987 PMCID: PMC6058033 DOI: 10.3389/fimmu.2018.01606] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 01/26/2023] Open
Abstract
Tetraspanins are transmembrane proteins that modulate multiple diverse biological processes, including signal transduction, cell–cell communication, immunoregulation, tumorigenesis, cell adhesion, migration, and growth and differentiation. Here, we provide a systematic review of the involvement of tetraspanins and their partners in the regulation and function of B cells, including mechanisms associated with antigen presentation, antibody production, cytokine secretion, co-stimulator expression, and immunosuppression. Finally, we direct our focus to the signaling mechanisms, evolutionary conservation aspects, expression, and potential therapeutic strategies that could be based on tetraspanins and their interacting partners.
Collapse
Affiliation(s)
- Fagui Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xu Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xinxin Han
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Song Guo Zheng
- Department of Medicine, Milton S. Hershey Medical Center at Penn State University, Pennsylvania, PA, United States.,Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-Sen University, Guangzhou, China
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
15
|
Schaper F, van Spriel AB. Antitumor Immunity Is Controlled by Tetraspanin Proteins. Front Immunol 2018; 9:1185. [PMID: 29896201 PMCID: PMC5986925 DOI: 10.3389/fimmu.2018.01185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Antitumor immunity is shaped by the different types of immune cells that are present in the tumor microenvironment (TME). In particular, environmental signals (for instance, soluble factors or cell–cell contact) transmitted through the plasma membrane determine whether immune cells are activated or inhibited. Tetraspanin proteins are emerging as central building blocks of the plasma membrane by their capacity to cluster immune receptors, enzymes, and signaling molecules into the tetraspanin web. Whereas some tetraspanins (CD81, CD151, CD9) are widely and broadly expressed, others (CD53, CD37, Tssc6) have an expression pattern restricted to hematopoietic cells. Studies using genetic mouse models have identified important immunological functions of these tetraspanins on different leukocyte subsets, and as such, may be involved in the immune response against tumors. While multiple studies have been performed with regards to deciphering the function of tetraspanins on cancer cells, the effect of tetraspanins on immune cells in the antitumor response remains understudied. In this review, we will focus on tetraspanins expressed by immune cells and discuss their potential role in antitumor immunity. New insights in tetraspanin function in the TME and possible prognostic and therapeutic roles of tetraspanins will be discussed.
Collapse
Affiliation(s)
- Fleur Schaper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
16
|
Saiz ML, Rocha-Perugini V, Sánchez-Madrid F. Tetraspanins as Organizers of Antigen-Presenting Cell Function. Front Immunol 2018; 9:1074. [PMID: 29875769 PMCID: PMC5974036 DOI: 10.3389/fimmu.2018.01074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Professional antigen-presenting cells (APCs) include dendritic cells, monocytes, and B cells. APCs internalize and process antigens, producing immunogenic peptides that enable antigen presentation to T lymphocytes, which provide the signals that trigger T-cell activation, proliferation, and differentiation, and lead to adaptive immune responses. After detection of microbial antigens through pattern recognition receptors (PRRs), APCs migrate to secondary lymphoid organs where antigen presentation to T lymphocytes takes place. Tetraspanins are membrane proteins that organize specialized membrane platforms, called tetraspanin-enriched microdomains, which integrate membrane receptors, like PRR and major histocompatibility complex class II (MHC-II), adhesion proteins, and signaling molecules. Importantly, through the modulation of the function of their associated membrane partners, tetraspanins regulate different steps of the immune response. Several tetraspanins can positively or negatively regulate the activation threshold of immune receptors. They also play a role during migration of APCs by controlling the surface levels and spatial arrangement of adhesion molecules and their subsequent intracellular signaling. Finally, tetraspanins participate in antigen processing and are important for priming of naïve T cells through the control of T-cell co-stimulation and MHC-II-dependent antigen presentation. In this review, we discuss the role of tetraspanins in APC biology and their involvement in effective immune responses.
Collapse
Affiliation(s)
- Maria Laura Saiz
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| |
Collapse
|
17
|
Interleukin-6 is essential for glomerular immunoglobulin A deposition and the development of renal pathology in Cd37-deficient mice. Kidney Int 2018; 93:1356-1366. [PMID: 29551516 DOI: 10.1016/j.kint.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN), the most common glomerulonephritis worldwide, is characterized by IgA depositions in the kidney. Deficiency of CD37, a leukocyte-specific tetraspanin, leads to spontaneous development of renal pathology resembling IgAN. However, the underlying molecular mechanism has not been resolved. Here we found that CD37 expression on B cells of patients with IgAN was significantly decreased compared to B cells of healthy donors. Circulating interleukin (IL)-6 levels, but not tumor necrosis factor-α or IL-10, were elevated in Cd37-/- mice compared to wild-type mice after lipopolysaccharide treatment. Cd37-/- mice displayed increased glomerular neutrophil influx, immune complex deposition, and worse renal function. To evaluate the role of IL-6 in the pathogenesis of accelerated renal pathology in Cd37-/-mice, we generated Cd37xIl6 double-knockout mice. These double-knockout and Il6-/- mice displayed no glomerular IgA deposition and were protected from exacerbated renal failure following lipopolysaccharide treatment. Moreover, kidneys of Cd37-/- mice showed more mesangial proliferation, endothelial cell activation, podocyte activation, and segmental podocyte foot process effacement compared to the double-knockout mice, emphasizing that IL-6 mediates renal pathology in Cd37-/- mice. Thus, our study indicates that CD37 may protect against IgA nephropathy by inhibition of the IL-6 pathway.
