1
|
Ribes JM, Patel MP, Halim HA, Berretta A, Tooze SA, Klöhn PC. Prion protein conversion at two distinct cellular sites precedes fibrillisation. Nat Commun 2023; 14:8354. [PMID: 38102121 PMCID: PMC10724300 DOI: 10.1038/s41467-023-43961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
The self-templating nature of prions plays a central role in prion pathogenesis and is associated with infectivity and transmissibility. Since propagation of proteopathic seeds has now been acknowledged a principal pathogenic process in many types of dementia, more insight into the molecular mechanism of prion replication is vital to delineate specific and common disease pathways. By employing highly discriminatory anti-PrP antibodies and conversion-tolerant PrP chimera, we here report that de novo PrP conversion and formation of fibril-like PrP aggregates are distinct in mechanistic and kinetic terms. De novo PrP conversion occurs within minutes after infection at two subcellular locations, while fibril-like PrP aggregates are formed exclusively at the plasma membrane, hours after infection. Phenotypically distinct pools of abnormal PrP at perinuclear sites and the plasma membrane show differences in N-terminal processing, aggregation state and fibril formation and are linked by exocytic transport via synaptic and large-dense core vesicles.
Collapse
Affiliation(s)
- Juan Manuel Ribes
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
| | - Mitali P Patel
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
| | - Hazim A Halim
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
| | - Antonio Berretta
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, the Francis Crick Institute, London, NW1 1BF, UK
| | - Peter-Christian Klöhn
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK.
| |
Collapse
|
2
|
Celauro L, Burato A, Zattoni M, De Cecco E, Fantuz M, Cazzaniga FA, Bistaffa E, Moda F, Legname G. Different tau fibril types reduce prion level in chronically and de novo infected cells. J Biol Chem 2023; 299:105054. [PMID: 37454740 PMCID: PMC10432985 DOI: 10.1016/j.jbc.2023.105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Neurodegenerative diseases are often characterized by the codeposition of different amyloidogenic proteins, normally defining distinct proteinopathies. An example is represented by prion diseases, where the classical deposition of the aberrant conformational isoform of the prion protein (PrPSc) can be associated with tau insoluble species, which are usually involved in another class of diseases called tauopathies. How this copresence of amyloidogenic proteins can influence the progression of prion diseases is still a matter of debate. Recently, the cellular form of the prion protein, PrPC, has been investigated as a possible receptor of amyloidogenic proteins, since its binding activity with Aβ, tau, and α-synuclein has been reported, and it has been linked to several neurotoxic behaviors exerted by these proteins. We have previously shown that the treatment of chronically prion-infected cells with tau K18 fibrils reduced PrPSc levels. In this work, we further explored this mechanism by using another tau construct that includes the sequence that forms the core of Alzheimer's disease tau filaments in vivo to obtain a distinct fibril type. Despite a difference of six amino acids, these two constructs form fibrils characterized by distinct biochemical and biological features. However, their effects on PrPSc reduction were comparable and probably based on the binding to PrPC at the plasma membrane, inhibiting the pathological conversion event. Our results suggest PrPC as receptor for different types of tau fibrils and point out a role of tau amyloid fibrils in preventing the pathological PrPC to PrPSc conformational change.
Collapse
Affiliation(s)
- Luigi Celauro
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Anna Burato
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Marco Zattoni
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Elena De Cecco
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Marco Fantuz
- Fondazione per la Ricerca Biomedica Avanzata VIMM, Padova, Italy; Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Federico Angelo Cazzaniga
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Edoardo Bistaffa
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
3
|
Rudinskiy M, Molinari M. ER-to-lysosome-associated degradation in a nutshell: mammalian, yeast, and plant ER-phagy as induced by misfolded proteins. FEBS Lett 2023; 597:1928-1945. [PMID: 37259628 DOI: 10.1002/1873-3468.14674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Conserved catabolic pathways operate to remove aberrant polypeptides from the endoplasmic reticulum (ER), the major biosynthetic organelle of eukaryotic cells. The best known are the ER-associated degradation (ERAD) pathways that control the retrotranslocation of terminally misfolded proteins across the ER membrane for clearance by the cytoplasmic ubiquitin/proteasome system. In this review, we catalog folding-defective mammalian, yeast, and plant proteins that fail to engage ERAD machineries. We describe that they rather segregate in ER subdomains that eventually vesiculate. These ER-derived vesicles are captured by double membrane autophagosomes, engulfed by endolysosomes/vacuoles, or fused with degradative organelles to clear cells from their toxic cargo. These client-specific, mechanistically diverse ER-phagy pathways are grouped under the umbrella term of ER-to-lysosome-associated degradation for description in this essay.
Collapse
Affiliation(s)
- Mikhail Rudinskiy
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Maurizio Molinari
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| |
Collapse
|
4
|
Lawrence JA, Aguilar-Calvo P, Ojeda-Juárez D, Khuu H, Soldau K, Pizzo DP, Wang J, Malik A, Shay TF, Sullivan EE, Aulston B, Song SM, Callender JA, Sanchez H, Geschwind MD, Roy S, Rissman RA, Trejo J, Tanaka N, Wu C, Chen X, Patrick GN, Sigurdson CJ. Diminished Neuronal ESCRT-0 Function Exacerbates AMPA Receptor Derangement and Accelerates Prion-Induced Neurodegeneration. J Neurosci 2023; 43:3970-3984. [PMID: 37019623 PMCID: PMC10219035 DOI: 10.1523/jneurosci.1878-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Endolysosomal defects in neurons are central to the pathogenesis of prion and other neurodegenerative disorders. In prion disease, prion oligomers traffic through the multivesicular body (MVB) and are routed for degradation in lysosomes or for release in exosomes, yet how prions impact proteostatic pathways is unclear. We found that prion-affected human and mouse brain showed a marked reduction in Hrs and STAM1 (ESCRT-0), which route ubiquitinated membrane proteins from early endosomes into MVBs. To determine how the reduction in ESCRT-0 impacts prion conversion and cellular toxicity in vivo, we prion-challenged conditional knockout mice (male and female) having Hrs deleted from neurons, astrocytes, or microglia. The neuronal, but not astrocytic or microglial, Hrs-depleted mice showed a shortened survival and an acceleration in synaptic derangements, including an accumulation of ubiquitinated proteins, deregulation of phosphorylated AMPA and metabotropic glutamate receptors, and profoundly altered synaptic structure, all of which occurred later in the prion-infected control mice. Finally, we found that neuronal Hrs (nHrs) depletion increased surface levels of the cellular prion protein, PrPC, which may contribute to the rapidly advancing disease through neurotoxic signaling. Taken together, the reduced Hrs in the prion-affected brain hampers ubiquitinated protein clearance at the synapse, exacerbates postsynaptic glutamate receptor deregulation, and accelerates neurodegeneration.SIGNIFICANCE STATEMENT Prion diseases are rapidly progressive neurodegenerative disorders characterized by prion aggregate spread through the central nervous system. Early disease features include ubiquitinated protein accumulation and synapse loss. Here, we investigate how prion aggregates alter ubiquitinated protein clearance pathways (ESCRT) in mouse and human prion-infected brain, discovering a marked reduction in Hrs. Using a prion-infection mouse model with neuronal Hrs (nHrs) depleted, we show that low neuronal Hrs is detrimental and markedly shortens survival time while accelerating synaptic derangements, including ubiquitinated protein accumulation, indicating that Hrs loss exacerbates prion disease progression. Additionally, Hrs depletion increases the surface distribution of prion protein (PrPC), linked to aggregate-induced neurotoxic signaling, suggesting that Hrs loss in prion disease accelerates disease through enhancing PrPC-mediated neurotoxic signaling.
