1
|
Underestimating a Dog Bite. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2023. [DOI: 10.1097/ipc.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
2
|
Crouch LI. N-glycan breakdown by bacterial CAZymes. Essays Biochem 2023; 67:373-385. [PMID: 37067180 PMCID: PMC10154615 DOI: 10.1042/ebc20220256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 04/18/2023]
Abstract
The modification of proteins by N-glycans is ubiquitous to most organisms and they have multiple biological functions, including protecting the adjoining protein from degradation and facilitating communication or adhesion between cells, for example. Microbes have evolved CAZymes to deconstruct different types of N-glycans and some of these have been characterised from microbes originating from different niches, both commensals and pathogens. The specificity of these CAZymes provides clues as to how different microbes breakdown these substrates and possibly cross-feed them. Discovery of CAZymes highly specific for N-glycans also provides new tools and options for modifying glycoproteins.
Collapse
Affiliation(s)
- Lucy I Crouch
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
3
|
San Clemente H, Jamet E. N-glycoproteins in Plant Cell Walls: A Survey. PLANTS (BASEL, SWITZERLAND) 2022; 11:3204. [PMID: 36501244 PMCID: PMC9738366 DOI: 10.3390/plants11233204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Cell walls are an extracellular compartment specific to plant cells, which are not found in animal cells. Their composition varies between cell types, plant species, and physiological states. They are composed of a great diversity of polymers, i.e., polysaccharides, proteins, and lignins. Cell wall proteins (CWPs) are major players involved in the plasticity of cell walls which support cell growth and differentiation, as well as adaptation to environmental changes. In order to reach the extracellular space, CWPs are transported through the secretory pathway where they may undergo post-translational modifications, including N-glycosylations on the Asn residues in specific motifs (Asn-X-Ser/Thr-X, with X≠Pro). This review aims at providing a survey of the present knowledge related to cell wall N-glycoproteins with (i) an overview of the experimental workflows, (ii) a selection of relevant articles dedicated to N-glycoproteomics, (iii) a description of the diversity of N-glycans, and (iv) a focus on the importance of N-glycans for CWP structure and/or function.
Collapse
|
4
|
Kim Y, Ko JY, Yang WH. Remodeling of host glycoproteins during bacterial infection. BMB Rep 2021. [PMID: 34674797 PMCID: PMC8633524 DOI: 10.5483/bmbrep.2021.54.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Protein glycosylation is a common post-translational modification found in all living organisms. This modification in bacterial pathogens plays a pivotal role in their infectious processes including pathogenicity, immune evasion, and host-pathogen interactions. Importantly, many key proteins of host immune systems are also glycosylated and bacterial pathogens can notably modulate glycosylation of these host proteins to facilitate pathogenesis through the induction of abnormal host protein activity and abundance. In recent years, interest in studying the regulation of host protein glycosylation caused by bacterial pathogens is increasing to fully understand bacterial pathogenesis. In this review, we focus on how bacterial pathogens regulate remodeling of host glycoproteins during infections to promote the pathogenesis.
Collapse
Affiliation(s)
- Yeolhoe Kim
- Department of Systems Biology, BK21 Plus Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Glycosylation Network Research Center, Yonsei University, Seoul 03722, Korea
| | - Jeong Yeon Ko
- Department of Systems Biology, BK21 Plus Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Glycosylation Network Research Center, Yonsei University, Seoul 03722, Korea
| | - Won Ho Yang
- Department of Systems Biology, BK21 Plus Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Glycosylation Network Research Center, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Higgins MA, Tegl G, MacDonald SS, Arnal G, Brumer H, Withers SG, Ryan KS. N-Glycan Degradation Pathways in Gut- and Soil-Dwelling Actinobacteria Share Common Core Genes. ACS Chem Biol 2021; 16:701-711. [PMID: 33764747 DOI: 10.1021/acschembio.0c00995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N-Glycosylation is a fundamental protein modification found in both eukaryotes and archaea. Despite lacking N-glycans, many commensal and pathogenic bacteria have developed mechanisms to degrade these isoforms for a variety of functions, including nutrient acquisition and evasion of the immune system. Although much is known about many of the enzymes responsible for N-glycan degradation, the enzymes involved in cleaving the N-glycan core have only recently been discovered. Thus, some of the structural details have yet to be characterized, and little is known about their full distribution among bacterial strains and specifically within potential Gram-positive polysaccharide utilization loci. Here, we report crystal structures for Family 5, Subfamily 18 (GH5_18) glycoside hydrolases from the gut bacterium Bifidobacterium longum (BlGH5_18) and the soil bacterium Streptomyces cattleya (ScGH5_18), which hydrolyze the core Manβ1-4GlcNAc disaccharide. Structures of these enzymes in complex with Manβ1-4GlcNAc reveal a more complete picture of the -1 subsite. They also show that a C-terminal active site cap present in BlGH5_18 is absent in ScGH5_18. Although this C-terminal cap is not widely distributed throughout the GH5_18 family, it is important for full enzyme activity. In addition, we show that GH5_18 enzymes are found in Gram-positive polysaccharide utilization loci that share common genes, likely dedicated to importing and degrading N-glycan core structures.
Collapse
|
6
|
Woźniak P, Szymczak R, Piotrowska A. A case of fulminant sepsis caused by Capnocytophaga canimorsus after a dog bite. IDCases 2020; 21:e00798. [PMID: 32461903 PMCID: PMC7240167 DOI: 10.1016/j.idcr.2020.e00798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/25/2022] Open
Abstract
Many species of microorganisms of various human pathogenicity have been identified in the oral cavities of dogs and cats. One of them is Capnocytophaga canimorsus, a Gram-negative bacterium of the Flavobacteriacae family, with unique abilities to forage sugars from host tissues and avoid the host immune response. Although C. canimorsus may be isolated from the oral cavities of most dogs and cats, severe human infection is very rare according to studies (0.67 cases/million/year). A canine or feline bite is the most common source of infection. At the highest risk are asplenic or functionally asplenic patients as well as individuals with cirrhosis or a history of alcohol abuse. We report a fatal case of C. canimorsus sepsis in a patient with a spleen.
Collapse
Affiliation(s)
- Piotr Woźniak
- Department of Emergency Medicine, Medical University of Gdansk, Poland
| | - Robert Szymczak
- Department of Emergency Medicine, Medical University of Gdansk, Poland
| | - Agata Piotrowska
- Department of Emergency Medicine, Medical University of Gdansk, Poland
| |
Collapse
|
7
|
Unique Microbial Catabolic Pathway for the Human Core N-Glycan Constituent Fucosyl-α-1,6- N-Acetylglucosamine-Asparagine. mBio 2020; 11:mBio.02804-19. [PMID: 31937642 PMCID: PMC6960285 DOI: 10.1128/mbio.02804-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The gastrointestinal tract accommodates more than 1014 microorganisms that have an enormous impact on human health. The mechanisms enabling commensal bacteria and administered probiotics to colonize the gut remain largely unknown. The ability to utilize host-derived carbon and energy resources available at the mucosal surfaces may provide these bacteria with a competitive advantage in the gut. Here, we have identified in the commensal species Lactobacillus casei a novel metabolic pathway for the utilization of the glycoamino acid fucosyl-α-1,6-N-GlcNAc-Asn, which is present in the core-fucosylated N-glycoproteins from mammalians. These results give insight into the molecular interactions between the host and commensal/probiotic bacteria and may help to devise new strategies to restore gut microbiota homeostasis in diseases associated with dysbiotic microbiota. The survival of commensal bacteria in the human gut partially depends on their ability to metabolize host-derived molecules. The use of the glycosidic moiety of N-glycoproteins by bacteria has been reported, but the role of N-glycopeptides or glycoamino acids as the substrates for bacterial growth has not been evaluated. We have identified in Lactobacillus casei strain BL23 a gene cluster (alf-2) involved in the catabolism of the glycoamino acid fucosyl-α-1,6-N-GlcNAc-Asn (6′FN-Asn), a constituent of the core-fucosylated structures of mammalian N-glycoproteins. The cluster consists of the genes alfHC, encoding a major facilitator superfamily (MFS) permease and the α-l-fucosidase AlfC, and the divergently oriented asdA (aspartate 4-decarboxylase), alfR2 (transcriptional regulator), pepV (peptidase), asnA2 (glycosyl-asparaginase), and sugK (sugar kinase) genes. Knockout mutants showed that alfH, alfC, asdA, asnA2, and sugK are necessary for efficient 6′FN-Asn utilization. The alf-2 genes are induced by 6′FN-Asn, but not by its glycan moiety, via the AlfR2 regulator. The constitutive expression of alf-2 genes in an alfR2 strain allowed the metabolism of a variety of 6′-fucosyl-glycans. However, GlcNAc-Asn did not support growth in this mutant background, indicating that the presence of a 6′-fucose moiety is crucial for substrate transport via AlfH. Within bacteria, 6′FN-Asn is defucosylated by AlfC, generating GlcNAc-Asn. This glycoamino acid is processed by the glycosylasparaginase AsnA2. GlcNAc-Asn hydrolysis generates aspartate and GlcNAc, which is used as a fermentable source by L.casei. These data establish the existence in a commensal bacterial species of an exclusive metabolic pathway likely to scavenge human milk and mucosal fucosylated N-glycopeptides in the gastrointestinal tract.
Collapse
|
8
|
Basco SA, Steele GM, Henao-Martínez AF, Franco-Paredes C, Chastain DB. Unexpected etiology of a pleural empyema in a patient with chronic lymphocytic leukemia (CLL): Capnocytophaga ochracea. IDCases 2020; 20:e00747. [PMID: 32300526 PMCID: PMC7152719 DOI: 10.1016/j.idcr.2020.e00747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 11/26/2022] Open
Abstract
Pleural effusions and empyemas caused by Capnocytophaga spp. are uncommon with few cases previously reported. Here, we present the case of a 62-year-old man with untreated chronic lymphocytic leukemia (CLL) complicated by a pleural empyema caused by C. ochracea. The route of acquisition was likely the result of aspiration of C. ochracea coupled with the immune defects associated with untreated CLL.
