1
|
Higgs MG, Greenwald MA, Roca C, Macdonald JK, Sidders AE, Conlon BP, Wolfgang MC. Flagellar motility and the mucus environment influence aggregation mediated antibiotic tolerance of Pseudomonas aeruginosa in chronic lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620240. [PMID: 39484600 PMCID: PMC11527127 DOI: 10.1101/2024.10.25.620240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Pseudomonas aeruginosa frequently causes chronic lung infection in individuals with muco-obstructive airway diseases (MADs). Chronic P. aeruginosa infections are difficult to treat, primarily owing to antibiotic treatment failure, which is often observed in the absence of antimicrobial resistance. In MADs, P. aeruginosa forms biofilm-like aggregates within the luminal mucus. While the contribution of mucin hyperconcentration towards antibiotic tolerance has been described, the mechanism for mucin driven antibiotic tolerance and the influence of aggregates have not been fully elucidated. In this study, we investigated the contribution of flagellar motility towards aggregate formation as it relates to the diseased mucus environment. We found that loss of flagellar motility resulted in increased P. aeruginosa aggregation and tolerance to multiple classes of antibiotics. Further, we observed differential roles in antimicrobial tolerance of the motAB and motCD stators, which power the flagellum. Additionally, we found that control of fliC expression was important for aggregate formation and antibiotic tolerance as a strain constitutively expressing fliC was unable to form aggregates and was highly susceptible to treatment. Lastly, we demonstrate that neutrophil elastase, an abundant immune mediator and biomarker of chronic lung infection, promotes aggregation and antibiotic tolerance by impairing flagellar motility. Collectively, these results highlight the key role of flagellar motility in aggregate formation and antibiotic tolerance and deepens our understanding of how the MADs lung environment promotes antibiotic tolerance of P. aeruginosa.
Collapse
Affiliation(s)
- Matthew G. Higgs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Matthew A. Greenwald
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jade K. Macdonald
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ashelyn E. Sidders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Matthew C. Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
2
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Khan F. Multifaceted strategies for alleviating Pseudomonas aeruginosa infection by targeting protease activity: Natural and synthetic molecules. Int J Biol Macromol 2024; 278:134533. [PMID: 39116989 DOI: 10.1016/j.ijbiomac.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Pseudomonas aeruginosa has become a top-priority pathogen in the health sector because it is ubiquitous, has high metabolic/genetic versatility, and is identified as an opportunistic pathogen. The production of numerous virulence factors by P. aeruginosa was reported to act individually or cooperatively to make them robots invasion, adherences, persistence, proliferation, and protection against host immune systems. P. aeruginosa produces various kinds of extracellular proteases such as alkaline protease, protease IV, elastase A, elastase B, large protease A, Pseudomonas small protease, P. aeruginosa aminopeptidase, and MucD. These proteases effectively allow the cells to invade and destroy host cells. Thus, inhibiting these protease activities has been recognized as a promising approach to controlling the infection caused by P. aeruginosa. The present review discussed in detail the characteristics of these proteases and their role in infection to the host system. The second part of the review discussed the recent updates on the multiple strategies for attenuating or inhibiting protease activity. These strategies include the application of natural and synthetic molecules, as well as metallic/polymeric nanomaterials. It has also been reported that a propeptide present in the middle domain of protease IV also attenuates the virulence properties and infection ability of P. aeruginosa.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Li T, Moreno-Pérez A, Coaker G. Plant Pattern recognition receptors: Exploring their evolution, diversification, and spatiotemporal regulation. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102631. [PMID: 39303367 DOI: 10.1016/j.pbi.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Plant genomes possess hundreds of candidate surface localized receptors capable of recognizing microbial components or modified-self molecules. Surface-localized pattern recognition receptors (PRRs) can recognize proteins, peptides, or structural microbial components as nonself, triggering complex signaling pathways leading to defense. PRRs possess diverse extracellular domains capable of recognizing epitopes, lipids, glycans and polysaccharides. Recent work highlights advances in our understanding of the diversity and evolution of PRRs recognizing pathogen components. We also discuss PRR functional diversification, pathogen strategies to evade detection, and the role of tissue and age-related resistance for effective plant defense.