Collapse
Affiliation(s)
- Jessica A Lawrence
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Patricia Aguilar-Calvo
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Daniel Ojeda-Juárez
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Helen Khuu
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Katrin Soldau
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Jin Wang
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Adela Malik
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Erin E Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brent Aulston
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Seung Min Song
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Julia A Callender
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Henry Sanchez
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143
| | - Michael D Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Nobuyuki Tanaka
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
- Division of Tumor Immunobiology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Xu Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Gentry N Patrick
- Department of Biology, University of California, San Diego, La Jolla, California 92093
| | - Christina J Sigurdson
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, California 95616
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
5
|
Olech M. Conventional and State-of-the-Art Detection Methods of Bovine Spongiform Encephalopathy (BSE). Int J Mol Sci 2023; 24:ijms24087135. [PMID: 37108297 PMCID: PMC10139118 DOI: 10.3390/ijms24087135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to a group of diseases known as transmissible spongiform encephalopathies (TSEs). It is believed that the infectious agent responsible for prion diseases is abnormally folded prion protein (PrPSc), which derives from a normal cellular protein (PrPC), which is a cell surface glycoprotein predominantly expressed in neurons. There are three different types of BSE, the classical BSE (C-type) strain and two atypical strains (H-type and L-type). BSE is primarily a disease of cattle; however, sheep and goats also can be infected with BSE strains and develop a disease clinically and pathogenically indistinguishable from scrapie. Therefore, TSE cases in cattle and small ruminants require discriminatory testing to determine whether the TSE is BSE or scrapie and to discriminate classical BSE from the atypical H- or L-type strains. Many methods have been developed for the detection of BSE and have been reported in numerous studies. Detection of BSE is mainly based on the identification of characteristic lesions or detection of the PrPSc in the brain, often by use of their partial proteinase K resistance properties. The objective of this paper was to summarize the currently available methods, highlight their diagnostic performance, and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
6
|
Alves Conceição C, Assis de Lemos G, Barros CA, Vieira TCRG. What is the role of lipids in prion conversion and disease? Front Mol Neurosci 2023; 15:1032541. [PMID: 36704327 PMCID: PMC9871914 DOI: 10.3389/fnmol.2022.1032541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular cause of transmissible spongiform encephalopathies (TSEs) involves the conversion of the cellular prion protein (PrPC) into its pathogenic form, called prion scrapie (PrPSc), which is prone to the formation of amorphous and amyloid aggregates found in TSE patients. Although the mechanisms of conversion of PrPC into PrPSc are not entirely understood, two key points are currently accepted: (i) PrPSc acts as a seed for the recruitment of native PrPC, inducing the latter's conversion to PrPSc; and (ii) other biomolecules, such as DNA, RNA, or lipids, can act as cofactors, mediating the conversion from PrPC to PrPSc. Interestingly, PrPC is anchored by a glycosylphosphatidylinositol molecule in the outer cell membrane. Therefore, interactions with lipid membranes or alterations in the membranes themselves have been widely investigated as possible factors for conversion. Alone or in combination with RNA molecules, lipids can induce the formation of PrP in vitro-produced aggregates capable of infecting animal models. Here, we discuss the role of lipids in prion conversion and infectivity, highlighting the structural and cytotoxic aspects of lipid-prion interactions. Strikingly, disorders like Alzheimer's and Parkinson's disease also seem to be caused by changes in protein structure and share pathogenic mechanisms with TSEs. Thus, we posit that comprehending the process of PrP conversion is relevant to understanding critical events involved in a variety of neurodegenerative disorders and will contribute to developing future therapeutic strategies for these devastating conditions.
Collapse
Affiliation(s)
- Cyntia Alves Conceição
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Assis de Lemos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Augusto Barros
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Tuane C. R. G. Vieira, ✉
| |
Collapse
|
7
|
Loss of small GTPase Rab7 activation in prion infection negatively affects a feedback loop regulating neuronal cholesterol metabolism. J Biol Chem 2023; 299:102883. [PMID: 36623732 PMCID: PMC9926124 DOI: 10.1016/j.jbc.2023.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative diseases that occur in humans and animals. They are caused by the misfolding of the cellular prion protein PrPc into the infectious isoform PrPSc. PrPSc accumulates mostly in endolysosomal vesicles of prion-infected cells, eventually causing neurodegeneration. In response to prion infection, elevated cholesterol levels and a reduction in membrane-attached small GTPase Rab7 have been observed in neuronal cells. Here, we investigated the molecular events causing an impaired Rab7 membrane attachment and the potential mechanistic link with elevated cholesterol levels in prion infection. We demonstrate that prion infection is associated with reduced levels of active Rab7 (Rab7.GTP) in persistently prion-infected neuronal cell lines, primary cerebellar granular neurons, and neurons in the brain of mice with terminal prion disease. In primary cerebellar granular neurons, levels of active Rab7 were increased during the very early stages of the prion infection prior to a significant decrease concomitant with PrPSc accumulation. The reduced activation of Rab7 in prion-infected neuronal cell lines is also associated with its reduced ubiquitination status, decreased interaction with its effector RILP, and altered lysosomal positioning. Consequently, the Rab7-mediated trafficking of low-density lipoprotein to lysosomes is delayed. This results in an impaired feedback regulation of cholesterol synthesis leading to an increase in cholesterol levels. Notably, transient overexpression of the constitutively active mutant of Rab7 rescues the delay in the low-density lipoprotein trafficking, hence reducing cholesterol levels and attenuating PrPSc propagation, demonstrating a mechanistic link between the loss of Rab7.GTP and elevated cholesterol levels.
Collapse
|
8
|
Celauro L, Zattoni M, Legname G. Prion receptors, prion internalization, intra- and inter-cellular transport. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:15-41. [PMID: 36813357 DOI: 10.1016/bs.pmbts.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
9
|
Murakami K, Ono K. Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB J 2022; 36:e22493. [PMID: 35971743 DOI: 10.1096/fj.202200235r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023]
Abstract
The aggregation of amyloidogenic proteins is a pathological hallmark of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these diseases, oligomeric intermediates or toxic aggregates of amyloids cause neuronal damage and degeneration. Despite the substantial effort made over recent decades to implement therapeutic interventions, these neurodegenerative diseases are not yet understood at the molecular level. In many cases, multiple disease-causing amyloids overlap in a sole pathological feature or a sole disease-causing amyloid represents multiple pathological features. Various amyloid pathologies can coexist in the same brain with or without clinical presentation and may even occur in individuals without disease. From sparse data, speculation has arisen regarding the coaggregation of amyloids with disparate amyloid species and other biomolecules, which are the same characteristics that make diagnostics and drug development challenging. However, advances in research related to biomolecular condensates and structural analysis have been used to overcome some of these challenges. Considering the development of these resources and techniques, herein we review the cross-seeding of amyloidosis, for example, involving the amyloids amyloid β, tau, α-synuclein, and human islet amyloid polypeptide, and their cross-inhibition by transthyretin and BRICHOS. The interplay of nucleic acid-binding proteins, such as prions, TAR DNA-binding protein 43, fused in sarcoma/translated in liposarcoma, and fragile X mental retardation polyglycine, with nucleic acids in the pathology of neurodegeneration are also described, and we thereby highlight the potential clinical applications in central nervous system therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Cholesterol and its reciprocal association with prion infection. Cell Tissue Res 2022; 392:235-246. [PMID: 35821439 DOI: 10.1007/s00441-022-03669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are incurable, infectious and fatal neurodegenerative diseases that affect both humans and animals. The pathogenesis of prion disease involves the misfolding of the cellular prion protein, PrPC, to a disease-causing conformation, PrPSc, in the brain. The exact mechanism of conversion of PrPC to PrPSc is not clear; however, there are numerous studies supporting that this process of misfolding requires the association of PrPC with lipid raft domains of the plasma membrane. An increase in the cellular cholesterol content with prion infection has been observed in both in vivo and in vitro studies. As cholesterol is critical for the formation of lipid rafts, on the one hand, this increase may be related to, or aiding in, the process of prion conversion. On the other hand, increased cholesterol levels may affect neuronal viability. Here, we discuss current literature on the underlying mechanisms and potential consequences of elevated neuronal cholesterol in prion infection and advancements in prion disease therapeutics targeting brain cholesterol homeostasis.
Collapse
|
11
|
Subedi S, Sasidharan S, Nag N, Saudagar P, Tripathi T. Amyloid Cross-Seeding: Mechanism, Implication, and Inhibition. Molecules 2022; 27:1776. [PMID: 35335141 PMCID: PMC8955620 DOI: 10.3390/molecules27061776] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Most neurodegenerative diseases such as Alzheimer's disease, type 2 diabetes, Parkinson's disease, etc. are caused by inclusions and plaques containing misfolded protein aggregates. These protein aggregates are essentially formed by the interactions of either the same (homologous) or different (heterologous) sequences. Several experimental pieces of evidence have revealed the presence of cross-seeding in amyloid proteins, which results in a multicomponent assembly; however, the molecular and structural details remain less explored. Here, we discuss the amyloid proteins and the cross-seeding phenomena in detail. Data suggest that targeting the common epitope of the interacting amyloid proteins may be a better therapeutic option than targeting only one species. We also examine the dual inhibitors that target the amyloid proteins participating in the cross-seeding events. The future scopes and major challenges in understanding the mechanism and developing therapeutics are also considered. Detailed knowledge of the amyloid cross-seeding will stimulate further research in the practical aspects and better designing anti-amyloid therapeutics.