Collapse
|
9
|
Kirmiz N, Robinson RC, Shah IM, Barile D, Mills DA. Milk Glycans and Their Interaction with the Infant-Gut Microbiota. Annu Rev Food Sci Technol 2019; 9:429-450. [PMID: 29580136 DOI: 10.1146/annurev-food-030216-030207] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human milk is a unique and complex fluid that provides infant nutrition and delivers an array of bioactive molecules that serve various functions. Glycans, abundant in milk, can be found as free oligosaccharides or as glycoconjugates. Milk glycans are increasingly linked to beneficial outcomes in neonates through protection from pathogens and modulation of the immune system. Indeed, these glycans influence the development of the infant and the infant-gut microbiota. Bifidobacterium species commonly are enriched in breastfed infants and are among a limited group of bacteria that readily consume human milk oligosaccharides (HMOs) and milk glycoconjugates. Given the importance of bifidobacteria in infant health, numerous studies have examined the molecular mechanisms they employ to consume HMOs and milk glycans, thus providing insight into this unique enrichment and shedding light on a range of translational opportunities to benefit at-risk infants.
Collapse
Affiliation(s)
- Nina Kirmiz
- Foods for Health Institute and Department of Food Science and Technology, University of California, Davis, California 95616, USA;
| | - Randall C Robinson
- Foods for Health Institute and Department of Food Science and Technology, University of California, Davis, California 95616, USA;
| | - Ishita M Shah
- Foods for Health Institute and Department of Food Science and Technology, University of California, Davis, California 95616, USA;
| | - Daniela Barile
- Foods for Health Institute and Department of Food Science and Technology, University of California, Davis, California 95616, USA;
| | - David A Mills
- Foods for Health Institute and Department of Food Science and Technology, University of California, Davis, California 95616, USA; .,Department of Viticulture and Enology, University of California, Davis, California 95616, USA
| |
Collapse
|
10
|
Briliūtė J, Urbanowicz PA, Luis AS, Baslé A, Paterson N, Rebello O, Hendel J, Ndeh DA, Lowe EC, Martens EC, Spencer DIR, Bolam DN, Crouch LI. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat Microbiol 2019; 4:1571-1581. [PMID: 31160824 PMCID: PMC7617214 DOI: 10.1038/s41564-019-0466-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Glycans are the major carbon sources available to the human colonic microbiota. Numerous N-glycosylated proteins are found in the human gut, from both dietary and host sources, including immunoglobulins such as IgA that are secreted into the intestine at high levels. Here, we show that many mutualistic gut Bacteroides spp. have the capacity to utilize complex N-glycans (CNGs) as nutrients, including those from immunoglobulins. Detailed mechanistic studies using transcriptomic, biochemical, structural and genetic techniques reveal the pathway employed by Bacteroides thetaiotaomicron (Bt) for CNG degradation. The breakdown process involves an extensive enzymatic apparatus encoded by multiple non-adjacent loci and comprises 19 different carbohydrate-active enzymes from different families, including a CNG-specific endo-glycosidase activity. Furthermore, CNG degradation involves the activity of carbohydrate-active enzymes that have previously been implicated in the degradation of other classes of glycan. This complex and diverse apparatus provides Bt with the capacity to access the myriad different structural variants of CNGs likely to be found in the intestinal niche.
Collapse
Affiliation(s)
- Justina Briliūtė
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Ana S Luis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | - Didier A Ndeh
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elisabeth C Lowe
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - David N Bolam
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Lucy I Crouch
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
11
|
Terrapon N, Lombard V, Drula É, Lapébie P, Al-Masaudi S, Gilbert HJ, Henrissat B. PULDB: the expanded database of Polysaccharide Utilization Loci. Nucleic Acids Res 2019; 46:D677-D683. [PMID: 29088389 PMCID: PMC5753385 DOI: 10.1093/nar/gkx1022] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
The Polysaccharide Utilization Loci (PUL) database was launched in 2015 to present PUL predictions in ∼70 Bacteroidetes species isolated from the human gastrointestinal tract, as well as PULs derived from the experimental data reported in the literature. In 2018 PULDB offers access to 820 genomes, sampled from various environments and covering a much wider taxonomical range. A Krona dynamic chart was set up to facilitate browsing through taxonomy. Literature surveys now allows the presentation of the most recent (i) PUL repertoires deduced from RNAseq large-scale experiments, (ii) PULs that have been subjected to in-depth biochemical analysis and (iii) new Carbohydrate-Active enzyme (CAZyme) families that contributed to the refinement of PUL predictions. To improve PUL visualization and genome browsing, the previous annotation of genes encoding CAZymes, regulators, integrases and SusCD has now been expanded to include functionally relevant protein families whose genes are significantly found in the vicinity of PULs: sulfatases, proteases, ROK repressors, epimerases and ATP-Binding Cassette and Major Facilitator Superfamily transporters. To cope with cases where susCD may be absent due to incomplete assemblies/split PULs, we present ‘CAZyme cluster’ predictions. Finally, a PUL alignment tool, operating on the tagged families instead of amino-acid sequences, was integrated to retrieve PULs similar to a query of interest. The updated PULDB website is accessible at www.cazy.org/PULDB_new/
Collapse
Affiliation(s)
- Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Élodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France
| | - Saad Al-Masaudi
- Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, 23218 Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Hess E, Renzi F, Karhunen P, Dol M, Lefèvre A, Antikainen J, Carlier E, Hästbacka J, Cornelis GR. Capnocytophaga canimorsus Capsular Serovar and Disease Severity, Helsinki Hospital District, Finland, 2000-2017. Emerg Infect Dis 2019; 24:2195-2201. [PMID: 30457520 PMCID: PMC6256374 DOI: 10.3201/eid2412.172060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We assembled a collection of 73 Capnocytophaga canimorsus isolates obtained from blood cultures taken from patients treated at Helsinki University Hospital (Helsinki, Finland) during 2000–2017. We serotyped these isolates by PCR and Western blot and attempted to correlate pathogen serovar with patient characteristics. Our analyses showed, in agreement with previous research, that 3 C. canimorsus serovars (A–C) caused most (91.8%) human infections, despite constituting only 7.6% of isolates found in dogs. The 3 fatalities that occurred in our cohort were equally represented by these serovars. We found 2 untypeable isolates, which we designated serovars J and K. We did not detect an association between serovar and disease severity, immune status, alcohol abuse, or smoking status, but dog bites occurred more frequently among patients infected with non-A–C serovars. Future research is needed to confirm serovar virulence and develop strategies to reduce risk for these infections in humans.
Collapse
|
13
|
Surface Exposure and Packing of Lipoproteins into Outer Membrane Vesicles Are Coupled Processes in Bacteroides. mSphere 2018; 3:3/6/e00559-18. [PMID: 30404931 PMCID: PMC6222051 DOI: 10.1128/msphere.00559-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Species from the Bacteroides genus are predominant members of the human gut microbiota. OMVs in Bacteroides have been shown to be important for the homeostasis of complex host-commensal relationships, mainly involving immune tolerance and protection from disease. OMVs carry many enzymatic activities involved in the cleavage of complex polysaccharides and have been proposed as public goods that can provide growth to other bacterial species by release of polysaccharide breakdown products into the gut lumen. This work shows that the presence of a negatively charged rich amino acid motif (LES) is required for efficient packing of the surface-exposed alpha-amylase SusG into OMVs. Our findings strongly suggest that surface exposure is coupled to packing of Bacteroides lipoproteins into OMVs. This is the first step in the generation of tailor-made probiotic interventions that can exploit LES-related sequences to generate Bacteroides strains displaying proteins of interest in OMVs. Outer membrane vesicles (OMVs) are spherical structures derived from the outer membranes (OMs) of Gram-negative bacteria. Bacteroides spp. are prominent components of the human gut microbiota, and OMVs produced by these species are proposed to play key roles in gut homeostasis. OMV biogenesis in Bacteroides is a poorly understood process. Here, we revisited the protein composition of Bacteroides thetaiotaomicron OMVs by mass spectrometry. We confirmed that OMVs produced by this organism contain large quantities of glycosidases and proteases, with most of them being lipoproteins. We found that most of these OMV-enriched lipoproteins are encoded by polysaccharide utilization loci (PULs), such as the sus operon. We examined the subcellular locations of the components of the Sus system and found a split localization; the alpha-amylase SusG is highly enriched in OMVs, while the oligosaccharide importer SusC remains mostly in the OM. We found that all OMV-enriched lipoproteins possess a lipoprotein export sequence (LES), and we show that this signal mediates translocation of SusG from the periplasmic face of the OM toward the extracellular milieu. Mutations in the LES motif caused defects in surface exposure and recruitment of SusG into OMVs. These experiments link, for the first time, surface exposure to recruitment of proteins into OMVs. We also show that surface-exposed SusG in OMVs is active and rescues the growth of bacterial cells incapable of growing on starch as the only carbon source. Our results support the role of OMVs as “public goods” that can be utilized by other organisms with different metabolic capabilities. IMPORTANCE Species from the Bacteroides genus are predominant members of the human gut microbiota. OMVs in Bacteroides have been shown to be important for the homeostasis of complex host-commensal relationships, mainly involving immune tolerance and protection from disease. OMVs carry many enzymatic activities involved in the cleavage of complex polysaccharides and have been proposed as public goods that can provide growth to other bacterial species by release of polysaccharide breakdown products into the gut lumen. This work shows that the presence of a negatively charged rich amino acid motif (LES) is required for efficient packing of the surface-exposed alpha-amylase SusG into OMVs. Our findings strongly suggest that surface exposure is coupled to packing of Bacteroides lipoproteins into OMVs. This is the first step in the generation of tailor-made probiotic interventions that can exploit LES-related sequences to generate Bacteroides strains displaying proteins of interest in OMVs.