Collapse
Affiliation(s)
- Tianrun Li
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Liu Y, Jackson E, Liu X, Huang X, van der Hoorn RAL, Zhang Y, Li X. Proteolysis in plant immunity. THE PLANT CELL 2024; 36:3099-3115. [PMID: 38723588 PMCID: PMC11371161 DOI: 10.1093/plcell/koae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/23/2024] [Indexed: 09/05/2024]
Abstract
Compared with transcription and translation, protein degradation machineries can act faster and be targeted to different subcellular compartments, enabling immediate regulation of signaling events. It is therefore not surprising that proteolysis has been used extensively to control homeostasis of key regulators in different biological processes and pathways. Over the past decades, numerous studies have shown that proteolysis, where proteins are broken down to peptides or amino acids through ubiquitin-mediated degradation systems and proteases, is a key regulatory mechanism to control plant immunity output. Here, we briefly summarize the roles various proteases play during defence activation, focusing on recent findings. We also update the latest progress of ubiquitin-mediated degradation systems in modulating immunity by targeting plant membrane-localized pattern recognition receptors, intracellular nucleotide-binding domain leucine-rich repeat receptors, and downstream signaling components. Additionally, we highlight recent studies showcasing the importance of proteolysis in maintaining broad-spectrum resistance without obvious yield reduction, opening new directions for engineering elite crops that are resistant to a wide range of pathogens with high yield.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xingchuan Huang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | | | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Wilde J, Slack E, Foster KR. Host control of the microbiome: Mechanisms, evolution, and disease. Science 2024; 385:eadi3338. [PMID: 39024451 DOI: 10.1126/science.adi3338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Many species, including humans, host communities of symbiotic microbes. There is a vast literature on the ways these microbiomes affect hosts, but here we argue for an increased focus on how hosts affect their microbiomes. Hosts exert control over their symbionts through diverse mechanisms, including immunity, barrier function, physiological homeostasis, and transit. These mechanisms enable hosts to shape the ecology and evolution of microbiomes and generate natural selection for microbial traits that benefit the host. Our microbiomes result from a perpetual tension between host control and symbiont evolution, and we can leverage the host's evolved abilities to regulate the microbiota to prevent and treat disease. The study of host control will be central to our ability to both understand and manipulate microbiotas for better health.
Collapse
Affiliation(s)
- Jacob Wilde
- Department of Biology, University of Oxford, Oxford, UK
| | - Emma Slack
- Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Basel Institute for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Chen C, van der Hoorn RAL, Buscaill P. Releasing hidden MAMPs from precursor proteins in plants. TRENDS IN PLANT SCIENCE 2024; 29:428-436. [PMID: 37945394 DOI: 10.1016/j.tplants.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
The recognition of pathogens by plants at the cell surface is crucial for activating plant immunity. Plants employ pattern recognition receptors (PRRs) to detect microbe-associated molecular patterns (MAMPs). However, our knowledge of the release of peptide MAMPs from their precursor proteins is very limited. Here, we explore seven protein precursors of well-known MAMP peptides and discuss the likelihood of processing being required for their recognition based on structural models and public knowledge. This analysis indicates the existence of multiple extracellular events that are likely pivotal for pathogen perception but remain to be uncovered.