Collapse
|
18
|
Abstract
Over the last decade, invasive fungal infections have emerged as a growing threat to human health worldwide and novel treatment strategies are urgently needed. In this context, investigations into host-pathogen interactions represent an important and promising field of research. Antigen presenting cells such as macrophages and dendritic cells are strategically located at the frontline of defence against potential invaders. Importantly, these cells express germline encoded pattern recognition receptors (PRRs), which sense conserved entities from pathogens and orchestrate innate immune responses. Herein, we review the latest findings regarding the biology and functions of the different classes of PRRs involved in pathogenic fungal recognition. We also discuss recent literature on PRR collaboration/crosstalk and the mechanisms involved in inhibiting/regulating PRR signalling. Finally, we discuss how the accumulated knowledge on PRR biology, especially Dectin-1, has been used for the design of new immunotherapies against fungal infections.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Aiysha Thompson
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Selinda J Orr
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom.
| |
Collapse
|
19
|
Lionakis MS, Levitz SM. Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annu Rev Immunol 2017; 36:157-191. [PMID: 29237128 DOI: 10.1146/annurev-immunol-042617-053318] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last few decades, the AIDS pandemic and the significant advances in the medical management of individuals with neoplastic and inflammatory conditions have resulted in a dramatic increase in the population of immunosuppressed patients with opportunistic, life-threatening fungal infections. The parallel development of clinically relevant mouse models of fungal disease and the discovery and characterization of several inborn errors of immune-related genes that underlie inherited human susceptibility to opportunistic mycoses have significantly expanded our understanding of the innate and adaptive immune mechanisms that protect against ubiquitous fungal exposures. This review synthesizes immunological knowledge derived from basic mouse studies and from human cohorts and provides an overview of mammalian antifungal host defenses that show promise for informing therapeutic and vaccination strategies for vulnerable patients.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| |
Collapse
|
20
|
Carpino N, Naseem S, Frank DM, Konopka JB. Modulating Host Signaling Pathways to Promote Resistance to Infection by Candida albicans. Front Cell Infect Microbiol 2017; 7:481. [PMID: 29201860 PMCID: PMC5696602 DOI: 10.3389/fcimb.2017.00481] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a common human fungal pathogen capable of causing serious systemic infections that can progress to become lethal. Current therapeutic approaches have limited effectiveness, especially once a systemic infection is established, in part due to the lack of an effective immune response. Boosting the immune response to C. albicans has been the goal of immunotherapy, but it has to be done selectively to prevent deleterious hyperinflammation (sepsis). Although an efficient inflammatory response is necessary to fight infection, the typical response to C. albicans results in collateral damage to tissues thereby exacerbating the pathological effects of infection. For this reason, identifying specific ways of modulating the immune system holds promise for development of new improved therapeutic approaches. This review will focus on recent studies that provide insight using mutant strains of mice that are more resistant to bloodstream infection by C. albicans. These mice are deficient in signal transduction proteins including the Jnk1 MAP kinase, the Cbl-b E3 ubiquitin ligase, or the Sts phosphatases. Interestingly, the mutant mice display a different response to C. albicans that results in faster clearance of infection without hyper-inflammation and collateral damage. A common underlying theme between the resistant mouse strains is loss of negative regulatory proteins that are known to restrain activation of cell surface receptor-initiated signaling cascades. Understanding the cellular and molecular mechanisms that promote resistance to C. albicans in mice will help to identify new approaches for improving antifungal therapy.
Collapse
Affiliation(s)
- Nick Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - David M Frank
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
21
|
de Winde CM, Elfrink S, van Spriel AB. Novel Insights into Membrane Targeting of B Cell Lymphoma. Trends Cancer 2017; 3:442-453. [DOI: 10.1016/j.trecan.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/28/2022]
|
22
|
Assessment of CD37 B-cell antigen and cell of origin significantly improves risk prediction in diffuse large B-cell lymphoma. Blood 2016; 128:3083-3100. [PMID: 27760757 DOI: 10.1182/blood-2016-05-715094] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023] Open
Abstract
CD37 (tetraspanin TSPAN26) is a B-cell surface antigen widely expressed on mature B cells. CD37 is involved in immune regulation and tumor suppression but its function has not been fully elucidated. We assessed CD37 expression in de novo diffuse large B-cell lymphoma (DLBCL), and investigated its clinical and biologic significance in 773 patients treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) and 231 patients treated with CHOP. We found that CD37 loss (CD37-) in ∼60% of DLBCL patients showed significantly decreased survival after R-CHOP treatment, independent of the International Prognostic Index (IPI), germinal center B-cell-like (GCB)/activated B-cell-like (ABC) cell of origin, nodal/extranodal primary origin, and the prognostic factors associated with CD37-, including TP53 mutation, NF-κBhigh, Mychigh, phosphorylated STAT3high, survivinhigh, p63-, and BCL6 translocation. CD37 positivity predicted superior survival, abolishing the prognostic impact of high IPI and above biomarkers in GCB-DLBCL but not in ABC-DLBCL. Combining risk scores for CD37- status and ABC cell of origin with the IPI, defined as molecularly adjusted IPI for R-CHOP (M-IPI-R), or IPI plus immunohistochemistry (IHC; IPI+IHC) for CD37, Myc, and Bcl-2, significantly improved risk prediction over IPI alone. Gene expression profiling suggested that decreased CD20 and increased PD-1 levels in CD37- DLBCL, ICOSLG upregulation in CD37+ GCB-DLBCL, and CD37 functions during R-CHOP treatment underlie the pivotal role of CD37 status in clinical outcomes. In conclusion, CD37 is a critical determinant of R-CHOP outcome in DLBCL especially in GCB-DLBCL, representing its importance for optimal rituximab action and sustained immune responses. The combined molecular and clinical prognostic indices, M-IPI-R and IPI+IHC, have remarkable predictive values in R-CHOP-treated DLBCL.