Collapse
|
14
|
Reichenbach T, Kalyani D, Gandini R, Svartström O, Aspeborg H, Divne C. Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins. PLoS One 2018; 13:e0204703. [PMID: 30261037 PMCID: PMC6160142 DOI: 10.1371/journal.pone.0204703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Commensal and pathogenic bacteria have evolved efficient enzymatic pathways to feed on host carbohydrates, including protein-linked glycans. Most proteins of the human innate and adaptive immune system are glycoproteins where the glycan is critical for structural and functional integrity. Besides enabling nutrition, the degradation of host N-glycans serves as a means for bacteria to modulate the host's immune system by for instance removing N-glycans on immunoglobulin G. The commensal bacterium Cutibacterium acnes is a gram-positive natural bacterial species of the human skin microbiota. Under certain circumstances, C. acnes can cause pathogenic conditions, acne vulgaris, which typically affects 80% of adolescents, and can become critical for immunosuppressed transplant patients. Others have shown that C. acnes can degrade certain host O-glycans, however, no degradation pathway for host N-glycans has been proposed. To investigate this, we scanned the C. acnes genome and were able to identify a set of gene candidates consistent with a cytoplasmic N-glycan-degradation pathway of the canonical eukaryotic N-glycan core. We also found additional gene sequences containing secretion signals that are possible candidates for initial trimming on the extracellular side. Furthermore, one of the identified gene products of the cytoplasmic pathway, AEE72695, was produced and characterized, and found to be a functional, dimeric exo-β-1,4-mannosidase with activity on the β-1,4 glycosidic bond between the second N-acetylglucosamine and the first mannose residue in the canonical eukaryotic N-glycan core. These findings corroborate our model of the cytoplasmic part of a C. acnes N-glycan degradation pathway.
Collapse
Affiliation(s)
- Tom Reichenbach
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dayanand Kalyani
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rosaria Gandini
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Olov Svartström
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Henrik Aspeborg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina Divne
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
15
|
Foley MH, Martens EC, Koropatkin NM. SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron. Mol Microbiol 2018; 108:551-566. [PMID: 29528148 PMCID: PMC5980745 DOI: 10.1111/mmi.13949] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 12/30/2022]
Abstract
The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model system for nutrient acquisition by gut Bacteroidetes, a dominant phylum of gut bacteria. The Sus includes SusCDEFG, which assemble on the cell surface to capture, degrade and import starch. While SusD is an essential starch-binding protein, the precise role(s) of the partially homologous starch-binding proteins SusE and SusF has remained elusive. We previously reported that a non-binding version of SusD (SusD*) supports growth on starch when other members of the multi-protein complex are present. Here we demonstrate that SusE supports SusD* growth on maltooligosaccharides, and determine the domains of SusE essential for this function. Furthermore, we demonstrate that SusE does not need to bind starch to support growth in the presence of SusD*, suggesting that the assembly of SusCDE is most important for maltooligosaccharide uptake in this context. However, starch binding by proteins SusDEF directs the uptake of maltooligosaccharides of specific lengths, suggesting that these proteins equip the cell to scavenge a range of starch fragments. These data demonstrate that the assembly of core Sus proteins SusCDE is secondary to their glycan binding roles, but glycan binding by Sus proteins may fine tune the selection of glycans from the environment.
Collapse
Affiliation(s)
- Matthew H. Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018; 592:3865-3897. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a frequent colonizer of the upper airways; however, it is also an accomplished pathogen capable of causing life-threatening diseases. To colonize and cause invasive disease, this bacterium relies on a complex array of factors to mediate the host-bacterium interaction. The respiratory tract is rich in functionally important glycoconjugates that display a vast range of glycans, and, thus, a key component of the pneumococcus-host interaction involves an arsenal of bacterial carbohydrate-active enzymes to depolymerize these glycans and carbohydrate transporters to import the products. Through the destruction of host glycans, the glycan-specific metabolic machinery deployed by S. pneumoniae plays a variety of roles in the host-pathogen interaction. Here, we review the processing and metabolism of the major host-derived glycans, including N- and O-linked glycans, Lewis and blood group antigens, proteoglycans, and glycogen, as well as some dietary glycans. We discuss the role of these metabolic pathways in the S. pneumoniae-host interaction, speculate on the potential of key enzymes within these pathways as therapeutic targets, and relate S. pneumoniae as a model system to glycan processing in other microbial pathogens.
Collapse
Affiliation(s)
- Joanne K Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| |
Collapse
|
17
|
Pérez-Pascual D, Lunazzi A, Magdelenat G, Rouy Z, Roulet A, Lopez-Roques C, Larocque R, Barbeyron T, Gobet A, Michel G, Bernardet JF, Duchaud E. The Complete Genome Sequence of the Fish Pathogen Tenacibaculum maritimum Provides Insights into Virulence Mechanisms. Front Microbiol 2017; 8:1542. [PMID: 28861057 PMCID: PMC5561996 DOI: 10.3389/fmicb.2017.01542] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
Tenacibaculum maritimum is a devastating bacterial pathogen of wild and farmed marine fish with a broad host range and a worldwide distribution. We report here the complete genome sequence of the T. maritimum type strain NCIMB 2154T. The genome consists of a 3,435,971-base pair circular chromosome with 2,866 predicted protein-coding genes. Genes encoding the biosynthesis of exopolysaccharides, the type IX secretion system, iron uptake systems, adhesins, hemolysins, proteases, and glycoside hydrolases were identified. They are likely involved in the virulence process including immune escape, invasion, colonization, destruction of host tissues, and nutrient scavenging. Among the predicted virulence factors, type IX secretion-mediated and cell-surface exposed proteins were identified including an atypical sialidase, a sphingomyelinase and a chondroitin AC lyase which activities were demonstrated in vitro.
Collapse
Affiliation(s)
- David Pérez-Pascual
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Aurelie Lunazzi
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Ghislaine Magdelenat
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Génomique, GenoscopeEvry, France
| | - Zoe Rouy
- Laboratoire d'Analyses Bioinformatiques en Génomique et Métabolisme, Centre National de la Recherche Scientifique (UMR-8030), Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Génomique, GenoscopeEvry, France
| | - Alain Roulet
- Genotoul Genome & Transcriptome (GeT-PlaGe), Institut National de la Recherche AgronomiqueCastanet-Tolosan, France.,Institut National de la Recherche Agronomique (UAR1209)Castanet-Tolosan, France
| | - Celine Lopez-Roques
- Genotoul Genome & Transcriptome (GeT-PlaGe), Institut National de la Recherche AgronomiqueCastanet-Tolosan, France.,Institut National de la Recherche Agronomique (UAR1209)Castanet-Tolosan, France
| | - Robert Larocque
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Tristan Barbeyron
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Angélique Gobet
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Gurvan Michel
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Jean-François Bernardet
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Eric Duchaud
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
18
|
Tamura S, Koyama A, Yamashita Y, Shiotani C, Nakamoto H, Nakamoto C, Suzuki M, Nakano Y, Imaoka K, Sonoki T, Fujimoto T. Capnocytophaga canimorsus sepsis in a methotrexate-treated patient with rheumatoid arthritis. IDCases 2017; 10:18-21. [PMID: 28831382 PMCID: PMC5554928 DOI: 10.1016/j.idcr.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 10/31/2022] Open
Abstract
Capnocytophaga canimorsus is a gram-negative rod that can be transmitted primarily by dog bites. This life-threatening organism commonly causes sepsis in patients with splenectomy or alcoholism. A 53-year-old rheumatoid arthritis male treated with methotrexate (MTX) for 5 years was admitted for a 4-day history of fever and dyspnea. He had been bitten on a finger by the family dog 4 days before onset. Laboratory tests revealed pancytopenia, acute renal failure, and evidence of disseminated intravascular coagulation, and he subsequently developed acute respiratory distress syndrome. Furthermore, blood cultures grew gram-negative bacilli and despite intensive treatment, he died 5 days after admission. Later, C. canimorsus was identified from his culture samples using a species-specific polymerase chain reaction. C. canimorsus infections should be considered in the differential diagnosis of sepsis for immunocompromised hosts following animal bites.
Collapse
Affiliation(s)
- Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, Japan.,Department of Internal Medicine, Kinan Hospital, Japan
| | - Asumi Koyama
- Department of Central Clinical Laboratory, Kinan Hospital, Japan
| | - Yusuke Yamashita
- Department of Hematology/Oncology, Wakayama Medical University, Japan
| | - Chieko Shiotani
- Department of Central Clinical Laboratory, Kinan Hospital, Japan
| | | | - Chiaki Nakamoto
- Department of Certified Nurse Infection Control, Kinan Hospital, Japan
| | - Michio Suzuki
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Yoshio Nakano
- Department of Internal Medicine, Kinan Hospital, Japan
| | - Koichi Imaoka
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Japan
| | | |
Collapse
|
19
|
Hack K, Renzi F, Hess E, Lauber F, Douxfils J, Dogné JM, Cornelis GR. Inactivation of human coagulation factor X by a protease of the pathogen Capnocytophaga canimorsus. J Thromb Haemost 2017; 15:487-499. [PMID: 28029716 DOI: 10.1111/jth.13605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 01/13/2023]
Abstract
Essentials Capnocytophaga canimorsus causes severe dog bite related blood stream infections. We investigated if C. canimorsus contributes to bleeding abnormalities during infection. The C. canimorsus protease CcDPP7 causes factor X dysfunction by N-terminal cleavage. CcDPP7 inhibits coagulation in vivo, which could promote immune evasion and trigger hemorrhage. SUMMARY Background Capnocytophaga canimorsus is a Gram-negative bacterium that is present in the oral flora of dogs and causes fulminant sepsis in humans who have been bitten, licked, or scratched. In patients, bleeding abnormalities, such as petechiae, purpura fulminans, or disseminated intravascular coagulation (DIC), occur frequently. Objective To investigate whether C. canimorsus could actively contribute to these bleeding abnormalities. Methods Calibrated automated thrombogram and clotting time assays were performed to assess the anticoagulant activity of C. canimorsus 5 (Cc5), a strain isolated from a fatal human infection. Clotting factor activities were measured with factor-deficient plasma. Factor X cleavage was monitored with the radiolabeled zymogen and western blotting. Mutagenesis of Cc5 genes encoding putative serine proteases was performed to identify the protease that cleaves FX. Protein purification was performed with affinity chromatography. Edman degradation allowed the detection of N-terminal cleavage of FX. Tail bleeding times were measured in mice. Results We found that Cc5 inhibited thrombin generation and increased the prothrombin time and the activated partial thromboplastin time of human plasma via FX cleavage. A mutant that was unable to synthesize a type 7 dipeptidyl peptidase (DPP7) of the S46 serine protease family failed to proteolyse FX. The purified protease (CcDPP7) cleaved FX heavy and light chains from the N-terminus, and was active in vivo after intravenous injection. Conclusions This is, to our knowledge, the first study demonstrating a detailed mechanism for FX inactivation by a bacterial protease, and it is the first functional study associating DPP7 proteases with a potentially pathogenic outcome.