Collapse
Affiliation(s)
- Changlong Chen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | | | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Oh EJ, Hwang IS, Kwon CT, Oh CS. A Putative Apoplastic Effector of Clavibacter capsici, ChpG Cc as Hypersensitive Response and Virulence (Hrv) Protein in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:370-379. [PMID: 38148291 DOI: 10.1094/mpmi-09-23-0145-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Clavibacter bacteria use secreted apoplastic effectors, such as putative serine proteases, for virulence in host plants and for hypersensitive response (HR) induction in nonhost plants. Previously, we have shown that Clavibacter capsici ChpGCc is important for the necrosis development in pepper (Capsicum annuum) leaves. Here, we determine the function of ChpGCc, along with three paralogous proteins, for HR induction in the apoplastic space of a nonhost plant, Nicotiana tabacum. The full-length and signal peptide-deleted (ΔSP) mature forms of all proteins fused with the tobacco PR1b signal sequence were generated. The full-length and ΔSP forms of ChpGCc and only the ΔSP forms of ChpECc and Pat-1Cc, but none of the ChpCCc, triggered HR. Based on the predicted protein structures, ChpGCc carries amino acids for a catalytic triad and a disulfide bridge in positions like Pat-1Cm. Substituting these amino acids of ChpGCc with alanine abolished or reduced HR-inducing activity. To determine whether these residues are important for necrosis development in pepper, alanine-substituted chpGCc genes were transformed into the C. capsici PF008ΔpCM1 strain, which lacks the intact chpGCc gene. The strain with any variants failed to restore the necrosis-causing ability. These results suggest that ChpGCc has a dual function as a virulence factor in host plants and an HR elicitor in nonhost plants. Based on our findings and previous results, we propose Clavibacter apoplastic effectors, such as ChpGCc, Pat-1Cm, Chp-7Cs, and ChpGCm, as hypersensitive response and virulence (Hrv) proteins that display phenotypic similarities to the hypersensitive response and pathogenicity (Hrp) proteins found in gram-negative bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Eom-Ji Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
9
|
Hastings CJ, Syed SS, Marques CNH. Subversion of the Complement System by Pseudomonas aeruginosa. J Bacteriol 2023; 205:e0001823. [PMID: 37436150 PMCID: PMC10464199 DOI: 10.1128/jb.00018-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen heavily implicated in chronic diseases. Immunocompromised patients that become infected with P. aeruginosa usually are afflicted with a lifelong chronic infection, leading to worsened patient outcomes. The complement system is an integral piece of the first line of defense against invading microorganisms. Gram-negative bacteria are thought to be generally susceptible to attack from complement; however, P. aeruginosa can be an exception, with certain strains being serum resistant. Various molecular mechanisms have been described that confer P. aeruginosa unique resistance to numerous aspects of the complement response. In this review, we summarize the current published literature regarding the interactions of P. aeruginosa and complement, as well as the mechanisms used by P. aeruginosa to exploit various complement deficiencies and the strategies used to disrupt or hijack normal complement activities.
Collapse
Affiliation(s)
- Cody James Hastings
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Shazrah Salim Syed
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Cláudia Nogueira Hora Marques
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
10
|
Dempsey MP, Conrady CD. The Host-Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms 2023; 11:2074. [PMID: 37630634 PMCID: PMC10460047 DOI: 10.3390/microorganisms11082074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular infectious diseases are an important cause of potentially preventable vision loss and blindness. In the following manuscript, we will review ocular immunology and the pathogenesis of herpesviruses and Pseudomonas aeruginosa infections of the cornea and posterior segment. We will highlight areas of future research and what is currently known to promote bench-to-bedside discoveries to improve clinical outcomes of these debilitating ocular diseases.
Collapse
Affiliation(s)
- Michael P. Dempsey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Xiang D, Yang X, Liu B, Chu Y, Liu S, Li C. Bio-priming of banana tissue culture plantlets with endophytic Bacillus velezensis EB1 to improve Fusarium wilt resistance. Front Microbiol 2023; 14:1146331. [PMID: 37007465 PMCID: PMC10064985 DOI: 10.3389/fmicb.2023.1146331] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Tissue culture techniques have been routinely used for banana propagation and offered rapid production of planting materials with favorable genotypes and free of pathogenic microorganisms in the banana industry. Meanwhile, extensive scientific work suggests that micropropagated plantlets are more susceptible to Fusarium oxysporum f. sp. cubense (Foc), the deadly strain that causes Fusarium wilt of bananas than conventional planting material due to the loss of indigenous endophytes. In this study, an endophytic bacterium Bacillus velezensis EB1 was isolated and characterized. EB1 shows remarkable in vitro antagonistic activity against Foc with an inhibition rate of 75.43% and induces significant morphological and ultrastructural changes and alterations in the hyphae of Foc. Colony-forming unit (c.f.u.) counting and scanning electron microscopy (SEM) revealed that EB1 could colonize both the surface and inner tissues of banana tissue culture plantlets. Banana tissue culture plantlets of late rooting stage bioprimed with EB1 could efficiently ward off the invasive of Foc. The bio-priming effect could maintain in the acclimatized banana plants and significantly decrease the disease severity of Fusarium wilt and induce strong disease resistance by manipulating plant defense signaling pathways in a pot experiment. Our results provide the adaptability and potential of native endophyte EB1 in protecting plants from pathogens and infer that banana tissue culture plantlets bio-priming with endophytic microbiota could be a promising biological solution in the fight against the Fusarium wilt of banana.