Collapse
|
23
|
de Winde CM, Veenbergen S, Young KH, Xu-Monette ZY, Wang XX, Xia Y, Jabbar KJ, van den Brand M, van der Schaaf A, Elfrink S, van Houdt IS, Gijbels MJ, van de Loo FAJ, Bennink MB, Hebeda KM, Groenen PJTA, van Krieken JH, Figdor CG, van Spriel AB. Tetraspanin CD37 protects against the development of B cell lymphoma. J Clin Invest 2016; 126:653-66. [PMID: 26784544 DOI: 10.1172/jci81041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/03/2015] [Indexed: 12/13/2022] Open
Abstract
Worldwide, B cell non-Hodgkin lymphoma is the most common hematological malignancy and represents a substantial clinical problem. The molecular events that lead to B cell lymphoma are only partially defined. Here, we have provided evidence that deficiency of tetraspanin superfamily member CD37, which is important for B cell function, induces the development of B cell lymphoma. Mice lacking CD37 developed germinal center-derived B cell lymphoma in lymph nodes and spleens with a higher incidence than Bcl2 transgenic mice. We discovered that CD37 interacts with suppressor of cytokine signaling 3 (SOCS3); therefore, absence of CD37 drives tumor development through constitutive activation of the IL-6 signaling pathway. Moreover, animals deficient for both Cd37 and Il6 were fully protected against lymphoma development, confirming the involvement of the IL-6 pathway in driving tumorigenesis. Loss of CD37 on neoplastic cells in patients with diffuse large B cell lymphoma (DLBCL) directly correlated with activation of the IL-6 signaling pathway and with worse progression-free and overall survival. Together, this study identifies CD37 as a tumor suppressor that directly protects against B cell lymphomagenesis and provides a strong rationale for blocking the IL-6 pathway in patients with CD37- B cell malignancies as a possible therapeutic intervention.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Germinal Center/metabolism
- Germinal Center/pathology
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Tetraspanins/genetics
- Tetraspanins/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
|
24
|
Rocha-Perugini V, Sánchez-Madrid F, Martínez Del Hoyo G. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation. Front Immunol 2016; 6:653. [PMID: 26793193 PMCID: PMC4707441 DOI: 10.3389/fimmu.2015.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) , Madrid , Spain
| |
Collapse
|
25
|
Wee JL, Schulze KE, Jones EL, Yeung L, Cheng Q, Pereira CF, Costin A, Ramm G, van Spriel AB, Hickey MJ, Wright MD. Tetraspanin CD37 Regulates β2 Integrin-Mediated Adhesion and Migration in Neutrophils. THE JOURNAL OF IMMUNOLOGY 2015; 195:5770-9. [PMID: 26566675 DOI: 10.4049/jimmunol.1402414] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/14/2015] [Indexed: 01/13/2023]
Abstract
Deciphering the molecular basis of leukocyte recruitment is critical to the understanding of inflammation. In this study, we investigated the contribution of the tetraspanin CD37 to this key process. CD37-deficient mice showed impaired neutrophil recruitment in a peritonitis model. Intravital microscopic analysis indicated that the absence of CD37 impaired the capacity of leukocytes to follow a CXCL1 chemotactic gradient accurately in the interstitium. Moreover, analysis of CXCL1-induced leukocyte-endothelial cell interactions in postcapillary venules revealed that CXCL1-induced neutrophil adhesion and transmigration were reduced in the absence of CD37, consistent with a reduced capacity to undergo β2 integrin-dependent adhesion. This result was supported by in vitro flow chamber experiments that demonstrated an impairment in adhesion of CD37-deficient neutrophils to the β2 integrin ligand, ICAM-1, despite the normal display of high-affinity β2 integrins. Superresolution microscopic assessment of localization of CD37 and CD18 in ICAM-1-adherent neutrophils demonstrated that these molecules do not significantly cocluster in the cell membrane, arguing against the possibility that CD37 regulates β2 integrin function via a direct molecular interaction. Moreover, CD37 ablation did not affect β2 integrin clustering. In contrast, the absence of CD37 in neutrophils impaired actin polymerization, cell spreading and polarization, dysregulated Rac-1 activation, and accelerated β2 integrin internalization. Together, these data indicate that CD37 promotes neutrophil adhesion and recruitment via the promotion of cytoskeletal function downstream of integrin-mediated adhesion.
Collapse
Affiliation(s)
- Janet L Wee
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Keith E Schulze
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Eleanor L Jones
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Louisa Yeung
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Qiang Cheng
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Candida F Pereira
- Burnet Institute, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; and
| | - Adam Costin
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Georg Ramm
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Mark D Wright
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia;
| |
Collapse
|
26
|
Martínez del Hoyo G, Ramírez-Huesca M, Levy S, Boucheix C, Rubinstein E, Minguito de la Escalera M, González-Cintado L, Ardavín C, Veiga E, Yáñez-Mó M, Sánchez-Madrid F. CD81 controls immunity to Listeria infection through rac-dependent inhibition of proinflammatory mediator release and activation of cytotoxic T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:6090-101. [PMID: 25972472 DOI: 10.4049/jimmunol.1402957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/19/2015] [Indexed: 01/28/2023]
Abstract
Despite recent evidence on the involvement of CD81 in pathogen binding and Ag presentation by dendritic cells (DCs), the molecular mechanism of how CD81 regulates immunity during infection remains to be elucidated. To investigate the role of CD81 in the regulation of defense mechanisms against microbial infections, we have used the Listeria monocytogenes infection model to explore the impact of CD81 deficiency in the innate and adaptive immune response against this pathogenic bacteria. We show that CD81(-/-) mice are less susceptible than wild-type mice to systemic Listeria infection, which correlates with increased numbers of inflammatory monocytes and DCs in CD81(-/-) spleens, the main subsets controlling early bacterial burden. Additionally, our data reveal that CD81 inhibits Rac/STAT-1 activation, leading to a negative regulation of the production of TNF-α and NO by inflammatory DCs and the activation of cytotoxic T cells by splenic CD8α(+) DCs. In conclusion, this study demonstrates that CD81-Rac interaction exerts an important regulatory role on the innate and adaptive immunity against bacterial infection and suggests a role for CD81 in the development of novel therapeutic targets during infectious diseases.