Collapse
Affiliation(s)
- Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India;
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India;
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| |
Collapse
|
12
|
Heumüller SE, Hornberger AC, Hebestreit AS, Hossinger A, Vorberg IM. Propagation and Dissemination Strategies of Transmissible Spongiform Encephalopathy Agents in Mammalian Cells. Int J Mol Sci 2022; 23:ijms23062909. [PMID: 35328330 PMCID: PMC8949484 DOI: 10.3390/ijms23062909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion disorders are fatal infectious diseases that cause characteristic spongiform degeneration in the central nervous system. The causative agent, the so-called prion, is an unconventional infectious agent that propagates by converting the host-encoded cellular prion protein PrP into ordered protein aggregates with infectious properties. Prions are devoid of coding nucleic acid and thus rely on the host cell machinery for propagation. While it is now established that, in addition to PrP, other cellular factors or processes determine the susceptibility of cell lines to prion infection, exact factors and cellular processes remain broadly obscure. Still, cellular models have uncovered important aspects of prion propagation and revealed intercellular dissemination strategies shared with other intracellular pathogens. Here, we summarize what we learned about the processes of prion invasion, intracellular replication and subsequent dissemination from ex vivo cell models.
Collapse
Affiliation(s)
- Stefanie-Elisabeth Heumüller
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Annika C. Hornberger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Alina S. Hebestreit
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - André Hossinger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Ina M. Vorberg
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
13
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
14
|
Chassefeyre R, Chaiamarit T, Verhelle A, Novak SW, Andrade LR, Leitão ADG, Manor U, Encalada SE. Endosomal sorting drives the formation of axonal prion protein endoggresomes. SCIENCE ADVANCES 2021; 7:eabg3693. [PMID: 34936461 PMCID: PMC8694590 DOI: 10.1126/sciadv.abg3693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 11/05/2021] [Indexed: 05/15/2023]
Abstract
The pathogenic aggregation of misfolded prion protein (PrP) in axons underlies prion disease pathologies. The molecular mechanisms driving axonal misfolded PrP aggregate formation leading to neurotoxicity are unknown. We found that the small endolysosomal guanosine triphosphatase (GTPase) Arl8b recruits kinesin-1 and Vps41 (HOPS) onto endosomes carrying misfolded mutant PrP to promote their axonal entry and homotypic fusion toward aggregation inside enlarged endomembranes that we call endoggresomes. This axonal rapid endosomal sorting and transport-dependent aggregation (ARESTA) mechanism forms pathologic PrP endoggresomes that impair calcium dynamics and reduce neuronal viability. Inhibiting ARESTA diminishes endoggresome formation, rescues calcium influx, and prevents neuronal death. Our results identify ARESTA as a key pathway for the regulation of endoggresome formation and a new actionable antiaggregation target to ameliorate neuronal dysfunction in the prionopathies.
Collapse
Affiliation(s)
- Romain Chassefeyre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tai Chaiamarit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adriaan Verhelle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Leonardo R. Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - André D. G. Leitão
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sandra E. Encalada
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Panes JD, Saavedra P, Pineda B, Escobar K, Cuevas ME, Moraga-Cid G, Fuentealba J, Rivas CI, Rezaei H, Muñoz-Montesino C. PrP C as a Transducer of Physiological and Pathological Signals. Front Mol Neurosci 2021; 14:762918. [PMID: 34880726 PMCID: PMC8648500 DOI: 10.3389/fnmol.2021.762918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
After the discovery of prion phenomenon, the physiological role of the cellular prion protein (PrP C ) remained elusive. In the past decades, molecular and cellular analysis has shed some light regarding interactions and functions of PrP C in health and disease. PrP C , which is located mainly at the plasma membrane of neuronal cells attached by a glycosylphosphatidylinositol (GPI) anchor, can act as a receptor or transducer from external signaling. Although the precise role of PrP C remains elusive, a variety of functions have been proposed for this protein, namely, neuronal excitability and viability. Although many issues must be solved to clearly define the role of PrP C , its connection to the central nervous system (CNS) and to several misfolding-associated diseases makes PrP C an interesting pharmacological target. In a physiological context, several reports have proposed that PrP C modulates synaptic transmission, interacting with various proteins, namely, ion pumps, channels, and metabotropic receptors. PrP C has also been implicated in the pathophysiological cell signaling induced by β-amyloid peptide that leads to synaptic dysfunction in the context of Alzheimer's disease (AD), as a mediator of Aβ-induced cell toxicity. Additionally, it has been implicated in other proteinopathies as well. In this review, we aimed to analyze the role of PrP C as a transducer of physiological and pathological signaling.
Collapse
Affiliation(s)
- Jessica D Panes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paulina Saavedra
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Benjamin Pineda
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Kathleen Escobar
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Magdalena E Cuevas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Human Rezaei
- Virologie et Immunologie Moléculaires (VIM), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Jouy-en-Josas, France.,Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France.,Université Paris-Saclay, Jouy-en-Josas, France
| | - Carola Muñoz-Montesino
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
16
|
Di Natale C, Natale CF, Florio D, Netti PA, Morelli G, Ventre M, Marasco D. Effects of surface nanopatterning on internalization and amyloid aggregation of the fragment 264-277 of Nucleophosmin 1. Colloids Surf B Biointerfaces 2020; 197:111439. [PMID: 33137636 DOI: 10.1016/j.colsurfb.2020.111439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
The mechanical interpretation of the plethora of factors that governs cellular localization of amyloid aggregates is crucial for planning novel therapeutical interventions in neurodegenerative diseases since these aggregates exert a primary role in the proteostasis machinery. The uptake of Cell Penetrating Peptides (CPPs) conjugated with different amyloid polypeptides occurs via different endocytic processes regulated by cytoskeleton organization and cell morphology. Herein, we deepened the internalization of an amyloid system in cells cultured on nanopatterned surfaces that represent a powerful tool to shape cell and regulate its contractility. We analyzed the behavior of an amyloid model system, employing NPM1264-277 sequence, covalently conjugated to Tat fragment 48-60 as CPP. To investigate its internalization mechanism, we followed the formation of aggregates on two kinds of substrates: a flat and a nanopatterned surface. Herein, investigations during time were carried out by employing both confocal and second harmonic generation (SHG) microscopies. We showed that modifications of cellular environment affect peptide localization, its cytoplasmic translocation and the size of amyloid aggregates.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Carlo F Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | | | - Maurizio Ventre
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy
| |
Collapse
|
17
|
A New Take on Prion Protein Dynamics in Cellular Trafficking. Int J Mol Sci 2020; 21:ijms21207763. [PMID: 33092231 PMCID: PMC7589859 DOI: 10.3390/ijms21207763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The mobility of cellular prion protein (PrPC) in specific cell membrane domains and among distinct cell compartments dictates its molecular interactions and directs its cell function. PrPC works in concert with several partners to organize signaling platforms implicated in various cellular processes. The scaffold property of PrPC is able to gather a molecular repertoire to create heterogeneous membrane domains that favor endocytic events. Dynamic trafficking of PrPC through multiple pathways, in a well-orchestrated mechanism of intra and extracellular vesicular transport, defines its functional plasticity, and also assists the conversion and spreading of its infectious isoform associated with neurodegenerative diseases. In this review, we highlight how PrPC traffics across intra- and extracellular compartments and the consequences of this dynamic transport in governing cell functions and contributing to prion disease pathogenesis.
Collapse
|
18
|
The Role of Vesicle Trafficking Defects in the Pathogenesis of Prion and Prion-Like Disorders. Int J Mol Sci 2020; 21:ijms21197016. [PMID: 32977678 PMCID: PMC7582986 DOI: 10.3390/ijms21197016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Prion diseases are fatal and transmissible neurodegenerative diseases in which the cellular form of the prion protein ‘PrPc’, misfolds into an infectious and aggregation prone isoform termed PrPSc, which is the primary component of prions. Many neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, and polyglutamine diseases, such as Huntington’s disease, are considered prion-like disorders because of the common characteristics in the propagation and spreading of misfolded proteins that they share with the prion diseases. Unlike prion diseases, these are non-infectious outside experimental settings. Many vesicular trafficking impairments, which are observed in prion and prion-like disorders, favor the accumulation of the pathogenic amyloid aggregates. In addition, many of the vesicular trafficking impairments that arise in these diseases, turn out to be further aggravating factors. This review offers an insight into the currently known vesicular trafficking defects in these neurodegenerative diseases and their implications on disease progression. These findings suggest that these impaired trafficking pathways may represent similar therapeutic targets in these classes of neurodegenerative disorders.