Collapse
Affiliation(s)
- K Hack
- Department of Biology, University of Namur, Namur, Belgium
| | - F Renzi
- Department of Biology, University of Namur, Namur, Belgium
| | - E Hess
- Department of Biology, University of Namur, Namur, Belgium
| | - F Lauber
- Department of Biology, University of Namur, Namur, Belgium
| | - J Douxfils
- Department of Pharmacy, University of Namur, Namur, Belgium
| | - J M Dogné
- Department of Pharmacy, University of Namur, Namur, Belgium
| | - G R Cornelis
- Department of Biology, University of Namur, Namur, Belgium
| |
Collapse
|
20
|
Robb M, Hobbs JK, Woodiga SA, Shapiro-Ward S, Suits MDL, McGregor N, Brumer H, Yesilkaya H, King SJ, Boraston AB. Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence. PLoS Pathog 2017; 13:e1006090. [PMID: 28056108 PMCID: PMC5215778 DOI: 10.1371/journal.ppat.1006090] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/27/2016] [Indexed: 11/19/2022] Open
Abstract
The carbohydrate-rich coating of human tissues and cells provide a first point of contact for colonizing and invading bacteria. Commensurate with N-glycosylation being an abundant form of protein glycosylation that has critical functional roles in the host, some host-adapted bacteria possess the machinery to process N-linked glycans. The human pathogen Streptococcus pneumoniae depolymerizes complex N-glycans with enzymes that sequentially trim a complex N-glycan down to the Man3GlcNAc2 core prior to the release of the glycan from the protein by endo-β-N-acetylglucosaminidase (EndoD), which cleaves between the two GlcNAc residues. Here we examine the capacity of S. pneumoniae to process high-mannose N-glycans and transport the products. Through biochemical and structural analyses we demonstrate that S. pneumoniae also possesses an α-(1,2)-mannosidase (SpGH92). This enzyme has the ability to trim the terminal α-(1,2)-linked mannose residues of high-mannose N-glycans to generate Man5GlcNAc2. Through this activity SpGH92 is able to produce a substrate for EndoD, which is not active on high-mannose glycans with α-(1,2)-linked mannose residues. Binding studies and X-ray crystallography show that NgtS, the solute binding protein of an ABC transporter (ABCNG), is able to bind Man5GlcNAc, a product of EndoD activity, with high affinity. Finally, we evaluated the contribution of EndoD and ABCNG to growth of S. pneumoniae on a model N-glycosylated glycoprotein, and the contribution of these enzymes and SpGH92 to virulence in a mouse model. We found that both EndoD and ABCNG contribute to growth of S. pneumoniae, but that only SpGH92 and EndoD contribute to virulence. Therefore, N-glycan processing, but not transport of the released glycan, is required for full virulence in S. pneumoniae. To conclude, we synthesize our findings into a model of N-glycan processing by S. pneumoniae in which both complex and high-mannose N-glycans are targeted, and in which the two arms of this degradation pathway converge at ABCNG. Streptococcus pneumoniae (pneumococcus) is a bacterium that causes extensive morbidity and mortality in humans. Vaccines and antibiotics are effective forms of prevention and treatment, respectively, but present challenges as it is a constant race to vaccinate against the enormous and ever evolving pool of different serotypes of the bacterium while resistance to antibiotics continues to trend upwards. It is thus necessary to better understand the molecular aspects of the host-pneumococcus interaction in order to inform the potential generation of alternative treatment strategies. S. pneumoniae relies on its ability to process the carbohydrates presented on the surface of host cells for full-virulence. In this study, we examine the capability of the bacterium to process high-mannose N-linked sugars, a heretofore unknown ability for S. pneumoniae. The results show that the pneumococcal genome encodes enzymes capable of processing these sugars and that, remarkably, the initiating reaction performed by an enzyme that removes terminal α-(1,2)-linked mannose residues is critical to virulence in a mouse model. This study illuminates an extensive pathway in S. pneumoniae that targets N-linked sugars and is key to the host-pathogen interaction, therefore revealing a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa Robb
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Joanne K. Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sarah Shapiro-Ward
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Michael D. L. Suits
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Nicholas McGregor
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Samantha J. King
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
21
|
Ladevèze S, Laville E, Despres J, Mosoni P, Potocki-Véronèse G. Mannoside recognition and degradation by bacteria. Biol Rev Camb Philos Soc 2016; 92:1969-1990. [PMID: 27995767 DOI: 10.1111/brv.12316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein-protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. This review focuses on the various mannosides that can be found in nature and details their structure. It underlines their involvement in cellular interactions and finally describes the latest discoveries regarding the catalytic machinery and metabolic pathways that bacteria have developed to metabolize them.
Collapse
Affiliation(s)
- Simon Ladevèze
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Elisabeth Laville
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Jordane Despres
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | - Pascale Mosoni
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | | |
Collapse
|
22
|
Evidence for a LOS and a capsular polysaccharide in Capnocytophaga canimorsus. Sci Rep 2016; 6:38914. [PMID: 27974829 PMCID: PMC5156936 DOI: 10.1038/srep38914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
Capnocytophaga canimorsus is a dog’s and cat’s oral commensal which can cause fatal human infections upon bites or scratches. Infections mainly start with flu-like symptoms but can rapidly evolve in fatal septicaemia with a mortality as high as 40%. Here we present the discovery of a polysaccharide capsule (CPS) at the surface of C. canimorsus 5 (Cc5), a strain isolated from a fulminant septicaemia. We provide genetic and chemical data showing that this capsule is related to the lipooligosaccharide (LOS) and probably composed of the same polysaccharide units. A CPS was also found in nine out of nine other strains of C. canimorsus. In addition, the genomes of three of these strains, sequenced previously, contain genes similar to those encoding CPS biosynthesis in Cc5. Thus, the presence of a CPS is likely to be a common property of C. canimorsus. The CPS and not the LOS confers protection against the bactericidal effect of human serum and phagocytosis by macrophages. An antiserum raised against the capsule increased the killing of C. canimorsus by human serum thus showing that anti-capsule antibodies have a protective role. These findings provide a new major element in the understanding of the pathogenesis of C. canimorsus.
Collapse
|
23
|
Abstract
Complex carbohydrates are ubiquitous in all kingdoms of life. As major components of the plant cell wall they constitute both a rich renewable carbon source for biotechnological transformation into fuels, chemicals and materials, and also form an important energy source as part of a healthy human diet. In both contexts, there has been significant, sustained interest in understanding how microbes transform these substrates. Classical perspectives of microbial polysaccharide degradation are currently being augmented by recent advances in the discovery of lytic polysaccharide monooxygenases (LPMOs) and polysaccharide utilization loci (PULs). Fundamental discoveries in carbohydrate enzymology are both advancing biological understanding, as well as informing applications in industrial biomass conversion and modulation of the human gut microbiota to mediate health benefits.
Collapse
|
24
|
Abstract
Bacteria of the phylum Bacteroidetes, including commensal organisms and opportunistic pathogens, harbor abundant surface-exposed multiprotein membrane complexes (Sus-like systems) involved in carbohydrate acquisition. These complexes have been mostly linked to commensalism, and in some instances, they have also been shown to play a role in pathogenesis. Sus-like systems are mainly composed of lipoproteins anchored to the outer membrane and facing the external milieu. This lipoprotein localization is uncommon in most studied Gram-negative bacteria, while it is widespread in Bacteroidetes. Little is known about how these complexes assemble and particularly about how lipoproteins reach the bacterial surface. Here, by bioinformatic analyses, we identify a lipoprotein export signal (LES) at the N termini of surface-exposed lipoproteins of the human pathogen Capnocytophaga canimorsus corresponding to K-(D/E)2 or Q-A-(D/E)2. We show that, when introduced in sialidase SiaC, an intracellular lipoprotein, this signal is sufficient to target the protein to the cell surface. Mutational analysis of the LES in this reporter system showed that the amino acid composition, position of the signal sequence, and global charge are critical for lipoprotein surface transport. These findings were further confirmed by the analysis of the LES of mucinase MucG, a naturally surface-exposed C. canimorsus lipoprotein. Furthermore, we identify a LES in Bacteroides fragilis and Flavobacterium johnsoniae surface lipoproteins that allow C. canimorsus surface protein exposure, thus suggesting that Bacteroidetes share a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane. Bacteria of the phylum Bacteroidetes are important human commensals and pathogens. Understanding their biology is therefore a key question for human health. A main feature of these bacteria is the presence of abundant lipoproteins at their surface that play a role in nutrient acquisition. To date, the underlying mechanism of lipoprotein transport is unknown. We show for the first time that Bacteroidetes surface lipoproteins share an N-terminal signal that drives surface localization. The localization and overall negative charge of the lipoprotein export signal (LES) are crucial for its role. Overall, our findings provide the first evidence that Bacteroidetes are endowed with a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane.