Collapse
Affiliation(s)
- Gloria Martínez del Hoyo
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain;
| | - Marta Ramírez-Huesca
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Shoshana Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94035
| | - Claude Boucheix
- INSERM, Université Paris-Sud, Institut André Lwoff, 94807 Villejuif, France
| | - Eric Rubinstein
- INSERM, Université Paris-Sud, Institut André Lwoff, 94807 Villejuif, France
| | - María Minguito de la Escalera
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Leticia González-Cintado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Esteban Veiga
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain; and
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa, 28009 Madrid, Spain; and
| | - Francisco Sánchez-Madrid
- Departamento de Biología Vascular e Inflamación, Fundación Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| |
Collapse
|
27
|
de Winde CM, Zuidscherwoude M, Vasaturo A, van der Schaaf A, Figdor CG, van Spriel AB. Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs. Histochem Cell Biol 2015; 144:133-46. [PMID: 25952155 PMCID: PMC4522275 DOI: 10.1007/s00418-015-1326-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Multispectral imaging is a novel microscopy technique that combines imaging with spectroscopy to obtain both quantitative expression data and tissue distribution of different cellular markers. Tetraspanins CD37 and CD53 are four-transmembrane proteins involved in cellular and humoral immune responses. However, comprehensive immunohistochemical analyses of CD37 and CD53 in human lymphoid organs have not been performed so far. We investigated CD37 and CD53 protein expression on primary human immune cell subsets in blood and in primary and secondary lymphoid organs. Both tetraspanins were prominently expressed on antigen-presenting cells, with highest expression of CD37 on B lymphocytes. Analysis of subcellular distribution showed presence of both tetraspanins on the plasma membrane and on endosomes. In addition, CD53 was also present on lysosomes. Quantitative analysis of expression and localization of CD37 and CD53 on lymphocytes within lymphoid tissues by multispectral imaging revealed high expression of both tetraspanins on CD20+ cells in B cell follicles in human spleen and appendix. CD3+ T cells within splenic T cell zones expressed lower levels of CD37 and CD53 compared to T cells in the red pulp of human spleen. B cells in human bone marrow highly expressed CD37, whereas the expression of CD53 was low. In conclusion, we demonstrate differential expression of CD37 and CD53 on primary human immune cells, their subcellular localization and their quantitative distribution in human lymphoid organs. This study provides a solid basis for better insight into the function of tetraspanins in the human immune response.
Collapse
Affiliation(s)
- Charlotte M. de Winde
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Malou Zuidscherwoude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Angela Vasaturo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Alie van der Schaaf
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Annemiek B. van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
28
|
Beckwith KA, Byrd JC, Muthusamy N. Tetraspanins as therapeutic targets in hematological malignancy: a concise review. Front Physiol 2015; 6:91. [PMID: 25852576 PMCID: PMC4369647 DOI: 10.3389/fphys.2015.00091] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Tetraspanins belong to a family of transmembrane proteins which play a major role in the organization of the plasma membrane. While all immune cells express tetraspanins, most of these are present in a variety of other cell types. There are a select few, such as CD37 and CD53, which are restricted to hematopoietic lineages. Tetraspanins associate with numerous partners involved in a diverse set of biological processes, including cell activation, survival, proliferation, adhesion, and migration. The historical view has assigned them a scaffolding role, but recent discoveries suggest some tetraspanins can directly participate in signaling through interactions with cytoplasmic proteins. Given their potential roles in supporting tumor survival and immune evasion, an improved understanding of tetraspanin activity could prove clinically valuable. This review will focus on emerging data in the study of tetraspanins, advances in the clinical development of anti-CD37 therapeutics, and the future prospects of targeting tetraspanins in hematological malignancy.
Collapse
Affiliation(s)
- Kyle A Beckwith
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA ; Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA ; Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Columbus, OH, USA
| |
Collapse
|
29
|
Fairfax KC, Everts B, Amiel E, Smith AM, Schramm G, Haas H, Randolph GJ, Taylor JJ, Pearce EJ. IL-4-secreting secondary T follicular helper (Tfh) cells arise from memory T cells, not persisting Tfh cells, through a B cell-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2015; 194:2999-3010. [PMID: 25712216 DOI: 10.4049/jimmunol.1401225] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Humoral immunity requires cross-talk between T follicular helper (Tfh) cells and B cells. Nevertheless, a detailed understanding of this intercellular interaction during secondary immune responses is lacking. We examined this by focusing on the response to a soluble, unadjuvanted, pathogen-derived Ag (soluble extract of Schistosoma mansoni egg [SEA]) that induces type 2 immunity. We found that activated Tfh cells persisted for long periods within germinal centers following primary immunization. However, the magnitude of the secondary response did not appear to depend on pre-existing Tfh cells. Instead, Tfh cell populations expanded through a process that was dependent on memory T cells recruited into the reactive LN, as well as the participation of B cells. We found that, during the secondary response, IL-4 was critical for the expansion of a population of plasmablasts that correlated with increased SEA-specific IgG1 titers. Additionally, following immunization with SEA (but not with an Ag that induced type 1 immunity), IL-4 and IL-21 were coproduced by individual Tfh cells, revealing a potential mechanism through which appropriate class-switching can be coupled to plasmablast proliferation to enforce type 2 immunity. Our findings demonstrate a pivotal role for IL-4 in the interplay between T and B cells during a secondary Th2 response and have significant implications for vaccine design.