Collapse
|
19
|
Stepanchuk A, Tahir W, Nilsson KPR, Schatzl HM, Stys PK. Early detection of prion protein aggregation with a fluorescent pentameric oligothiophene probe using spectral confocal microscopy. J Neurochem 2020; 156:1033-1048. [PMID: 32799317 DOI: 10.1111/jnc.15148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
Abstract
Misfolding of the prion protein (PrP) and templating of its pathological conformation onto cognate proteins causes a number of lethal disorders of central nervous system in humans and animals, such as Creutzfeldt-Jacob disease, chronic wasting disease and bovine spongiform encephalopathy. Structural rearrangement of PrPC into PrPSc promotes aggregation of misfolded proteins into β-sheet-rich fibrils, which can be visualized by conformationally sensitive fluorescent probes. Early detection of prion misfolding and deposition might provide useful insights into its pathophysiology. Pentameric formyl thiophene acetic acid (pFTAA) is a novel amyloid probe that was shown to sensitively detect various misfolded proteins, including PrP. Here, we compared sensitivity of pFTAA staining and spectral microscopy with conventional methods of prion detection in mouse brains infected with mouse-adapted 22L prions. pFTAA bound to prion deposits in mouse brain sections exhibited a red-shifted fluorescence emission spectrum, which quantitatively increased with disease progression. Small prion deposits were detected as early as 50 days post-inoculation, well before appearance of clinical signs. Moreover, we detected significant spectral shifts in the greater brain parenchyma as early as 25 days post-inoculation, rivaling the most sensitive conventional method (real-time quaking-induced conversion). These results showcase the potential of pFTAA staining combined with spectral imaging for screening of prion-infected tissue. Not only does this method have comparable sensitivity to established techniques, it is faster and technically simpler. Finally, this readout provides valuable information about the spatial distribution of prion aggregates across tissue in the earliest stages of infection, potentially providing valuable pathophysiological insight into prion transmission.
Collapse
Affiliation(s)
- Anastasiia Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Waqas Tahir
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Hermann M Schatzl
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins. Biomolecules 2020; 10:biom10091305. [PMID: 32927676 PMCID: PMC7563560 DOI: 10.3390/biom10091305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Many devastating neurodegenerative diseases are driven by the misfolding of normal proteins into a pathogenic abnormal conformation. Examples of such protein misfolding diseases include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases. The misfolded proteins involved in these diseases form self-templating oligomeric assemblies that recruit further correctly folded protein and induce their conversion. Over time, this leads to the formation of high molecular and mostly fibrillar aggregates that are increasingly inefficient at converting normal protein. Evidence from a multitude of in vitro models suggests that fibrils are fragmented to form new seeds, which can convert further normal protein and also spread to neighboring cells as observed in vivo. While fragmentation and seed generation were suggested as crucial steps in aggregate formation decades ago, the biological pathways involved remain largely unknown. Here, we show that mechanisms of aggregate clearance—namely the mammalian Hsp70–Hsp40–Hsp110 tri-chaperone system, macro-autophagy, and the proteasome system—may not only be protective, but also play a role in fragmentation. We further review the challenges that exist in determining the precise contribution of these mechanisms to protein misfolding diseases and suggest future directions to resolve these issues.
Collapse
|
21
|
Jones E, Mead S. Genetic risk factors for Creutzfeldt-Jakob disease. Neurobiol Dis 2020; 142:104973. [PMID: 32565065 DOI: 10.1016/j.nbd.2020.104973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022] Open
Abstract
Prion diseases are a group of fatal neurodegenerative disorders of mammals that share a central role for prion protein (PrP, gene PRNP) in their pathogenesis. Prions are infectious agents that account for the observed transmission of prion diseases between humans and animals in certain circumstances. The prion mechanism invokes a misfolded and multimeric assembly of PrP (a prion) that grows by templating of the normal protein and propagates by fission. Aside from the medical and public health notoriety of acquired prion diseases, the conditions have attracted interest as it has been realized that common neurodegenerative disorders share so-called prion-like mechanisms. In this article we will expand on recent evidence for new genetic loci that alter the risk of human prion disease. The most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), is characterized by the seemingly spontaneous appearance of prions in the brain. Genetic variation within PRNP is associated with all types of prion diseases, in particular, heterozygous genotypes at codons 129 and 219 have long been known to be strong protective factors against sCJD. A large number of rare mutations have been described in PRNP that cause autosomal dominant inherited prion diseases. Two loci recently identified by genome-wide association study increase sCJD risk, including variants in or near to STX6 and GAL3ST1. STX6 encodes syntaxin-6, a component of SNARE complexes with cellular roles that include the fusion of intracellular vesicles with target membranes. GAL3ST1 encodes cerebroside sulfotransferase, the only enzyme that sulfates sphingolipids to make sulfatides, a major lipid component of myelin. We discuss how these roles may modify the pathogenesis of prion diseases and their relevance for other neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Jones
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, 33 Cleveland Street, W1W 7FF, United Kingdom
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, 33 Cleveland Street, W1W 7FF, United Kingdom.
| |
Collapse
|
22
|
Salzano G, Brennich M, Mancini G, Tran TH, Legname G, D'Angelo P, Giachin G. Deciphering Copper Coordination in the Mammalian Prion Protein Amyloidogenic Domain. Biophys J 2020; 118:676-687. [PMID: 31952810 DOI: 10.1016/j.bpj.2019.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Prions are pathological isoforms of the cellular prion protein that is responsible for transmissible spongiform encephalopathies (TSE). Cellular prion protein interacts with copper, Cu(II), through octarepeat and nonoctarepeat (non-OR) binding sites. The molecular details of Cu(II) coordination within the non-OR region are not well characterized yet. By the means of small angle x-ray scattering and x-ray absorption spectroscopic methods, we have investigated the effect of Cu(II) on prion protein folding and its coordination geometries when bound to the non-OR region of recombinant prion proteins (recPrP) from mammalian species considered resistant or susceptible to TSE. As the prion resistant model, we used ovine recPrP (OvPrP) carrying the protective polymorphism at residues A136, R154, and R171, whereas as TSE-susceptible models, we employed OvPrP with V136, R154, and Q171 polymorphism and bank vole recPrP. Our analysis reveals that Cu(II) affects the structural plasticity of the non-OR region, leading to a more compacted conformation. We then identified two Cu(II) coordination geometries: in the type 1 coordination observed in OvPrP at residues A136, R154, and R171, the metal is coordinated by four residues; conversely, the type 2 coordination is present in OvPrP with V136, R154, and Q171 and bank vole recPrP, where Cu(II) is coordinated by three residues and by one water molecule, making the non-OR region more exposed to the solvent. These changes in copper coordination affect the recPrP amyloid aggregation. This study may provide new insights into the molecular mechanisms governing the resistance or susceptibility of certain species to TSE.