Collapse
|
25
|
Szewczyk J, Collet JF. The Journey of Lipoproteins Through the Cell: One Birthplace, Multiple Destinations. Adv Microb Physiol 2016; 69:1-50. [PMID: 27720009 DOI: 10.1016/bs.ampbs.2016.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial lipoproteins are a very diverse group of proteins characterized by the presence of an N-terminal lipid moiety that serves as a membrane anchor. Lipoproteins have a wide variety of crucial functions, ranging from envelope biogenesis to stress response. In Gram-negative bacteria, lipoproteins can be targeted to various destinations in the cell, including the periplasmic side of the cytoplasmic or outer membrane, the cell surface or the external milieu. The sorting mechanisms have been studied in detail in Escherichia coli, but exceptions to the rules established in this model bacterium exist in other bacteria. In this chapter, we will present the current knowledge on lipoprotein sorting in the cell. Our particular focus will be on the surface-exposed lipoproteins that appear to be much more common than previously assumed. We will discuss the different targeting strategies, provide numerous examples of surface-exposed lipoproteins and discuss the techniques used to assess their surface exposure.
Collapse
Affiliation(s)
- J Szewczyk
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - J-F Collet
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
26
|
Cockburn DW, Koropatkin NM. Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. J Mol Biol 2016; 428:3230-3252. [PMID: 27393306 DOI: 10.1016/j.jmb.2016.06.021] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Carbohydrates comprise a large fraction of the typical diet, yet humans are only able to directly process some types of starch and simple sugars. The remainder transits the large intestine where it becomes food for the commensal bacterial community. This is an environment of not only intense competition but also impressive cooperation for available glycans, as these bacteria work to maximize their energy harvest from these carbohydrates during their limited transit time through the gut. The species within the gut microbiota use a variety of strategies to process and scavenge both dietary and host-produced glycans such as mucins. Some act as generalists that are able to degrade a wide range of polysaccharides, while others are specialists that are only able to target a few select glycans. All are members of a metabolic network where substantial cross-feeding takes place, as by-products of one organism serve as important resources for another. Much of this metabolic activity influences host physiology, as secondary metabolites and fermentation end products are absorbed either by the epithelial layer or by transit via the portal vein to the liver where they can have additional effects. These microbially derived compounds influence cell proliferation and apoptosis, modulate the immune response, and can alter host metabolism. This review summarizes the molecular underpinnings of these polysaccharide degradation processes, their impact on human health, and how we can manipulate them through the use of prebiotics.
Collapse
Affiliation(s)
- Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
27
|
Foley MH, Cockburn DW, Koropatkin NM. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci 2016; 73:2603-17. [PMID: 27137179 PMCID: PMC4924478 DOI: 10.1007/s00018-016-2242-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022]
Abstract
Resident bacteria in the densely populated human intestinal tract must efficiently compete for carbohydrate nutrition. The Bacteroidetes, a dominant bacterial phylum in the mammalian gut, encode a plethora of discrete polysaccharide utilization loci (PULs) that are selectively activated to facilitate glycan capture at the cell surface. The most well-studied PUL-encoded glycan-uptake system is the starch utilization system (Sus) of Bacteroides thetaiotaomicron. The Sus includes the requisite proteins for binding and degrading starch at the surface of the cell preceding oligosaccharide transport across the outer membrane for further depolymerization to glucose in the periplasm. All mammalian gut Bacteroidetes possess analogous Sus-like systems that target numerous diverse glycans. In this review, we discuss what is known about the eight Sus proteins of B. thetaiotaomicron that define the Sus-like paradigm of nutrient acquisition that is exclusive to the Gram-negative Bacteroidetes. We emphasize the well-characterized outer membrane proteins SusDEF and the α-amylase SusG, each of which have unique structural features that allow them to interact with starch on the cell surface. Despite the apparent redundancy in starch-binding sites among these proteins, each has a distinct role during starch catabolism. Additionally, we consider what is known about how these proteins dynamically interact and cooperate in the membrane and propose a model for the formation of the Sus outer membrane complex.
Collapse
Affiliation(s)
- Matthew H Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
28
|
Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria. Appl Environ Microbiol 2016; 82:3622-3630. [PMID: 27084007 DOI: 10.1128/aem.00547-16] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/26/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Milk, in addition to nourishing the neonate, provides a range of complex glycans whose construction ensures a specific enrichment of key members of the gut microbiota in the nursing infant, a consortium known as the milk-oriented microbiome. Milk glycoproteins are thought to function similarly, as specific growth substrates for bifidobacteria common to the breast-fed infant gut. Recently, a cell wall-associated endo-β-N-acetylglucosaminidase (EndoBI-1) found in various infant-borne bifidobacteria was shown to remove a range of intact N-linked glycans. We hypothesized that these released oligosaccharide structures can serve as a sole source for the selective growth of bifidobacteria. We demonstrated that EndoBI-1 released N-glycans from concentrated bovine colostrum at the pilot scale. EndoBI-1-released N-glycans supported the rapid growth of Bifidobacterium longum subsp. infantis (B. infantis), a species that grows well on human milk oligosaccharides, but did not support growth of Bifidobacterium animalis subsp. lactis (B. lactis), a species which does not. Conversely, B. infantis ATCC 15697 did not grow on the deglycosylated milk protein fraction, clearly demonstrating that the glycan portion of milk glycoproteins provided the key substrate for growth. Mass spectrometry-based profiling revealed that B. infantis consumed 73% of neutral and 92% of sialylated N-glycans, while B. lactis degraded only 11% of neutral and virtually no (<1%) sialylated N-glycans. These results provide mechanistic support that N-linked glycoproteins from milk serve as selective substrates for the enrichment of infant-associated bifidobacteria capable of carrying out the initial deglycosylation. Moreover, released N-glycans were better growth substrates than the intact milk glycoproteins, suggesting that EndoBI-1 cleavage is a key initial step in consumption of glycoproteins. Finally, the variety of N-glycans released from bovine milk glycoproteins suggests that they may serve as novel prebiotic substrates with selective properties similar to those of human milk oligosaccharides. IMPORTANCE It has been previously shown that glycoproteins serve as growth substrates for bifidobacteria. However, which part of a glycoprotein (glycans or polypeptides) is responsible for this function was not known. In this study, we used a novel enzyme to cleave conjugated N-glycans from milk glycoproteins and tested their consumption by various bifidobacteria. The results showed that the glycans selectively stimulated the growth of B. infantis, which is a key infant gut microbe. The selectivity of consumption of individual N-glycans was determined using advanced mass spectrometry (nano-liquid chromatography chip-quadrupole time of flight mass spectrometry [nano-LC-Chip-Q-TOF MS]) to reveal that B. infantis can consume the range of glycan structures released from whey protein concentrate.
Collapse
|
29
|
Abstract
Polysaccharide utilization loci (PUL) within the genomes of resident human gut Bacteroidetes are central to the metabolism of the otherwise indigestible complex carbohydrates known as “dietary fiber.” However, functional characterization of PUL lags significantly behind sequencing efforts, which limits physiological understanding of the human-bacterial symbiosis. In particular, the molecular basis of complex polysaccharide recognition, an essential prerequisite to hydrolysis by cell surface glycosidases and subsequent metabolism, is generally poorly understood. Here, we present the biochemical, structural, and reverse genetic characterization of two unique cell surface glycan-binding proteins (SGBPs) encoded by a xyloglucan utilization locus (XyGUL) from Bacteroides ovatus, which are integral to growth on this key dietary vegetable polysaccharide. Biochemical analysis reveals that these outer membrane-anchored proteins are in fact exquisitely specific for the highly branched xyloglucan (XyG) polysaccharide. The crystal structure of SGBP-A, a SusD homolog, with a bound XyG tetradecasaccharide reveals an extended carbohydrate-binding platform that primarily relies on recognition of the β-glucan backbone. The unique, tetra-modular structure of SGBP-B is comprised of tandem Ig-like folds, with XyG binding mediated at the distal C-terminal domain. Despite displaying similar affinities for XyG, reverse-genetic analysis reveals that SGBP-B is only required for the efficient capture of smaller oligosaccharides, whereas the presence of SGBP-A is more critical than its carbohydrate-binding ability for growth on XyG. Together, these data demonstrate that SGBP-A and SGBP-B play complementary, specialized roles in carbohydrate capture by B. ovatus and elaborate a model of how vegetable xyloglucans are accessed by the Bacteroidetes. The Bacteroidetes are dominant bacteria in the human gut that are responsible for the digestion of the complex polysaccharides that constitute “dietary fiber.” Although this symbiotic relationship has been appreciated for decades, little is currently known about how Bacteroidetes seek out and bind plant cell wall polysaccharides as a necessary first step in their metabolism. Here, we provide the first biochemical, crystallographic, and genetic insight into how two surface glycan-binding proteins from the complex Bacteroides ovatus xyloglucan utilization locus (XyGUL) enable recognition and uptake of this ubiquitous vegetable polysaccharide. Our combined analysis illuminates new fundamental aspects of complex polysaccharide recognition, cleavage, and import at the Bacteroidetes cell surface that may facilitate the development of prebiotics to target this phylum of gut bacteria.