Collapse
Affiliation(s)
- Keke C Fairfax
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Bart Everts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eyal Amiel
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405
| | - Amber M Smith
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Helmut Haas
- Research Center Borstel, 23845 Borstel, Germany; and
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Edward J Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
30
|
Fagarasan S, Macpherson AJ. The Regulation of IgA Production. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Nolte MA, van der Meer JWM. Inflammatory responses to infection: the Dutch contribution. Immunol Lett 2014; 162:113-20. [PMID: 25455597 PMCID: PMC7132409 DOI: 10.1016/j.imlet.2014.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
At any given moment, our body is under attack by a large variety of pathogens, which aim to enter and use our body to propagate and disseminate. The extensive cellular and molecular complexity of our immune system enables us to efficiently eliminate invading pathogens or at least develop a condition in which propagation of the microorganism is reduced to a minimum. Yet, the evolutionary pressure on pathogens to circumvent our immune defense mechanisms is immense, which continuously leads to the development of novel pathogenic strains that challenge the health of mankind. Understanding this battle between pathogen and the immune system has been a fruitful area of immunological research over the last century and will continue to do so for many years. In this review, which has been written on the occasion of the 50th anniversary of the Dutch Society for Immunology, we provide an overview of the major contributions that Dutch immunologists and infection biologists have made in the last decades on the inflammatory response to viral, bacterial, fungal or parasitic infections. We focus on those studies that have addressed both the host and the pathogen, as these are most interesting from an immunological point of view. Although it is not possible to completely cover this comprehensive research field, this review does provide an interesting overview of Dutch research on inflammatory responses to infection.
Collapse
Affiliation(s)
- Martijn A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Protection from systemic Candida albicans infection by inactivation of the Sts phosphatases. Infect Immun 2014; 83:637-45. [PMID: 25422266 DOI: 10.1128/iai.02789-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human fungal pathogen Candida albicans causes invasive candidiasis, characterized by fatal organ failure due to disseminated fungal growth and inflammatory damage. The suppressor of TCR signaling 1 (Sts-1) and Sts-2 are two homologous phosphatases that negatively regulate signaling pathways in a number of hematopoietic cell lineages, including T lymphocytes, mast cells, and platelets. Functional inactivation of both Sts enzymes leads to profound resistance to systemic infection by C. albicans, such that greater than 80% of mice lacking Sts-1 and -2 survive a dose of C. albicans (2.5 × 10(5) CFU/mouse) that is uniformly lethal to wild-type mice within 10 days. Restriction of fungal growth within the kidney occurs by 24 h postinfection in the mutant mice. This occurs without induction of a hyperinflammatory response, as evidenced by the decreased presence of leukocytes and inflammatory cytokines that normally accompany the antifungal immune response. Instead, the absence of the Sts phosphatases leads to the rapid induction of a unique immunological environment within the kidney, as indicated by the early induction of a proinflammatory cytokine (CXL10). Mice lacking either Sts enzyme individually display an intermediate lethality phenotype. These observations identify an opportunity to optimize host immune responses toward a deadly fungal pathogen.
Collapse
|
33
|
Gartlan KH, Wee JL, Demaria MC, Nastovska R, Chang TM, Jones EL, Apostolopoulos V, Pietersz GA, Hickey MJ, van Spriel AB, Wright MD. Tetraspanin CD37 contributes to the initiation of cellular immunity by promoting dendritic cell migration. Eur J Immunol 2013; 43:1208-19. [PMID: 23420539 DOI: 10.1002/eji.201242730] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/03/2013] [Accepted: 02/13/2013] [Indexed: 12/16/2022]
Abstract
Previous studies on the role of the tetraspanin CD37 in cellular immunity appear contradictory. In vitro approaches indicate a negative regulatory role, whereas in vivo studies suggest that CD37 is necessary for optimal cellular responses. To resolve this discrepancy, we studied the adaptive cellular immune responses of CD37(-/-) mice to intradermal challenge with either tumors or model antigens and found that CD37 is essential for optimal cell-mediated immunity. We provide evidence that an increased susceptibility to tumors observed in CD37(-/-) mice coincides with a striking failure to induce antigen-specific IFN-γ-secreting T cells. We also show that CD37 ablation impairs several aspects of DC function including: in vivo migration from skin to draining lymph nodes; chemo-tactic migration; integrin-mediated adhesion under flow; the ability to spread and form actin protrusions and in vivo priming of adoptively transferred naïve T cells. In addition, multiphoton microscopy-based assessment of dermal DC migration demonstrated a reduced rate of migration and increased randomness of DC migration in CD37(-/-) mice. Together, these studies are consistent with a model in which the cellular defect that underlies poor cellular immune induction in CD37(-/-) mice is impaired DC migration.