Collapse
Affiliation(s)
- Dandan Xiang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaofang Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Bojing Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuanqi Chu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Siwen Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Chunyu Li
| |
Collapse
|
12
|
Marzhoseyni Z, Mousavi MJ, Saffari M, Ghotloo S. Immune escape strategies of Pseudomonas aeruginosa to establish chronic infection. Cytokine 2023; 163:156135. [PMID: 36724716 DOI: 10.1016/j.cyto.2023.156135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
The infection caused by P. aeruginosa still is dangerous throughout the world. This is partly due to its immune escape mechanisms considerably increasing the bacterial survival in the host. By escape from recognition by TLRs, interference with complement system activation, phagocytosis inhibition, production of ROS, inhibition of NET production, interference with the generation of cytokines, inflammasome inhibition, reduced antigen presentation, interference with cellular and humoral immunity, and induction of apoptotic cell death and MDSc, P. aeruginosa breaks down the barriers of the immune system and causes lethal infections in the host. Recognition of other immune escape mechanisms of P. aeruginosa may provide a basis for the future treatment of the infection. This manuscript may provide new insights and information for the development of new strategies to combat P. aeruginosa infection. In the present manuscript, the escape mechanisms of P. aeruginosa against immune response would be reviewed.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Scheithauer L, Karagöz MS, Mayer BE, Steinert M. Protein sociology of ProA, Mip and other secreted virulence factors at the Legionella pneumophila surface. Front Cell Infect Microbiol 2023; 13:1140688. [PMID: 36936764 PMCID: PMC10017501 DOI: 10.3389/fcimb.2023.1140688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The pathogenicity of L. pneumophila, the causative agent of Legionnaires' disease, depends on an arsenal of interacting proteins. Here we describe how surface-associated and secreted virulence factors of this pathogen interact with each other or target extra- and intracellular host proteins resulting in host cell manipulation and tissue colonization. Since progress of computational methods like AlphaFold, molecular dynamics simulation, and docking allows to predict, analyze and evaluate experimental proteomic and interactomic data, we describe how the combination of these approaches generated new insights into the multifaceted "protein sociology" of the zinc metalloprotease ProA and the peptidyl-prolyl cis/trans isomerase Mip (macrophage infectivity potentiator). Both virulence factors of L. pneumophila interact with numerous proteins including bacterial flagellin (FlaA) and host collagen, and play important roles in virulence regulation, host tissue degradation and immune evasion. The recent progress in protein-ligand analyses of virulence factors suggests that machine learning will also have a beneficial impact in early stages of drug discovery.
Collapse
Affiliation(s)
- Lina Scheithauer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mustafa Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Michael Steinert,
| |
Collapse
|
14
|
Kim CY, Song H, Lee YH. Ambivalent response in pathogen defense: A double-edged sword? PLANT COMMUNICATIONS 2022; 3:100415. [PMID: 35918895 PMCID: PMC9700132 DOI: 10.1016/j.xplc.2022.100415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 05/16/2023]
Abstract
Plants possess effective immune systems that defend against most microbial attackers. Recent plant immunity research has focused on the classic binary defense model involving the pivotal role of small-molecule hormones in regulating the plant defense signaling network. Although most of our current understanding comes from studies that relied on information derived from a limited number of pathosystems, newer studies concerning the incredibly diverse interactions between plants and microbes are providing additional insights into other novel mechanisms. Here, we review the roles of both classical and more recently identified components of defense signaling pathways and stress hormones in regulating the ambivalence effect during responses to diverse pathogens. Because of their different lifestyles, effective defense against biotrophic pathogens normally leads to increased susceptibility to necrotrophs, and vice versa. Given these opposing forces, the plant potentially faces a trade-off when it mounts resistance to a specific pathogen, a phenomenon referred to here as the ambivalence effect. We also highlight a novel mechanism by which translational control of the proteins involved in the ambivalence effect can be used to engineer durable and broad-spectrum disease resistance, regardless of the lifestyle of the invading pathogen.