Collapse
|
30
|
|
31
|
Renzi F, Manfredi P, Mally M, Moes S, Jenö P, Cornelis GR. Correction: The N-glycan Glycoprotein Deglycosylation Complex (Gpd) from Capnocytophaga canimorsus Deglycosylates Human IgG. PLoS Pathog 2015; 11:e1005352. [PMID: 26671777 PMCID: PMC4679373 DOI: 10.1371/journal.ppat.1005352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Soni V, Upadhayay S, Suryadevara P, Samla G, Singh A, Yogeeswari P, Sriram D, Nandicoori VK. Depletion of M. tuberculosis GlmU from Infected Murine Lungs Effects the Clearance of the Pathogen. PLoS Pathog 2015; 11:e1005235. [PMID: 26489015 PMCID: PMC4619583 DOI: 10.1371/journal.ppat.1005235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/27/2015] [Indexed: 01/06/2023] Open
Abstract
M. tuberculosis N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmUMtb) is a bi-functional enzyme engaged in the synthesis of two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc, catalyzed by the C- and N-terminal domains respectively. UDP-GlcNAc is a key metabolite essential for the synthesis of peptidoglycan, disaccharide linker, arabinogalactan and mycothiols. While glmUMtb was predicted to be an essential gene, till date the role of GlmUMtb in modulating the in vitro growth of Mtb or its role in survival of pathogen ex vivo / in vivo have not been deciphered. Here we present the results of a comprehensive study dissecting the role of GlmUMtb in arbitrating the survival of the pathogen both in vitro and in vivo. We find that absence of GlmUMtb leads to extensive perturbation of bacterial morphology and substantial reduction in cell wall thickness under normoxic as well as hypoxic conditions. Complementation studies show that the acetyl- and uridyl- transferase activities of GlmUMtb are independently essential for bacterial survival in vitro, and GlmUMtb is also found to be essential for mycobacterial survival in THP-1 cells as well as in guinea pigs. Depletion of GlmUMtb from infected murine lungs, four weeks post infection, led to significant reduction in the bacillary load. The administration of Oxa33, a novel oxazolidine derivative that specifically inhibits GlmUMtb, to infected mice resulted in significant decrease in the bacillary load. Thus our study establishes GlmUMtb as a strong candidate for intervention measures against established tuberculosis infections. The synthesis of the Mtb cell wall involves a cascade of reactions catalyzed by cytosolic and cell membrane-bound enzymes. The reaction catalyzed by GlmUMtb (an enzyme with acetyltransferase and uridyltransferase activities) generates UDP-GlcNAc, a central nucleotide-sugar building block of the cell wall. Apart from cell wall synthesis UDP-GlcNAc is an essential metabolite participating in other cellular processes including disaccharide linker and mycothiol biosynthesis. GlmUMtb shares very little sequence similarity with eukaryotic acetyltransferase and uridyltransferase enzymes. Many pathogens have alternative pathway(s) for foraging GlcNAc from the host. The present study was undertaken to see the effects of depleting GlmUMtb on pathogen survival in the host animal. We have generated a conditional gene replacement mutant of glmUMtb and find that depletion of GlmUMtb at any stage of bacterial growth or in mice infected with Mtb including a well-established infection, results in irreversible bacterial death due to perturbation of cell wall synthesis. We have developed a novel anti-GlmUMtb inhibitor (Oxa33), identified its binding site on GlmUMtb, and shown its specificity for GlmUMtb. The study demonstrates that GlmUMtb is a promising target for therapeutic intervention and Oxa33 can be pursued as a lead molecule.
Collapse
Affiliation(s)
- Vijay Soni
- National Institute of Immunology, New Delhi, India
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | | | - Priyanka Suryadevara
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Ganesh Samla
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Perumal Yogeeswari
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | | |
Collapse
|
33
|
Abbott DW, Martens EC, Gilbert HJ, Cuskin F, Lowe EC. Coevolution of yeast mannan digestion: Convergence of the civilized human diet, distal gut microbiome, and host immunity. Gut Microbes 2015; 6:334-9. [PMID: 26440374 PMCID: PMC4826095 DOI: 10.1080/19490976.2015.1091913] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The complex carbohydrates accessible to the distal gut microbiota (DGM) are key drivers in determining the structure of this ecosystem. Typically, plant cell wall polysaccharides and recalcitrant starch (i.e. dietary fiber), in addition to host glycans are considered the primary nutrients for the DGM; however, we recently demonstrated that α-mannans, highly branched polysaccharides that decorate the surface of yeast, are also nutrients for several members of Bacteroides spp. This relationship suggests that the advent of yeast in contemporary food technologies and the colonization of the intestine by endogenous fungi have roles in microbiome structure and function. Here we discuss the process of yeast mannan metabolism, and the intersection between various sources of intestinal fungi and their roles in recognition by the host innate immune system.
Collapse
Affiliation(s)
- D Wade Abbott
- Lethbridge Research Center; Agriculture and Agri-Food Canada; Lethbridge, Alberta, Canada,Correspondence to: D Wade Abbott; ; Eric C Martens; ; Harry J Gilbert;
| | - Eric C Martens
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI USA,Correspondence to: D Wade Abbott; ; Eric C Martens; ; Harry J Gilbert;
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences; The Medical School; Newcastle University; Newcastle upon Tyne, UK,Correspondence to: D Wade Abbott; ; Eric C Martens; ; Harry J Gilbert;
| | - Fiona Cuskin
- Institute for Cell and Molecular Biosciences; The Medical School; Newcastle University; Newcastle upon Tyne, UK
| | - Elisabeth C Lowe
- Institute for Cell and Molecular Biosciences; The Medical School; Newcastle University; Newcastle upon Tyne, UK
| |
Collapse
|
34
|
Zangenah S, Bergman P. Rapid killing of Capnocytophaga canimorsus and Capnocytophaga cynodegmi by human whole blood and serum is mediated via the complement system. SPRINGERPLUS 2015; 4:517. [PMID: 26405637 PMCID: PMC4574033 DOI: 10.1186/s40064-015-1308-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/03/2015] [Indexed: 11/10/2022]
Abstract
PURPOSE Capnocytophaga canimorsus (Cani) and Capnocytophaga cynodegmi (Cyno) are found in the oral cavities of dogs and cats. They can be transmitted to humans via licks or bites and cause wound infections as well as severe systemic infections. Cani is considered to be more pathogenic than Cyno, but the pathophysiological mechanisms are not elucidated. Cani has been suggested to be resistant to serum bactericidal effects. Thus, we hypothesized that the more invasive Cani would exhibit a higher degree of serum-resistance than the less pathogenic Cyno. METHODS Whole blood and serum bactericidal assays were performed against Cani- (n = 8) and Cyno-strains (n = 15) isolated from blood and wound-specimens, respectively. Analysis of complement-function was performed by heat-inactivation, EGTA-treatment and by using C1q-depleted serum. Serum and whole blood were collected from healthy individuals and from patients (n = 3) with a history of sepsis caused by Cani. RESULTS Both Cani and Cyno were equally susceptible to human whole blood and serum. Cani was preferentially killed by the classical pathway of the complement-system whereas Cyno was killed by a partly different mechanism. Serum from 2/3 Cani-infected patients were deficient in MBL-activity but still exhibited the same killing effect as control sera. CONCLUSION Both Cani and Cyno were readily killed by human whole blood and serum in a complement-dependent way. Thus, it is not likely that serum bactericidal capacity is the key determinant for the clinical outcome in Cani or Cyno-infections.
Collapse
Affiliation(s)
- Salah Zangenah
- Div of Clinical Microbiology, F68, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden ; Department of Medicine, Center for Infectious Medicine (CIM), Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Peter Bergman
- Div of Clinical Microbiology, F68, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden ; Department of Medicine, Center for Infectious Medicine (CIM), Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
35
|
Only a subset of C. canimorsus strains is dangerous for humans. Emerg Microbes Infect 2015; 4:e48. [PMID: 26421271 PMCID: PMC4576167 DOI: 10.1038/emi.2015.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 02/01/2023]
Abstract
Capnocytophaga canimorsus are gram-negative bacteria living as commensals in the mouth of dogs and cats. C. canimorsus cause rare but life-threatening generalized infections in humans that have been in contact with a dog or a cat. Over the last years we collected 105 C. canimorsus strains from different geographical origins and from severe human infections or healthy dogs. All these strains were analyzed by 16S rDNA sequencing and a phylogenetic tree revealed two main groups of bacteria instead of one with no relation to the geographical origin. This branching was confirmed by the whole-genome sequencing of 10 strains, supporting the evidence of a new Capnocytophaga species in dogs. Interestingly, 19 out of 19 C. canimorsus strains isolated from human infections belonged to the same species. Furthermore, most strains from this species could grow in heat-inactivated human serum (HIHS) (40/46 tested), deglycosylate IgM (48/66) and were cytochrome-oxidase positive (60/66) while most strains from the other species could not grow in HIHS (22/23 tested), could not deglycosylate IgM (33/34) and were cytochrome-oxidase negative (33/34). Here, we propose to call Capnocytophaga canis (Latin: dog) the novel, presumably less virulent dog-hosted Capnocytophaga species and to keep the name C. canimorsus for the species including human pathogens.
Collapse
|
36
|
Sjögren J, Collin M. Bacterial glycosidases in pathogenesis and glycoengineering. Future Microbiol 2015; 9:1039-51. [PMID: 25340834 DOI: 10.2217/fmb.14.71] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glycosylation is a common post-translational protein modification and many key proteins of the immune system are glycosylated. As the true experts of our immune system, pathogenic bacteria produce enzymes that can modify the carbohydrates (glycans) of the defense mechanisms in order to favor bacterial survival and persistence. At the intersection between bacterial pathogenesis and glycobiology, there is an increased interest in studying the bacterial enzymes that modify the protein glycosylation of their colonized or infected hosts. This is of great importance in order to fully understand bacterial pathogenesis, but it also presents itself as a valuable source for glycoengineering and glycoanalysis tools. This article highlights the role of bacterial glycosidases during infections, introduces the use of such enzymes as glycoengineering tools and discusses the potential of further studies in this emerging field.