Collapse
Affiliation(s)
- Kate H Gartlan
- Department of Immunology, Monash University, Prahran, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
35
|
van Spriel AB, de Keijzer S, van der Schaaf A, Gartlan KH, Sofi M, Light A, Linssen PC, Boezeman JB, Zuidscherwoude M, Reinieren-Beeren I, Cambi A, Mackay F, Tarlinton DM, Figdor CG, Wright MD. The tetraspanin CD37 orchestrates the α(4)β(1) integrin-Akt signaling axis and supports long-lived plasma cell survival. Sci Signal 2012; 5:ra82. [PMID: 23150881 DOI: 10.1126/scisignal.2003113] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Signaling by the serine and threonine kinase Akt (also known as protein kinase B), a pathway that is common to all eukaryotic cells, is central to cell survival, proliferation, and gene induction. We sought to elucidate the mechanisms underlying regulation of the kinase activity of Akt in the immune system. We found that the four-transmembrane protein CD37 was essential for B cell survival and long-lived protective immunity. CD37-deficient (Cd37(-/-)) mice had reduced numbers of immunoglobulin G (IgG)-secreting plasma cells in lymphoid organs compared to those in wild-type mice, which we attributed to increased apoptosis of plasma cells in the germinal centers of the spleen, areas in which B cells proliferate and are selected. CD37 was required for the survival of IgG-secreting plasma cells in response to binding of vascular cell adhesion molecule 1 to the α(4)β(1) integrin. Impaired α(4)β(1) integrin-dependent Akt signaling in Cd37(-/-) IgG-secreting plasma cells was the underlying cause responsible for impaired cell survival. CD37 was required for the mobility and clustering of α(4)β(1) integrins in the plasma membrane, thus regulating the membrane distribution of α(4)β(1) integrin necessary for activation of the Akt survival pathway in the immune system.
Collapse
Affiliation(s)
- Annemiek B van Spriel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen 6525 GA, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Casadevall A, Pirofski LA. Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases. Cell Host Microbe 2012; 11:447-56. [PMID: 22607798 DOI: 10.1016/j.chom.2012.04.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Only two decades ago antibodies to fungi were thought to have little or no role in protection against fungal diseases. However, subsequent research has provided convincing evidence that certain antibodies can modify the course of fungal infection to the benefit or detriment of the host. Hybridoma technology was the breakthrough that enabled the characterization of antibodies to fungi, illuminating some of the requirements for antibody efficacy. As discussed in this review, fungal-specific antibodies mediate protection through direct actions on fungal cells and through classical mechanisms such as phagocytosis and complement activation. Although mechanisms of antibody-mediated protection are often species-specific, numerous fungal antigens can be targeted to generate vaccines and therapeutic immunoglobulins. Furthermore, the study of antibody function against medically important fungi has provided fresh immunological insights into the complexity of humoral immunity that are likely to apply to other pathogens.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
37
|
Kashef J, Diana T, Oelgeschläger M, Nazarenko I. Expression of the tetraspanin family members Tspan3, Tspan4, Tspan5 and Tspan7 during Xenopus laevis embryonic development. Gene Expr Patterns 2012; 13:1-11. [PMID: 22940433 DOI: 10.1016/j.gep.2012.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/11/2022]
Abstract
Tetraspanins comprise a large family of integral membrane proteins involved in the regulation of cell adhesion, migration and fusion. In humans it consists of 33 members divided in four subfamilies. Here, we examined the spatial and temporal gene expression of four related tetraspanins during the embryonic development of Xenopus laevis by quantitative real-time PCR and in situ hybridization: Tspan3 (encoded by the gene Tm4sf8 gene) Tspan4 (encoded by the gene Tm4sf7), Tspan5 (encoded by the gene Tm4sf9) and Tspan7 (encoded by the gene Tm4sf2). These genes appeared first in the vertebrates during the evolution and are conserved across different species. In humans, they were associated with several diseases such as sclerosis, mental retardation and cancer; however their physiological role remained unclear. This work provides a comprehensive comparative analysis of the expression of these tetraspanins during the development of X. laevis. The more closely related tetraspanins Tspan3, Tspan4 and Tspan7 exhibited very similar spatial expression patterns, albeit differing in their temporal occurrence. The corresponding transcripts were found in the dorsal animal ectoderm at blastula stage. At early tailbud stages (stage 26) the genes were expressed in the migrating cranial neural crest located in the somites, developing eye, brain, and in otic vesicles. In contrast, Tspan5 appeared first at later stages of development and was detected prominently in the notochord. These data support close relatedness of Tspan3, Tspan4 and Tspan7. The expression of these tetraspanins in the cells with a high migratory potential, e.g. neural crest cells, suggests their role in the regulation of migration processes, characteristic for tetraspanin family members, during development. Similarity of the expression profiles might indicate at least partial functional redundancy, which is in concordance with earlier findings of tissue-limited or absent phenotypes in the knock-down studies of tetraspanins family members performed.
Collapse
Affiliation(s)
- Jubin Kashef
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | | | | | | |
Collapse
|
38
|
Abstract
CD37 is a tetraspannin that triggers cell death and is a potential therapeutic target in cancers. In this issue of Cancer Cell, Lapalombella et al. show that CD37 is tyrosine phosphorylated following engagement by a bivalent engineered antibody fragment that binds CD37 and activates both SHP-1-dependent apoptotic signaling and PI3K-AKT-mediated survival signaling.
Collapse
Affiliation(s)
- Lei Jin
- Department of Immunology, University of Colorado School of Medicine and National Jewish Health Denver, Denver, CO 80206, USA
| | - John C Cambier
- Department of Immunology, University of Colorado School of Medicine and National Jewish Health Denver, Denver, CO 80206, USA.
| |
Collapse
|
39
|
Hontelez S, Sanecka A, Netea MG, van Spriel AB, Adema GJ. Molecular view on PRR cross-talk in antifungal immunity. Cell Microbiol 2012; 14:467-74. [PMID: 22233321 DOI: 10.1111/j.1462-5822.2012.01748.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of a major class of innate immune receptors, termed pattern recognition receptors (PRRs), has boosted research on innate pathogen recognition. The immune response to a specific pathogen is not restricted to the recognition by one type of PRR or activation of a single cell type, but instead comprises complex collaborations between different receptors, cells and signal mediators. Here we will discuss the cross-talk between PRRs involved in fungal recognition, focusing on the molecular interactions occurring at the plasma membrane.