Collapse
Affiliation(s)
- Giulia Salzano
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Martha Brennich
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, Grenoble, France
| | - Giordano Mancini
- Scuola Normale Superiore, Pisa, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Pisa, Italy
| | - Thanh Hoa Tran
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy; ELETTRA-Sincrotrone Trieste S.C.p.A, Trieste, Italy
| | - Paola D'Angelo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.
| | - Gabriele Giachin
- European Synchrotron Radiation Facility (ESRF), Grenoble, France.
| |
Collapse
|
23
|
Suzuki A, Yamasaki T, Hasebe R, Horiuchi M. Enhancement of binding avidity by bivalent binding enables PrPSc-specific detection by anti-PrP monoclonal antibody 132. PLoS One 2019; 14:e0217944. [PMID: 31170247 PMCID: PMC6553756 DOI: 10.1371/journal.pone.0217944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/21/2019] [Indexed: 12/05/2022] Open
Abstract
Anti-prion protein (PrP) monoclonal antibody 132, which recognizes mouse PrP amino acids 119–127, enables us to reliably detect abnormal isoform prion protein (PrPSc) in cells or frozen tissue sections by immunofluorescence assay, although treatment with guanidinium salts is a prerequisite. Despite the benefit of this mAb, the mechanism of PrPSc-specific detection remains unclear. Therefore, to address this mechanism, we analyzed the reactivities of mono- and bivalent mAb 132 to recombinant mouse PrP (rMoPrP) by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR). In ELISA, binding of the monovalent form was significantly weaker than that of the bivalent form, indicating that bivalent binding confers a higher binding stability to mAb 132. Compared with other anti-PrP mAbs tested, the reactivity of bivalent mAb 132 was easily affected by a decrease in antigen concentration. The binding kinetics of mAb 132 assessed by SPR were consistent with the results of ELISA. The dissociation constant of the monovalent form was approximately 260 times higher than that of the bivalent form, suggesting that monovalent binding is less stable than bivalent binding. Furthermore, the amount of mAb 132 that bound to rMoPrP decreased if the antigen density was too low to allow bivalent binding. If two cellular PrP (PrPC) are close enough to allow bivalent binding, mAb 132 binds to PrPC. These results indicate that weak monovalent binding to monomeric PrPC diminishes PrPC signals to background level, whereas after exposure of the epitope, mAb 132 binds stably to oligomeric PrPSc in a bivalent manner.
Collapse
Affiliation(s)
- Akio Suzuki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
- Global Station for Zoonosis Control. Global Institute for Collaborative Research and Education, Hokkaido University, Kita-ku, Sapporo, Japan
- * E-mail:
| |
Collapse
|
24
|
Vorberg IM. All the Same? The Secret Life of Prion Strains within Their Target Cells. Viruses 2019; 11:v11040334. [PMID: 30970585 DOI: 10.3390/v11040334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/23/2023] Open
Abstract
Prions are infectious β-sheet-rich protein aggregates composed of misfolded prion protein (PrPSc) that do not possess coding nucleic acid. Prions replicate by recruiting and converting normal cellular PrPC into infectious isoforms. In the same host species, prion strains target distinct brain regions and cause different disease phenotypes. Prion strains are associated with biophysically distinct PrPSc conformers, suggesting that strain properties are enciphered within alternative PrPSc quaternary structures. So far it is unknown how prion strains target specific cells and initiate productive infections. Deeper mechanistic insight into the prion life cycle came from cell lines permissive to a range of different prion strains. Still, it is unknown why certain cell lines are refractory to infection by one strain but permissive to another. While pharmacologic and genetic manipulations revealed subcellular compartments involved in prion replication, little is known about strain-specific requirements for endocytic trafficking pathways. This review summarizes our knowledge on how prions replicate within their target cells and on strain-specific differences in prion cell biology.
Collapse
Affiliation(s)
- Ina M Vorberg
- German Center for Neurodegenerative Diseases (DZNE e.V.), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany.
- Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany.
| |
Collapse
|
25
|
Bartoletti-Stella A, Corrado P, Mometto N, Baiardi S, Durrenberger PF, Arzberger T, Reynolds R, Kretzschmar H, Capellari S, Parchi P. Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease. Mol Neurobiol 2018; 56:5009-5024. [PMID: 30446946 DOI: 10.1007/s12035-018-1421-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Functional genomics applied to the study of RNA expression profiles identified several abnormal molecular processes in experimental prion disease. However, only a few similar studies have been carried out to date in a naturally occurring human prion disease. To better characterize the transcriptional cascades associated with sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, we investigated the global gene expression profile in samples from the frontal cortex of 10 patients with sCJD and 10 non-neurological controls by microarray analysis. The comparison identified 333 highly differentially expressed genes (hDEGs) in sCJD. Functional enrichment Gene Ontology analysis revealed that hDEGs were mainly associated with synaptic transmission, including GABA (q value = 0.049) and glutamate (q value = 0.005) signaling, and the immune/inflammatory response. Furthermore, the analysis of cellular components performed on hDEGs showed a compromised regulation of vesicle-mediated transport with mainly up-regulated genes related to the endosome (q value = 0.01), lysosome (q value = 0.04), and extracellular exosome (q value < 0.01). A targeted analysis of the retromer core component VPS35 (vacuolar protein sorting-associated protein 35) showed a down-regulation of gene expression (p value= 0.006) and reduced brain protein levels (p value= 0.002). Taken together, these results confirm and expand previous microarray expression profile data in sCJD. Most significantly, they also demonstrate the involvement of the endosomal-lysosomal system. Since the latter is a common pathogenic pathway linking together diseases, such as Alzheimer's and Parkinson's, it might be the focus of future studies aimed to identify new therapeutic targets in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40139, Bologna, Italy
| | - Patrizia Corrado
- Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy
| | - Nicola Mometto
- Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy
| | - Simone Baiardi
- Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy
| | - Pascal F Durrenberger
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, Rayne Building, London, UK
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Hans Kretzschmar
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40139, Bologna, Italy. .,Department of Biomedical and NeuroMotor Sciences, DIBINEM, University of Bologna, 40123, Bologna, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40139, Bologna, Italy. .,Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, 40138, Bologna, Italy.
| |
Collapse
|
26
|
Dhouafli Z, Cuanalo-Contreras K, Hayouni EA, Mays CE, Soto C, Moreno-Gonzalez I. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell Mol Life Sci 2018; 75:3521-3538. [PMID: 30030591 PMCID: PMC11105286 DOI: 10.1007/s00018-018-2872-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
Protein misfolding and aggregation into fibrillar deposits is a common feature of a large group of degenerative diseases affecting the central nervous system or peripheral organs, termed protein misfolding disorders (PMDs). Despite their established toxic nature, clinical trials aiming to reduce misfolded aggregates have been unsuccessful in treating or curing PMDs. An interesting possibility for disease intervention is the regular intake of natural food or herbal extracts, which contain active molecules that inhibit aggregation or induce the disassembly of misfolded aggregates. Among natural compounds, phenolic molecules are of particular interest, since most have dual activity as amyloid aggregation inhibitors and antioxidants. In this article, we review many phenolic natural compounds which have been reported in diverse model systems to have the potential to delay or prevent the development of various PMDs, including Alzheimer's and Parkinson's diseases, prion diseases, amyotrophic lateral sclerosis, systemic amyloidosis, and type 2 diabetes. The lower toxicity of natural compounds compared to synthetic chemical molecules suggest that they could serve as a good starting point to discover protein misfolding inhibitors that might be useful for the treatment of various incurable diseases.
Collapse
Affiliation(s)
- Zohra Dhouafli
- Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Karina Cuanalo-Contreras
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - El Akrem Hayouni
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Charles E Mays
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Claudio Soto
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Ines Moreno-Gonzalez
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
- Department of Cell Biology, Networking Research Center on Neurodegenerative Diseases (CIBERNED), Facultad Ciencias, Universidad de Malaga, Málaga, Spain.
| |
Collapse
|
27
|
Abstract
The development of multiple cell culture models of prion infection over the last two decades has led to a significant increase in our understanding of how prions infect cells. In particular, new techniques to distinguish exogenous from endogenous prions have allowed us for the first time to look in depth at the earliest stages of prion infection through to the establishment of persistent infection. These studies have shown that prions can infect multiple cell types, both neuronal and nonneuronal. Once in contact with the cell, they are rapidly taken up via multiple endocytic pathways. After uptake, the initial replication of prions occurs almost immediately on the plasma membrane and within multiple endocytic compartments. Following this acute stage of prion replication, persistent prion infection may or may not be established. Establishment of a persistent prion infection in cells appears to depend upon the achievement of a delicate balance between the rate of prion replication and degradation, the rate of cell division, and the efficiency of prion spread from cell to cell. Overall, cell culture models have shown that prion infection of the cell is a complex and variable process which can involve multiple cellular pathways and compartments even within a single cell.