Collapse
Affiliation(s)
- Jonathan Sjögren
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC B14, SE-221 84 Lund, Sweden
| | | |
Collapse
|
37
|
Draft Genome Sequences of Three Capnocytophaga canimorsus Strains Isolated from Septic Patients. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00193-15. [PMID: 26021910 PMCID: PMC4447895 DOI: 10.1128/genomea.00193-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Capnocytophaga canimorsus is a bacterium from the normal oral flora of dogs and cats that causes rare generalized infections in humans. In an attempt to determine whether infections could be caused by a subset of strains and to identify pathogenicity factors, we sequenced the genomes of three strains isolated from human infections.
Collapse
|
38
|
Ladevèze S, Cioci G, Roblin P, Mourey L, Tranier S, Potocki-Véronèse G. Structural bases for N-glycan processing by mannoside phosphorylase. ACTA ACUST UNITED AC 2015; 71:1335-46. [PMID: 26057673 PMCID: PMC4461205 DOI: 10.1107/s1399004715006604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/01/2015] [Indexed: 01/08/2023]
Abstract
Crystal structures of the GH130 enzyme Uhgb_MP in the apo form and in complex with mannose and N-acetylglucosamine are described and the structural determinants of the functional specificities of the enzymes involved in N-glycan breakdown by human gut bacteria are identified. The first crystal structure of Uhgb_MP, a β-1,4-mannopyranosyl-chitobiose phosphorylase belonging to the GH130 family which is involved in N-glycan degradation by human gut bacteria, was solved at 1.85 Å resolution in the apo form and in complex with mannose and N-acetylglucosamine. SAXS and crystal structure analysis revealed a hexameric structure, a specific feature of GH130 enzymes among other glycoside phosphorylases. Mapping of the −1 and +1 subsites in the presence of phosphate confirmed the conserved Asp104 as the general acid/base catalytic residue, which is in agreement with a single-step reaction mechanism involving Man O3 assistance for proton transfer. Analysis of this structure, the first to be solved for a member of the GH130_2 subfamily, revealed Met67, Phe203 and the Gly121–Pro125 loop as the main determinants of the specificity of Uhgb_MP and its homologues towards the N-glycan core oligosaccharides and mannan, and the molecular bases of the key role played by GH130 enzymes in the catabolism of dietary fibre and host glycans.
Collapse
Affiliation(s)
- Simon Ladevèze
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Gianluca Cioci
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Pierre Roblin
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette CEDEX, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Centre National de la Recherche Scientifique (CNRS), 205 Route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Samuel Tranier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Centre National de la Recherche Scientifique (CNRS), 205 Route de Narbonne, BP 64182, 31077 Toulouse, France
| | | |
Collapse
|
39
|
Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, Pudlo NA, Porter NT, Urs K, Thompson AJ, Cartmell A, Rogowski A, Hamilton BS, Chen R, Tolbert TJ, Piens K, Bracke D, Vervecken W, Hakki Z, Speciale G, Munōz-Munōz JL, Day A, Peña MJ, McLean R, Suits MD, Boraston AB, Atherly T, Ziemer CJ, Williams SJ, Davies GJ, Abbott DW, Martens EC, Gilbert HJ. Corrigendum: Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 2015; 520:388. [PMID: 25739504 DOI: 10.1038/nature14334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Capnocytophaga canimorsus: an emerging cause of sepsis, meningitis, and post-splenectomy infection after dog bites. Eur J Clin Microbiol Infect Dis 2015; 34:1271-80. [PMID: 25828064 DOI: 10.1007/s10096-015-2360-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Newly named in 1989, Capnocytophaga canimorsus is a bacterial pathogen found in the saliva of healthy dogs and cats, and is transmitted to humans principally by dog bites. This review compiled all laboratory-confirmed cases, animal sources, and virulence attributes to describe its epidemiology, clinical features, and pathogenesis. An estimated 484 patients with a median age of 55 years were reported, two-thirds of which were male. The case-fatality rate was about 26%. Its clinical presentations included severe sepsis and fatal septic shock, gangrene of the digits or extremities, high-grade bacteremia, meningitis, endocarditis, and eye infections. Predispositions were prior splenectomy in 59 patients and alcoholism in 58 patients. Dog bites before illness occurred in 60%; additionally, in 27%, there were scratches, licking, or other contact with dogs or cats. Patients with meningitis showed more advanced ages, higher male preponderance, lower mortality, and longer incubation periods after dog bites than patients with sepsis (p < 0.05). Patients with prior splenectomy presented more frequently with high-grade bacteremia than patients with intact spleens (p < 0.05). The organism possesses virulence attributes of catalase and sialidase production, gliding motility, cytotoxin production, and resistance to killing by serum complement due to its unique lipopolysaccharide. Penicillin is the drug of choice, but some practitioners prefer third-generation cephalosporins or beta-lactamase inhibitor combinations. C. canimorsus has emerged as a leading cause of sepsis, particularly post-splenectomy sepsis, and meningitis after dog bites.
Collapse
|
41
|
Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A, Dugé de Bernonville T, Lautier M, Rival P, Arlat M, Jamet E, Lauber E, Albenne C. The N-Glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J Biol Chem 2015. [PMID: 25586188 DOI: 10.1074/jbc.m114.62459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.
Collapse
Affiliation(s)
- Stéphanie Dupoiron
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Claudine Zischek
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Laetitia Ligat
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Julien Carbonne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Alice Boulanger
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Thomas Dugé de Bernonville
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Martine Lautier
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Pauline Rival
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France, INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Matthieu Arlat
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Elisabeth Jamet
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Emmanuelle Lauber
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Cécile Albenne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
42
|
Abstract
Capnocytophaga canimorsus is known to form two kinds of cells on blood agar plates (coccoid and bacillary), evoking phase variation. When grown in coculture with animal cells these bacteria appeared only as bacilli, but in the presence of vancomycin they were round, indicating that coccoid shapes likely result from weakening of the peptidoglycan layer. Polysaccharide utilization locus 5 (PUL5) and sialidase mutant bacteria, unable to retrieve glycans from glycoproteins, grew less than wild-type bacteria and also appeared polymorphic unless GlcNAc was added, suggesting that C. canimorsus is unable to synthesize GlcNAc, an essential component of peptidoglycan. Accordingly, a genome analysis was conducted and revealed that C. canimorsus strain 5 lacks the GlmM and GlmU enzymes, which convert glucosamine into GlcNAc. Expression of the Escherichia coli GlmM together with the acetyltransferase domain of GlmU allowed PUL5 mutant bacteria to grow normally, indicating that C. canimorsus is a natural auxotroph that relies on GlcNAc harvested from the host N-glycoproteins for peptidoglycan synthesis. Mucin, a heavily O-glycosylated protein abundant in saliva, also rescued growth and the shape of PUL5 mutant bacteria. Utilization of mucin was found to depend on Muc, a Sus-like system encoded by PUL9. Contrary to all known PUL-encoded systems, Muc cleaves peptide bonds of mucin rather than glycosidic linkages. Thus, C. canimorsus has adapted to build its peptidoglycan from the glycan-rich dog’s mouth glycoproteins. Capnocytophaga canimorsus is a bacterium that lives as a commensal in the dog mouth and causes severe infections in humans. In vitro, it forms two kinds of cells (coccoid and bacillary), evoking phase variation. Here, we show that cell rounding likely results from weakening of the peptidoglycan layer due to a shortage of N-acetylglucosamine (GlcNAc). C. canimorsus cannot synthesize GlcNAc because of the lack of key enzymes. In its niche, the dog mouth, C. canimorsus retrieves GlcNAc by foraging glycans from salivary mucin and N-linked glycoproteins through two different apparatuses, Muc and Gpd, both of which are related to the Bacteroides starch utilization system. The Muc system is peculiar in the sense that the enzyme of the complex is a protease and not a glycosylhydrolase, as it cleaves peptide bonds in order to capture glycan chains. This study provides a molecular genetic demonstration for the complex adaptation of C. canimorsus to its ecological niche, the oral cavity of dogs.
Collapse
|
43
|
Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A, Dugé de Bernonville T, Lautier M, Rival P, Arlat M, Jamet E, Lauber E, Albenne C. The N-Glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J Biol Chem 2015; 290:6022-36. [PMID: 25586188 DOI: 10.1074/jbc.m114.624593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.
Collapse
Affiliation(s)
- Stéphanie Dupoiron
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Claudine Zischek
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Laetitia Ligat
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Julien Carbonne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Alice Boulanger
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Thomas Dugé de Bernonville
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Martine Lautier
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Pauline Rival
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France, INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Matthieu Arlat
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Elisabeth Jamet
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Emmanuelle Lauber
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Cécile Albenne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
44
|
de Lorenzo V, Sekowska A, Danchin A. Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Rev 2014; 39:96-119. [PMID: 25227915 DOI: 10.1111/1574-6976.12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, we examine how bacterial metabolism is shaped by chemical constraints acting on the material and dynamic layout of enzymatic networks and beyond. These are moulded not only for optimisation of given metabolic objectives (e.g. synthesis of a particular amino acid or nucleotide) but also for curbing the detrimental reactivity of chemical intermediates. Besides substrate channelling, toxicity is avoided by barriers to free diffusion (i.e. compartments) that separate otherwise incompatible reactions, along with ways for distinguishing damaging vs. harmless molecules. On the other hand, enzymes age and their operating lifetime must be tuned to upstream and downstream reactions. This time dependence of metabolic pathways creates time-linked information, learning and memory. These features suggest that the physical structure of existing biosystems, from operon assemblies to multicellular development may ultimately stem from the need to restrain chemical damage and limit the waste inherent to basic metabolic functions. This provides a new twist of our comprehension of fundamental biological processes in live systems as well as practical take-home lessons for the forward DNA-based engineering of novel biological objects.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco-Madrid, Spain
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
45
|
Abstract
Oral colonising bacteria are highly adapted to the various environmental niches harboured within the mouth, whether that means while contributing to one of the major oral diseases of caries, pulp infections, or gingival/periodontal disease or as part of a commensal lifestyle. Key to these infections is the ability to adhere to surfaces via a range of specialised adhesins targeted at both salivary and epithelial proteins, their glycans and to form biofilm. They must also resist the various physical stressors they are subjected to, including pH and oxidative stress. Possibly most strikingly, they have developed the ability to harvest both nutrient sources provided by the diet and those derived from the host, such as protein and surface glycans. We have attempted to review recent developments that have revealed much about the molecular mechanisms at work in shaping the physiology of oral bacteria and how we might use this information to design and implement new treatment strategies.