Collapse
Affiliation(s)
- S Hontelez
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Case report of a young child with disseminated histoplasmosis and review of hyper immunoglobulin e syndrome (HIES). Clin Mol Allergy 2011; 9:14. [PMID: 22126402 PMCID: PMC3248830 DOI: 10.1186/1476-7961-9-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/29/2011] [Indexed: 01/24/2023] Open
Abstract
Type 1 hyper IgE syndrome (HIES), also known as Job's Syndrome, is an autosomal dominant disorder due to defects in STAT3 signaling and Th17 differentiation. Symptoms may present during infancy but diagnosis is often made in childhood or later. HIES is characterized by immunologic and non-immunologic findings such as recurrent sinopulmonary infections, recurrent skin infections, multiple fractures, atopic dermatitis and characteristic facies. These manifestations are accompanied by elevated IgE levels and reduced IL-17 producing CD3+CD4+ T cells. Diagnosis in young children can be challenging as symptoms accumulate over time along with confounding clinical dilemmas. A NIH clinical HIES scoring system was developed in 1999, and a more recent scoring system with fewer but more pathogonomonic clinical findings was reported in 2010. These scoring systems can be used as tools to help in grading the likelihood of HIES diagnosis. We report a young child ultimately presenting with disseminated histoplasmosis and a novel STAT3 variant in the SH2 domain.
Collapse
|
41
|
Mechanisms of Candida albicans trafficking to the brain. PLoS Pathog 2011; 7:e1002305. [PMID: 21998592 PMCID: PMC3188548 DOI: 10.1371/journal.ppat.1002305] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/24/2011] [Indexed: 01/15/2023] Open
Abstract
During hematogenously disseminated disease, Candida albicans infects most organs, including the brain. We discovered that a C. albicans vps51Δ/Δ mutant had significantly increased tropism for the brain in the mouse model of disseminated disease. To investigate the mechanisms of this enhanced trafficking to the brain, we studied the interactions of wild-type C. albicans and the vps51Δ/Δ mutant with brain microvascular endothelial cells in vitro. These studies revealed that C. albicans invasion of brain endothelial cells is mediated by the fungal invasins, Als3 and Ssa1. Als3 binds to the gp96 heat shock protein, which is expressed on the surface of brain endothelial cells, but not human umbilical vein endothelial cells, whereas Ssa1 binds to a brain endothelial cell receptor other than gp96. The vps51Δ/Δ mutant has increased surface expression of Als3, which is a major cause of the increased capacity of this mutant to both invade brain endothelial cells in vitro and traffic to the brain in mice. Therefore, during disseminated disease, C. albicans traffics to and infects the brain by binding to gp96, a unique receptor that is expressed specifically on the surface of brain endothelial cells. During hematogenously disseminated infection, the fungus Candida albicans is carried by the bloodstream to virtually all organs in the body, including the brain. C. albicans infection of the brain is a significant problem in premature infants with disseminated candidiasis. To infect the brain, C. albicans must adhere to and invade the endothelial cells that line cerebral blood vessels. These endothelial cells express unique proteins on their surface that are not expressed by endothelial cells of other vascular beds. Here, we show that C. albicans infects the brain by binding to gp96, a heat shock protein that is uniquely expressed on the surface of brain endothelial cells. Gp96 is bound by the C. albicans Als3 invasin, which induces the uptake of this organism by brain endothelial cells. The C. albicans Ssa1 invasin also mediates fungal uptake by brain endothelial cells, but does so by binding to a receptor other than gp96. Thus, during hematogenously disseminated infection, C. albicans traffics to and infects the brain by binding to gp96, a receptor that is expressed specifically on the surface of brain endothelial cells.
Collapse
|
42
|
Kim TY, Chung EJ, Sohn WM, Hong SH, Yong TS. Molecular characterization of Clonorchis sinensis tetraspanin 2 extracellular loop 2. Parasitol Res 2011; 110:707-11. [PMID: 21842393 DOI: 10.1007/s00436-011-2546-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/01/2011] [Indexed: 12/27/2022]
Abstract
In the course of examining EST of the liver fluke Clonorchis sinensis, a cDNA encoding the protein similar to tetraspanin 2 (TSP-2) of blood fluke schistosome was identified as CsTSP2. TSPs are a family of eukaryotic cell membrane-spanning proteins thought to anchor multiple proteins to one area of the cell membrane. Multiple sequence alignment of CsTSP2 revealed over 40% of identities with those of schistosomes. The CCC, PXSC, and CG motives characteristic to extracellular loop 2 (EC2) region of TSP-2 were well conserved. PCR-amplified EC2 of CsTSP2 (CsTSP2EC2) was subcloned into pEXP5 NT/TOPO bacterial expression plasmid vector. Recombinant CsTSP2EC2 protein (rCsTSP2EC2) fused with 6X His tag was overexpressed bacterially and purified by using Ni-NTA affinity chromatography under denaturing condition. The purified rCsTSP2EC2 was recognized specifically by the sera from human infected with C. sinensis. Considering biological role and specific immunity of TSPs, rCsTSP2EC2 might be a probable vaccine candidate against clonorchiasis. Protective effects of immunizing rCsTSP2EC2 should be further studied.
Collapse
Affiliation(s)
- Tae Yun Kim
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | |
Collapse
|
43
|
Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci U S A 2011; 108:14270-5. [PMID: 21825168 DOI: 10.1073/pnas.1111415108] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dectin-1, the major β-glucan receptor in leukocytes, triggers an effective immune response upon fungal recognition. Here we use sortase-mediated transpeptidation, a technique that allows placement of a variety of probes on a polypeptide backbone, to monitor the behavior of labeled functional dectin-1 in live cells with and without fungal challenge. Installation of probes on dectin-1 by sortagging permitted highly specific visualization of functional protein on the cell surface and its subsequent internalization upon ligand presentation. Retrieval of sortagged dectin-1 expressed in macrophages uncovered a unique interaction between dectin-1 and galectin-3 that functions in the proinflammatory response of macrophages to pathogenic fungi. When macrophages expressing dectin-1 are exposed to Candida albicans mutants with increased exposure of β-glucan, the loss of galectin-3 dramatically accentuates the failure to trigger an appropriate TNF-α response.