Collapse
Affiliation(s)
- Suzette A Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States.
| |
Collapse
|
28
|
Retrograde Transport by Clathrin-Coated Vesicles is Involved in Intracellular Transport of PrP Sc in Persistently Prion-Infected Cells. Sci Rep 2018; 8:12241. [PMID: 30115966 PMCID: PMC6095914 DOI: 10.1038/s41598-018-30775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular dynamics of an abnormal isoform of prion protein (PrPSc) are tightly associated with prion propagation. However, the machineries involved in the intracellular trafficking of PrPSc are not fully understood. Our previous study suggested that PrPSc in persistently prion-infected cells dynamically circulates between endocytic-recycling compartments (ERCs) and peripheral regions of the cells. To investigate these machineries, we focused on retrograde transport from endosomes to the trans-Golgi network, which is one of the pathways involved in recycling of molecules. PrPSc was co-localized with components of clathrin-coated vesicles (CCVs) as well as those of the retromer complex, which are known as machineries for retrograde transport. Fractionation of intracellular compartments by density gradient centrifugation showed the presence of PrPSc and the components of CCVs in the same fractions. Furthermore, PrPSc was detected in CCVs isolated from intracellular compartments of prion-infected cells. Knockdown of clathrin interactor 1, which is one of the clathrin adaptor proteins involved in retrograde transport, did not change the amount of PrPSc, but it altered the distribution of PrPSc from ERCs to peripheral regions, including late endosomes/lysosomes. These data demonstrated that some PrPSc is transported from endosomes to ERCs by CCVs, which might be involved in the recycling of PrPSc.
Collapse
|
29
|
Lebreton S, Zurzolo C, Paladino S. Organization of GPI-anchored proteins at the cell surface and its physiopathological relevance. Crit Rev Biochem Mol Biol 2018; 53:403-419. [PMID: 30040489 DOI: 10.1080/10409238.2018.1485627] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. The presence of both glycolipid anchor and protein portion confers them unique features. GPI-APs are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, neuritogenesis, and immune response. Likewise other plasma membrane proteins, the spatio-temporal organization of GPI-APs is critical for their biological activities in physiological conditions. In this review, we will summarize the latest findings on plasma membrane organization of GPI-APs and the mechanism of its regulation in different cell types. We will also examine the involvement of specific GPI-APs namely the prion protein PrPC, the Folate Receptor alpha and the urokinase plasminogen activator receptor in human diseases focusing on neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Stéphanie Lebreton
- a Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur , Paris , France
| | - Chiara Zurzolo
- a Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur , Paris , France
| | - Simona Paladino
- b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II , Napoli , Italy.,c CEINGE Biotecnologie Avanzate , Napoli , Italy
| |
Collapse
|
30
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
31
|
Abstract
During the course of prion infection, the normally soluble and protease-sensitive mammalian prion protein (PrPC) is refolded into an insoluble, partially protease-resistant, and infectious form called PrPSc. The conformational conversion of PrPC to PrPSc is a critical event during prion infection and is essential for the production of prion infectivity. This chapter briefly summarizes the ways in which cell biological approaches have enhanced our understanding of how PrP contributes to different aspects of prion pathogenesis.
Collapse
|
32
|
|
33
|
Llorens F, Thüne K, Martí E, Kanata E, Dafou D, Díaz-Lucena D, Vivancos A, Shomroni O, Zafar S, Schmitz M, Michel U, Fernández-Borges N, Andréoletti O, del Río JA, Díez J, Fischer A, Bonn S, Sklaviadis T, Torres JM, Ferrer I, Zerr I. Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis. PLoS Pathog 2018; 14:e1006802. [PMID: 29357384 PMCID: PMC5794191 DOI: 10.1371/journal.ppat.1006802] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/01/2018] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer's disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation.
Collapse
Affiliation(s)
- Franc Llorens
- Department of Neurology, University Medical School, Göttingen, Germany
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Katrin Thüne
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Translational Studies and Biomarkers, Göttingen, Germany
| | | | - Eirini Kanata
- Prion Diseases Research Group, School of Health Sciences, Department Of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniela Díaz-Lucena
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Orr Shomroni
- German Center for Neurodegenerative Diseases (DZNE), Computational Systems Biology, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Translational Studies and Biomarkers, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Translational Studies and Biomarkers, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medical School, Göttingen, Germany
| | | | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | - José Antonio del Río
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Molecular and Cellular Neurobiotechnology, Catalonian Institute for Bioengineering (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | - Juana Díez
- Molecular Virology group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andre Fischer
- German Center for Neurodegenerative Diseases (DZNE), Epigenetics and Systems Medicine in Neurodegenerative Diseases, Göttingen, Germany
| | - Stefan Bonn
- German Center for Neurodegenerative Diseases (DZNE), Computational Systems Biology, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Center for Molecular Neurobiology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodoros Sklaviadis
- Prion Diseases Research Group, School of Health Sciences, Department Of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Senior consultant, Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Translational Studies and Biomarkers, Göttingen, Germany
| |
Collapse
|
34
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
35
|
Shan Z, Yamasaki T, Suzuki A, Hasebe R, Horiuchi M. Establishment of a simple cell-based ELISA for the direct detection of abnormal isoform of prion protein from prion-infected cells without cell lysis and proteinase K treatment. Prion 2017; 10:305-18. [PMID: 27565564 DOI: 10.1080/19336896.2016.1189053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Prion-infected cells have been used for analyzing the effect of compounds on the formation of abnormal isoform of prion protein (PrP(Sc)). PrP(Sc) is usually detected using anti-prion protein (PrP) antibodies after the removal of the cellular isoform of prion protein (PrP(C)) by proteinase K (PK) treatment. However, it is expected that the PK-sensitive PrP(Sc) (PrP(Sc)-sen), which possesses higher infectivity and conversion activity than the PK-resistant PrP(Sc) (PrP(Sc)-res), is also digested through PK treatment. To overcome this problem, we established a novel cell-based ELISA in which PrP(Sc) can be directly detected from cells persistently infected with prions using anti-PrP monoclonal antibody (mAb) 132 that recognizes epitope consisting of mouse PrP amino acids 119-127. The novel cell-based ELISA could distinguish prion-infected cells from prion-uninfected cells without cell lysis and PK treatment. MAb 132 could detect both PrP(Sc)-sen and PrP(Sc)-res even if all PrP(Sc) molecules were not detected. The analytical dynamic range for PrP(Sc) detection was approximately 1 log. The coefficient of variation and signal-to-background ratio were 7%-11% and 2.5-3.3, respectively, demonstrating the reproducibility of this assay. The addition of a cytotoxicity assay immediately before PrP(Sc) detection did not affect the following PrP(Sc) detection. Thus, all the procedures including cell culture, cytotoxicity assay, and PrP(Sc) detection were completed in the same plate. The simplicity and non-requirement for cell lysis or PK treatment are advantages for the high throughput screening of anti-prion compounds.
Collapse
Affiliation(s)
- Zhifu Shan
- a Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo , Japan
| | - Takeshi Yamasaki
- a Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo , Japan
| | - Akio Suzuki
- a Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo , Japan
| | - Rie Hasebe
- a Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo , Japan
| | - Motohiro Horiuchi
- a Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo , Japan
| |
Collapse
|
36
|
Fehlinger A, Wolf H, Hossinger A, Duernberger Y, Pleschka C, Riemschoss K, Liu S, Bester R, Paulsen L, Priola SA, Groschup MH, Schätzl HM, Vorberg IM. Prion strains depend on different endocytic routes for productive infection. Sci Rep 2017; 7:6923. [PMID: 28761068 PMCID: PMC5537368 DOI: 10.1038/s41598-017-07260-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Prions are unconventional agents composed of misfolded prion protein that cause fatal neurodegenerative diseases in mammals. Prion strains induce specific neuropathological changes in selected brain areas. The mechanism of strain-specific cell tropism is unknown. We hypothesised that prion strains rely on different endocytic routes to invade and replicate within their target cells. Using prion permissive cells, we determined how impairment of endocytosis affects productive infection by prion strains 22L and RML. We demonstrate that early and late stages of prion infection are differentially sensitive to perturbation of clathrin- and caveolin-mediated endocytosis. Manipulation of canonical endocytic pathways only slightly influenced prion uptake. However, blocking the same routes had drastic strain-specific consequences on the establishment of infection. Our data argue that prion strains use different endocytic pathways for infection and suggest that cell type-dependent differences in prion uptake could contribute to host cell tropism.