Collapse
|
46
|
Abstract
Capnocytophaga canimorsus, a dog mouth commensal and a member of the Bacteroidetes phylum, causes rare but often fatal septicemia in humans that have been in contact with a dog. Here, we show that C. canimorsus strains isolated from human infections grow readily in heat-inactivated human serum and that this property depends on a typical polysaccharide utilization locus (PUL), namely, PUL3 in strain Cc5. PUL are a hallmark of Bacteroidetes, and they encode various products, including surface protein complexes that capture and process polysaccharides or glycoproteins. The archetype system is the Bacteroides thetaiotaomicron Sus system, devoted to starch utilization. Unexpectedly, PUL3 conferred the capacity to acquire iron from serotransferrin (STF), and this capacity required each of the seven encoded proteins, indicating that a whole Sus-like machinery is acting as an iron capture system (ICS), a new and unexpected function for Sus-like machinery. No siderophore could be detected in the culture supernatant of C. canimorsus, suggesting that the Sus-like machinery captures iron directly from transferrin, but this could not be formally demonstrated. The seven genes of the ICS were found in the genomes of several opportunistic pathogens from the Capnocytophaga and Prevotella genera, in different isolates of the severe poultry pathogen Riemerella anatipestifer, and in strains of Bacteroides fragilis and Odoribacter splanchnicus isolated from human infections. Thus, this study describes a new type of ICS that evolved in Bacteroidetes from a polysaccharide utilization system and most likely represents an important virulence factor in this group.
Collapse
|
47
|
Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis. mBio 2014; 5:e01441-14. [PMID: 25205092 PMCID: PMC4173775 DOI: 10.1128/mbio.01441-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To compete for the dynamic stream of nutrients flowing into their ecosystem, colonic bacteria must respond rapidly to new resources and then catabolize them efficiently once they are detected. The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model for nutrient acquisition by symbiotic gut bacteria, which harbor thousands of related Sus-like systems. Structural investigation of the four Sus outer membrane proteins (SusD, -E, -F, and -G) revealed that they contain a total of eight starch-binding sites that we demonstrated, using genetic and biochemical approaches, to play distinct roles in starch metabolism in vitro and in vivo in gnotobiotic mice. SusD, whose homologs are abundant in the human microbiome, is critical for the initial sensing of available starch, allowing sus transcriptional activation at much lower concentrations than without this function. In contrast, seven additional binding sites across SusE, -F, and -G are dispensable for sus activation. However, they optimize the rate of growth on starch in a manner dependent on the expression of the bacterial polysaccharide capsule, suggesting that they have evolved to offset the diffusion barrier created by this structure. These findings demonstrate how proteins with similar biochemical behavior can serve orthogonal functions during different stages of cellular adaptation to nutrients. Finally, we demonstrated in gnotobiotic mice fed a starch-rich diet that the Sus binding sites confer a competitive advantage to B. thetaiotaomicron in vivo in a manner that is dependent on other colonizing microbes. This study reveals how numerically dominant families of carbohydrate-binding proteins in the human microbiome fulfill separate and sometimes cooperative roles to optimize gut commensal bacteria for nutrient acquisition. Our intestinal tract harbors trillions of symbiotic microbes. A critical function contributed by this microbial community is the ability to degrade most of the complex carbohydrates in our diet, which not only change from meal to meal but also cannot be digested by our own bodies. A numerically abundant group of gut bacteria called the Bacteroidetes plays a prominent role in carbohydrate digestion in humans and other animals. Currently, the mechanisms that allow this bacterial group to rapidly respond to available carbohydrates and then digest them efficiently are unclear. Here, we present novel functions for four carbohydrate-binding proteins present in one member of the Bacteroidetes, revealing that these proteins serve unique and separable roles in either initial nutrient sensing or subsequent digestion. Because the protein families investigated are numerous in other gut bacteria colonizing nearly all humans and animals, our findings are fundamentally important to understanding how symbiotic microbes assist human digestion.
Collapse
|
48
|
Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections. Proc Natl Acad Sci U S A 2014; 111:12901-6. [PMID: 25139987 DOI: 10.1073/pnas.1407344111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteroides fragilis is the most common anaerobe isolated from clinical infections, and in this report we demonstrate a characteristic of the species that is critical to their success as an opportunistic pathogen. Among the Bacteroides spp. in the gut, B. fragilis has the unique ability of efficiently harvesting complex N-linked glycans from the glycoproteins common to serum and serous fluid. This activity is mediated by an outer membrane protein complex designated as Don. Using the abundant serum glycoprotein transferrin as a model, it has been shown that B. fragilis alone can rapidly and efficiently deglycosylate this protein in vitro and that transferrin glycans can provide the sole source of carbon and energy for growth in defined media. We then showed that transferrin deglycosylation occurs in vivo when B. fragilis is propagated in the rat tissue cage model of extraintestinal growth, and that this ability provides a competitive advantage in vivo over strains lacking the don locus.
Collapse
|
49
|
Martens EC, Kelly AG, Tauzin AS, Brumer H. The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes. J Mol Biol 2014; 426:3851-65. [PMID: 25026064 DOI: 10.1016/j.jmb.2014.06.022] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/13/2014] [Accepted: 06/29/2014] [Indexed: 12/16/2022]
Abstract
The critical importance of gastrointestinal microbes to digestion of dietary fiber in humans and other mammals has been appreciated for decades. Symbiotic microorganisms expand mammalian digestive physiology by providing an armament of diverse polysaccharide-degrading enzymes, which are largely absent in mammalian genomes. By out-sourcing this aspect of digestive physiology to our gut microbes, we maximize our ability to adapt to different carbohydrate nutrients on timescales as short as several hours due to the ability of the gut microbial community to rapidly alter its physiology from meal to meal. Because of their ability to pick up new traits by lateral gene transfer, our gut microbes also enable adaption over time periods as long as centuries and millennia by adjusting their gene content to reflect cultural dietary trends. Despite a vast amount of sequence-based insight into the metabolic potential of gut microbes, the specific mechanisms by which symbiotic gut microorganisms recognize and attack complex carbohydrates remain largely undefined. Here, we review the recent literature on this topic and posit that numerous, subtle variations in polysaccharides diversify the spectrum of available nutrient niches, each of which may be best filled by a subset of microorganisms that possess the corresponding proteins to recognize and degrade different carbohydrates. Understanding these relationships at precise mechanistic levels will be essential to obtain a complete understanding of the forces shaping gut microbial ecology and genomic evolution, as well as devising strategies to intentionally manipulate the composition and physiology of the gut microbial community to improve health.
Collapse
Affiliation(s)
- Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Amelia G Kelly
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexandra S Tauzin
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
50
|
Zähringer U, Ittig S, Lindner B, Moll H, Schombel U, Gisch N, Cornelis GR. NMR-based structural analysis of the complete rough-type lipopolysaccharide isolated from Capnocytophaga canimorsus. J Biol Chem 2014; 289:23963-76. [PMID: 24993825 DOI: 10.1074/jbc.m114.571489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We here describe the NMR analysis of an intact lipopolysaccharide (LPS, endotoxin) in water with 1,2-dihexanoyl-sn-glycero-3-phosphocholine as detergent. When HPLC-purified rough-type LPS of Capnocytophaga canimorsus was prepared, (13)C,(15)N labeling could be avoided. The intact LPS was analyzed by homonuclear ((1)H) and heteronuclear ((1)H,(13)C, and (1)H,(31)P) correlated one- and two-dimensional NMR techniques as well as by mass spectrometry. It consists of a penta-acylated lipid A with an α-linked phosphoethanolamine attached to C-1 of GlcN (I) in the hybrid backbone, lacking the 4'-phosphate. The hydrophilic core oligosaccharide was found to be a complex hexasaccharide with two mannose (Man) and one each of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), Gal, GalN, and l-rhamnose residues. Position 4 of Kdo is substituted by phosphoethanolamine, also present in position 6 of the branched Man(I) residue. This rough-type LPS is exceptional in that all three negative phosphate residues are "masked" by positively charged ethanolamine substituents, leading to an overall zero net charge, which has so far not been observed for any other LPS. In biological assays, the corresponding isolated lipid A was found to be endotoxically almost inactive. By contrast, the intact rough-type LPS described here expressed a 20,000-fold increased endotoxicity, indicating that the core oligosaccharide significantly contributes to the endotoxic potency of the whole rough-type C. canimorsus LPS molecule. Based on these findings, the strict view that lipid A alone represents the toxic center of LPS needs to be reassessed.
Collapse
Affiliation(s)
- Ulrich Zähringer
- From the Division of Immunochemistry/Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a, 23845 Borstel, Germany,
| | - Simon Ittig
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland, and
| | - Buko Lindner
- From the Division of Immunochemistry/Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a, 23845 Borstel, Germany
| | - Hermann Moll
- From the Division of Immunochemistry/Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a, 23845 Borstel, Germany
| | - Ursula Schombel
- From the Division of Immunochemistry/Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a, 23845 Borstel, Germany
| | - Nicolas Gisch
- From the Division of Immunochemistry/Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a, 23845 Borstel, Germany
| | - Guy R Cornelis
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland, and the Department of Biology, University of Namur, B5000 Namur, Belgium
| |
Collapse
|