Collapse
|
44
|
Abstract
Adaptive immunity has long been regarded as the major player in protection against most fungal infections. Mounting evidence suggest however, that both innate and adaptive responses intricately collaborate to produce effective antifungal protection. Dendritic cells (DCs) play an important role in initiating and orchestrating antifungal immunity; neutrophils, macrophages and other phagocytes also participate in recognising and eliminating fungal pathogens. Adaptive immunity provides a wide range of effector and regulatory responses against fungal infections. Th1 responses protect against most forms of mycoses but they associate with significant inflammation and limited pathogen persistence. By contrast, Th2 responses enhance persistence of and tolerance to fungal infections thus permitting the generation of long-lasting immunological memory. Although the role of Th17 cytokines in fungal immunity is not fully understood, they can enhance proinflammatory or anti-inflammatory responses or play a regulatory role in fungal immunity all depending on the pathogen, site/phase of infection and host immunostatus. T regulatory cells balance the activities of various Th cell subsets thereby permitting inflammation and protection on the one hand and allowing for tolerance and memory on the other. Here, recent developments in fungal immunity research are reviewed as means of tracing the emergence of a refined paradigm where innate and adaptive responses are viewed in the same light.
Collapse
Affiliation(s)
- Mawieh Hamad
- Research and Development Unit, JMS Medicals, Zarqa, Jordan.
| |
Collapse
|
45
|
Drummond RA, Brown GD. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 2011; 14:392-9. [DOI: 10.1016/j.mib.2011.07.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/13/2011] [Accepted: 07/01/2011] [Indexed: 01/10/2023]
|
46
|
Veenbergen S, van Spriel AB. Tetraspanins in the immune response against cancer. Immunol Lett 2011; 138:129-36. [DOI: 10.1016/j.imlet.2011.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/18/2011] [Accepted: 03/30/2011] [Indexed: 01/29/2023]
|
47
|
Abstract
Tetraspanins are a superfamily of integral membrane proteins involved in the organization of microdomains that consist of both cell membrane proteins and cytoplasmic signalling molecules. These microdomains are important in regulating molecular recognition at the cell surface and subsequent signal transduction processes central to the generation of an efficient immune response. Tetraspanins, both immune-cell-specific, such as CD37, and ubiquitously expressed, such as CD81, have been shown to be imp-ortant in both innate and adaptive cellular immunity. This is via their molecular interaction with important immune cell-surface molecules such as antigen-presenting MHC proteins, T-cell co-receptors CD4 and CD8, as well as cytoplasmic molecules such as Lck and PKC (protein kinase C). Moreover, the generation of tetraspanin-deficient mice has enabled the study of these proteins in immunity. A variety of tetraspanins have a role in the regulation of pattern recognition, antigen presentation and T-cell proliferation. Recent studies have also begun to elucidate roles for tetraspanins in macrophages, NK cells (natural killer cells) and granulocytes.
Collapse
|
48
|
Abstract
The tetraspanins represent a large superfamily of four-transmembrane proteins that are expressed on all nucleated cells. Tetraspanins play a prominent role in the organization of the plasma membrane by co-ordinating the spatial localization of transmembrane proteins and signalling molecules into 'tetraspanin microdomains'. In immune cells, tetraspanins interact with key leucocyte receptors [including MHC molecules, integrins, CD4/CD8 and the BCR (B-cell receptor) complex] and as such can modulate leucocyte receptor activation and downstream signalling pathways. There is now ample evidence that tetraspanins on B-lymphocytes are important in controlling antibody production. The tetraspanin CD81 interacts with the BCR complex and is critical for CD19 expression and IgG production, whereas the tetraspanin CD37 inhibits IgA production and is important for IgG production. By contrast, the tetraspanins CD9, Tssc6 and CD151 appear dispensable for humoral immune responses. Thus individual tetraspanin family members have specific functions in B-cell biology, which is evidenced by recent studies in tetraspanin-deficient mice and humans. The present review focuses on tetraspanins expressed by B-lymphocytes and discusses novel insights into the function of tetraspanins in the humoral immune response.
Collapse
|
49
|
Characterization of antibody responses to the Sj23 antigen of Schistosoma japonicum after infection and immunization. Acta Trop 2010; 116:9-14. [PMID: 20452323 DOI: 10.1016/j.actatropica.2010.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/27/2010] [Accepted: 04/30/2010] [Indexed: 01/22/2023]
Abstract
Sj23, a member of the tetraspanin protein family, is a 23-kDa surface-exposed protein of Schistosoma japonicum and expressed in all infective parasite stages, which has been regarded as a potential candidate in vaccine development for schistosomiasis. In this study, we found that, in the BALB/c mouse model, Sj23 elicited rapid humoral responses after parasite infection and the dominant antibodies were of IgG2a subclass. Immunization with Sj23 by priming with recombinant SFV RNA virus particles followed by a boost with recombinant protein also generated strong IgG2a responses which did not provide protection against challenge with cercariae. Our data indicated that one of the functions of Sj23 of S. japonicum is to facilitate parasite immune regulation. Sj23 antigen-based vaccine may require strong adjuvant that can drive IgG1 responses which are more critical in resistance to helminth infection.
Collapse
|
50
|
Netea MG, Maródi L. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol 2010; 31:346-53. [DOI: 10.1016/j.it.2010.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/10/2010] [Accepted: 06/22/2010] [Indexed: 02/07/2023]
|