Collapse
Affiliation(s)
- Andrea Fehlinger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Hanna Wolf
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - André Hossinger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Yvonne Duernberger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Catharina Pleschka
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Katrin Riemschoss
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Shu Liu
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Romina Bester
- Institut für Virologie, Technische Universität München, Trogerstr. 30, 81675, München, Germany
| | - Lydia Paulsen
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
| | - Hermann M Schätzl
- Dept. of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Ina M Vorberg
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany. .,Department of Neurology, Rheinische Friedrich-Wilhelms-Universität, 53127, Bonn, Germany.
| |
Collapse
|
37
|
Mabbott NA. Immunology of Prion Protein and Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:203-240. [PMID: 28838662 DOI: 10.1016/bs.pmbts.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom.
| |
Collapse
|
38
|
Sarnataro D, Pepe A, Zurzolo C. Cell Biology of Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:57-82. [PMID: 28838675 DOI: 10.1016/bs.pmbts.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The precise function of PrPC remains elusive but may depend upon its cellular localization. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. Nonetheless some forms of prion disease develop in the apparent absence of infectious PrPSc, suggesting that molecular species of PrP distinct from PrPSc may represent the primary neurotoxic culprits. Indeed, in some inherited cases of human prion disease, the predominant form of PrP detectable in the brain is not PrPSc but rather CtmPrP, a transmembrane form of the protein. The relationship between the neurodegeneration occurring in prion diseases involving PrPSc and that associated with CtmPrP remains unclear. However, the different membrane topology of the PrP mutants, as well as the presence of the GPI anchor, could influence both the function and the intracellular localization and trafficking of the protein, all being potentially very important in the pathophysiological mechanism that ultimately causes the disease. Here, we review the latest findings on the fundamental aspects of prions biology, from the PrPC biosynthesis, function, and structure up to its intracellular traffic and analyze the possible roles of the different topological isoforms of the protein, as well as the GPI anchor, in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Daniela Sarnataro
- University of Naples "Federico II", Naples, Italy; Ceinge-Biotecnologie avanzate, s.c.a r.l., Naples, Italy.
| | - Anna Pepe
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| |
Collapse
|
39
|
Victoria GS, Zurzolo C. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases. J Cell Biol 2017; 216:2633-2644. [PMID: 28724527 PMCID: PMC5584166 DOI: 10.1083/jcb.201701047] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/03/2017] [Accepted: 07/05/2017] [Indexed: 11/22/2022] Open
Abstract
Victoria and Zurzolo discuss current evidence for the emerging role of lysosomal damage and tunneling nanotubes in the intercellular propagation of prion and prion-like proteins in neurodegenerative disease. Progression of pathology in neurodegenerative diseases is hypothesized to be a non–cell-autonomous process that may be mediated by the productive spreading of prion-like protein aggregates from a “donor cell” that is the source of misfolded aggregates to an “acceptor cell” in which misfolding is propagated by conversion of the normal protein. Although the proteins involved in the various diseases are unrelated, common pathways appear to be used for their intercellular propagation and spreading. Here, we summarize recent evidence of the molecular mechanisms relevant for the intercellular trafficking of protein aggregates involved in prion, Alzheimer’s, Huntington’s, and Parkinson’s diseases. We focus in particular on the common roles that lysosomes and tunneling nanotubes play in the formation and spreading of prion-like assemblies.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| |
Collapse
|
40
|
Unraveling Prion Protein Interactions with Aptamers and Other PrP-Binding Nucleic Acids. Int J Mol Sci 2017; 18:ijms18051023. [PMID: 28513534 PMCID: PMC5454936 DOI: 10.3390/ijms18051023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/23/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative disorders that affect humans and other mammals. The etiologic agents common to these diseases are misfolded conformations of the prion protein (PrP). The molecular mechanisms that trigger the structural conversion of the normal cellular PrP (PrPC) into the pathogenic conformer (PrPSc) are still poorly understood. It is proposed that a molecular cofactor would act as a catalyst, lowering the activation energy of the conversion process, therefore favoring the transition of PrPC to PrPSc. Several in vitro studies have described physical interactions between PrP and different classes of molecules, which might play a role in either PrP physiology or pathology. Among these molecules, nucleic acids (NAs) are highlighted as potential PrP molecular partners. In this context, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology has proven extremely valuable to investigate PrP–NA interactions, due to its ability to select small nucleic acids, also termed aptamers, that bind PrP with high affinity and specificity. Aptamers are single-stranded DNA or RNA oligonucleotides that can be folded into a wide range of structures (from harpins to G-quadruplexes). They are selected from a nucleic acid pool containing a large number (1014–1016) of random sequences of the same size (~20–100 bases). Aptamers stand out because of their potential ability to bind with different affinities to distinct conformations of the same protein target. Therefore, the identification of high-affinity and selective PrP ligands may aid the development of new therapies and diagnostic tools for TSEs. This review will focus on the selection of aptamers targeted against either full-length or truncated forms of PrP, discussing the implications that result from interactions of PrP with NAs, and their potential advances in the studies of prions. We will also provide a critical evaluation, assuming the advantages and drawbacks of the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technique in the general field of amyloidogenic proteins.
Collapse
|
41
|
Voisset C, Blondel M, Jones GW, Friocourt G, Stahl G, Chédin S, Béringue V, Gillet R. The double life of the ribosome: When its protein folding activity supports prion propagation. Prion 2017; 11:89-97. [PMID: 28362551 DOI: 10.1080/19336896.2017.1303587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
It is no longer necessary to demonstrate that ribosome is the central machinery of protein synthesis. But it is less known that it is also key player of the protein folding process through another conserved function: the protein folding activity of the ribosome (PFAR). This ribozyme activity, discovered more than 2 decades ago, depends upon the domain V of the large rRNA within the large subunit of the ribosome. Surprisingly, we discovered that anti-prion compounds are also potent PFAR inhibitors, highlighting an unexpected link between PFAR and prion propagation. In this review, we discuss the ancestral origin of PFAR in the light of the ancient RNA world hypothesis. We also consider how this ribosomal activity fits into the landscape of cellular protein chaperones involved in the appearance and propagation of prions and other amyloids in mammals. Finally, we examine how drugs targeting the protein folding activity of the ribosome could be active against mammalian prion and other protein aggregation-based diseases, making PFAR a promising therapeutic target for various human protein misfolding diseases.
Collapse
Affiliation(s)
- Cécile Voisset
- a Inserm UMR 1078 , Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire , Brest , France
| | - Marc Blondel
- a Inserm UMR 1078 , Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire , Brest , France
| | - Gary W Jones
- b School of Clinical and Applied Sciences , Faculty of Health and Social Sciences, Leeds Beckett University , Leeds , UK
| | - Gaëlle Friocourt
- a Inserm UMR 1078 , Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire , Brest , France
| | - Guillaume Stahl
- c Laboratoire de Biologie Moléculaire Eucaryotes , CNRS, Université de Toulouse , Toulouse , France
| | - Stéphane Chédin
- d Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CEA, CNRS, Université Paris-Sud, CEA/Saclay, SBIGeM , Gif-sur-Yvette , France
| | | | - Reynald Gillet
- f Université de Rennes 1, CNRS UMR 6290 IGDR , Rennes , France
| |
Collapse
|
42
|
Majumder P, Chakrabarti O. Lysosomal Quality Control in Prion Diseases. Mol Neurobiol 2017; 55:2631-2644. [PMID: 28421536 DOI: 10.1007/s12035-017-0512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/04/2017] [Indexed: 11/28/2022]
Abstract
Prion diseases are transmissible, familial or sporadic. The prion protein (PrP), a normal cell surface glycoprotein, is ubiquitously expressed throughout the body. While loss of function of PrP does not elicit apparent phenotypes, generation of misfolded forms of the protein or its aberrant metabolic isoforms has been implicated in a number of neurodegenerative disorders such as scrapie, kuru, Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Sträussler-Scheinker and bovine spongiform encephalopathy. These diseases are all phenotypically characterised by spongiform vacuolation of the adult brain, hence collectively termed as late-onset spongiform neurodegeneration. Misfolded form of PrP (PrPSc) and one of its abnormal metabolic isoforms (the transmembrane CtmPrP) are known to be disease-causing agents that lead to progressive loss of structure or function of neurons culminating in neuronal death. The aberrant forms of PrP utilise and manipulate the various intracellular quality control mechanisms during pathogenesis of these diseases. Amongst these, the lysosomal quality control machinery emerges as one of the primary targets exploited by the disease-causing isoforms of PrP. The autophagosomal-lysosomal degradation pathway is adversely affected in multiple ways in prion diseases and may hence be regarded as an important modulator of neurodegeneration. Some of the ESCRT pathway proteins have also been shown to be involved in the manifestation of disease phenotype. This review discusses the significance of the lysosomal quality control pathway in affecting transmissible and familial types of prion diseases.
Collapse
Affiliation(s)
- Priyanka Majumder
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal, 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal, 700064, India.
| |
Collapse
|
43
|
Nishitsuji K, Uchimura K. Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj J 2017; 34:453-466. [DOI: 10.1007/s10719-017-9769-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
|
44
|
Understanding the Effect of Disease-Related Mutations on Human Prion Protein Structure: Insights From NMR Spectroscopy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:83-103. [DOI: 10.1016/bs.pmbts.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
46
|
Kim M, Kim EH, Choi BR, Woo HJ. Differentially expressed genes in iron-induced prion protein conversion. Biochem Biophys Res Commun 2016; 480:734-740. [PMID: 27983987 DOI: 10.1016/j.bbrc.2016.10.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/27/2016] [Indexed: 01/26/2023]
Abstract
The conversion of the cellular prion protein (PrPC) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrPres) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases.
Collapse
Affiliation(s)
- Minsun Kim
- Laboratory of Immunology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Hee Kim
- Laboratory of Immunology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Bo-Ran Choi
- Laboratory of Immunology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Solomon Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, PCTB1004, 725 N Wolfe Street, Baltimore, MD, USA
| | - Hee-Jong Woo
- Laboratory of Immunology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
47
|
Katorcha E, Srivastava S, Klimova N, Baskakov IV. Sialylation of Glycosylphosphatidylinositol (GPI) Anchors of Mammalian Prions Is Regulated in a Host-, Tissue-, and Cell-specific Manner. J Biol Chem 2016; 291:17009-19. [PMID: 27317661 PMCID: PMC5016106 DOI: 10.1074/jbc.m116.732040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Indexed: 01/08/2023] Open
Abstract
Prions or PrP(Sc) are proteinaceous infectious agents that consist of misfolded, self-replicating states of the prion protein or PrP(C) PrP(C) is posttranslationally modified with N-linked glycans and a sialylated glycosylphosphatidylinositol (GPI) anchor. Conformational conversion of PrP(C) gives rise to glycosylated and GPI-anchored PrP(Sc) The question of the sialylation status of GPIs within PrP(Sc) has been controversial. Previous studies that examined scrapie brains reported that both sialo- and asialo-GPIs were present in PrP(Sc), with the majority being asialo-GPIs. In contrast, recent work that employed cultured cells claimed that only PrP(C) with sialylo-GPIs could be recruited into PrP(Sc), whereas PrP(C) with asialo-GPIs inhibited conversion. To resolve this controversy, we analyzed the sialylation status of GPIs within PrP(Sc) generated in the brain, spleen, or cultured N2a or C2C12 myotube cells. We found that recruiting PrP(C) with both sialo- and asialo-GPIs is a common feature of PrP(Sc) The mixtures of sialo- and asialo-GPIs were observed in PrP(Sc) universally regardless of prion strain as well as host, tissue, or type of cells that produced PrP(Sc) Remarkably, the proportion of sialo- versus asialo-GPIs was found to be controlled by host, tissue, and cell type but not prion strain. In summary, this study found no strain-specific preferences for selecting PrP(C) with sialo- versus asialo-GPIs. Instead, this work suggests that the sialylation status of GPIs within PrP(Sc) is regulated in a cell-, tissue-, or host-specific manner and is likely to be determined by the specifics of GPI biosynthesis.
Collapse
Affiliation(s)
- Elizaveta Katorcha
- From the Center for Biomedical Engineering and Technology and the Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Saurabh Srivastava
- From the Center for Biomedical Engineering and Technology and the Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nina Klimova
- From the Center for Biomedical Engineering and Technology and the Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ilia V Baskakov
- From the Center for Biomedical Engineering and Technology and the Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
48
|
Arkhipenko A, Syan S, Victoria GS, Lebreton S, Zurzolo C. PrPC Undergoes Basal to Apical Transcytosis in Polarized Epithelial MDCK Cells. PLoS One 2016; 11:e0157991. [PMID: 27389581 PMCID: PMC4936696 DOI: 10.1371/journal.pone.0157991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/08/2016] [Indexed: 01/05/2023] Open
Abstract
The Prion Protein (PrP) is an ubiquitously expressed glycosylated membrane protein attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol anchor (GPI). While the misfolded PrPSc scrapie isoform is the infectious agent of prion disease, the cellular isoform (PrPC) is an enigmatic protein with unclear function. Of interest, PrP localization in polarized MDCK cells is controversial and its mechanism of trafficking is not clear. Here we investigated PrP traffic in MDCK cells polarized on filters and in three-dimensional MDCK cysts, a more physiological model of polarized epithelia. We found that, unlike other GPI-anchored proteins (GPI-APs), PrP undergoes basolateral-to-apical transcytosis in fully polarized MDCK cells. Following this event full-length PrP and its cleavage fragments are segregated in different domains of the plasma membrane in polarized cells in both 2D and 3D cultures.
Collapse
Affiliation(s)
- Alexander Arkhipenko
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Sylvie Syan
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Guiliana Soraya Victoria
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Stéphanie Lebreton
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| |
Collapse
|
49
|
Sanders DW, Kaufman SK, Holmes BB, Diamond MI. Prions and Protein Assemblies that Convey Biological Information in Health and Disease. Neuron 2016; 89:433-48. [PMID: 26844828 DOI: 10.1016/j.neuron.2016.01.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prions derived from the prion protein (PrP) were first characterized as infectious agents that transmit pathology between individuals. However, the majority of cases of neurodegeneration caused by PrP prions occur sporadically. Proteins that self-assemble as cross-beta sheet amyloids are a defining pathological feature of infectious prion disorders and all major age-associated neurodegenerative diseases. In fact, multiple non-infectious proteins exhibit properties of template-driven self-assembly that are strikingly similar to PrP. Evidence suggests that like PrP, many proteins form aggregates that propagate between cells and convert cognate monomer into ordered assemblies. We now recognize that numerous proteins assemble into macromolecular complexes as part of normal physiology, some of which are self-amplifying. This review highlights similarities among infectious and non-infectious neurodegenerative diseases associated with prions, emphasizing the normal and pathogenic roles of higher-order protein assemblies. We propose that studies of the structural and cellular biology of pathological versus physiological aggregates will be mutually informative.
Collapse
Affiliation(s)
- David W Sanders
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX 75390, USA; Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA
| | - Sarah K Kaufman
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX 75390, USA; Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA
| | - Brandon B Holmes
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX 75390, USA; Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
50
|
Tanaka M, Fujiwara A, Suzuki A, Yamasaki T, Hasebe R, Masujin K, Horiuchi M. Comparison of abnormal isoform of prion protein in prion-infected cell lines and primary-cultured neurons by PrPSc-specific immunostaining. J Gen Virol 2016; 97:2030-2042. [PMID: 27267758 DOI: 10.1099/jgv.0.000514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We established abnormal isoform of prion protein (PrPSc)-specific double immunostaining using mAb 132, which recognizes aa 119-127 of the PrP molecule, and novel PrPSc-specific mAb 8D5, which recognizes the N-terminal region of the PrP molecule. Using the PrPSc-specific double immunostaining, we analysed PrPSc in immortalized neuronal cell lines and primary cerebral-neuronal cultures infected with prions. The PrPSc-specific double immunostaining showed the existence of PrPSc positive for both mAbs 132 and 8D5, as well as those positive only for either mAb 132 or mAb 8D5. This indicated that double immunostaining detects a greater number of PrPSc species than single immunostaining. Double immunostaining revealed cell-type-dependent differences in PrPSc staining patterns. In the 22 L prion strain-infected Neuro2a (N2a)-3 cells, a subclone of N2a neuroblastoma cell line, or GT1-7, a subclone of the GT1 hypothalamic neuronal cell line, granular PrPSc stains were observed at the perinuclear regions and cytoplasm, whereas unique string-like PrPSc stains were predominantly observed on the surface of the 22 L strain-infected primary cerebral neurons. Only 14 % of PrPSc in the 22 L strain-infected N2a-3 cells were positive for mAb 8D5, indicating that most of the PrPSc in N2a-3 lack the N-terminal portion. In contrast, nearly half PrPSc detected in the 22 L strain-infected primary cerebral neurons were positive for mAb 8D5, suggesting the abundance of full-length PrPSc that possesses the N-terminal portion of PrP. Further analysis of prion-infected primary neurons using PrPSc-specific immunostaining will reveal the neuron-specific mechanism for prion propagation.
Collapse
Affiliation(s)
- Misaki Tanaka
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Ai Fujiwara
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Kentaro Masujin
- National Agriculture Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|