Collapse
Affiliation(s)
- Chi-Yeol Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea; Center for Fungal Genetic Resources, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
15
|
Garcia L, Molina MC, Padgett-Pagliai KA, Torres PS, Bruna RE, García Véscovi E, González CF, Gadea J, Marano MR. A serralysin-like protein of Candidatus Liberibacter asiaticus modulates components of the bacterial extracellular matrix. Front Microbiol 2022; 13:1006962. [DOI: 10.3389/fmicb.2022.1006962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Huanglongbing (HLB), the current major threat for Citrus species, is caused by intracellular alphaproteobacteria of the genus Candidatus Liberibacter (CaL), with CaL asiaticus (CLas) being the most prevalent species. This bacterium inhabits phloem cells and is transmitted by the psyllid Diaphorina citri. A gene encoding a putative serralysin-like metalloprotease (CLIBASIA_01345) was identified in the CLas genome. The expression levels of this gene were found to be higher in citrus leaves than in psyllids, suggesting a function for this protease in adaptation to the plant environment. Here, we study the putative role of CLas-serralysin (Las1345) as virulence factor. We first assayed whether Las1345 could be secreted by two different surrogate bacteria, Rhizobium leguminosarum bv. viciae A34 (A34) and Serratia marcescens. The protein was detected only in the cellular fraction of A34 and S. marcescens expressing Las1345, and increased protease activity of those bacteria by 2.55 and 4.25-fold, respectively. In contrast, Las1345 expressed in Nicotiana benthamiana leaves did not show protease activity nor alterations in the cell membrane, suggesting that Las1345 do not function as a protease in the plant cell. Las1345 expression negatively regulated cell motility, exopolysaccharide production, and biofilm formation in Xanthomonas campestris pv. campestris (Xcc). This bacterial phenotype was correlated with reduced growth and survival on leaf surfaces as well as reduced disease symptoms in N. benthamiana and Arabidopsis. These results support a model where Las1345 could modify extracellular components to adapt bacterial shape and appendages to the phloem environment, thus contributing to virulence.
Collapse
|
16
|
Lü P, Liu Y, Yu X, Shi CL, Liu X. The right microbe-associated molecular patterns for effective recognition by plants. Front Microbiol 2022; 13:1019069. [PMID: 36225366 PMCID: PMC9549324 DOI: 10.3389/fmicb.2022.1019069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plants are constantly exposed to diverse microbes and thus develop a sophisticated perceive system to distinguish non-self from self and identify non-self as friends or foes. Plants can detect microbes in apoplast via recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) on the cell surface to activate appropriate signaling in response to microbes. MAMPs are highly conserved but essential molecules of microbes and often buried in microbes’ complex structure. Mature MAMPs are released from microbes by invasion-induced hydrolytic enzymes in apoplast and accumulate in proximity of plasma membrane-localized PRRs to be perceived as ligands to activate downstream signaling. In response, microbes developed strategies to counteract these processing. Here, we review how the form, the concentration, and the size of mature MAMPs affect the PRR-mediated immune signaling. In particular, we describe some potential applications and explore potential open questions in the fields.
Collapse
Affiliation(s)
- Pengpeng Lü
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Xixi Yu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | | | - Xiaokun Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- *Correspondence: Xiaokun Liu,
| |
Collapse
|
17
|
Coolen S, van der Molen MR, Welte CU. The secret life of insect-associated microbes and how they shape insect-plant interactions. FEMS Microbiol Ecol 2022; 98:6643329. [PMID: 35830517 PMCID: PMC9409087 DOI: 10.1093/femsec/fiac083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Insects are associated with a plethora of different microbes of which we are only starting to understand their role in shaping insect–plant interactions. Besides directly benefitting from symbiotic microbial metabolism, insects obtain and transmit microbes within their environment, making them ideal vectors and potential beneficiaries of plant diseases and microbes that alter plant defenses. To prevent damage, plants elicit stress-specific defenses to ward off insects and their microbiota. However, both insects and microbes harbor a wealth of adaptations that allow them to circumvent effective plant defense activation. In the past decades, it has become apparent that the enormous diversity and metabolic potential of insect-associated microbes may play a far more important role in shaping insect–plant interactions than previously anticipated. The latter may have implications for the development of sustainable pest control strategies. Therefore, this review sheds light on the current knowledge on multitrophic insect–microbe–plant interactions in a rapidly expanding field of research.
Collapse
Affiliation(s)
- Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Magda Rogowska- van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Sharp C, Foster KR. Host control and the evolution of cooperation in host microbiomes. Nat Commun 2022; 13:3567. [PMID: 35732630 PMCID: PMC9218092 DOI: 10.1038/s41467-022-30971-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Humans, and many other species, are host to diverse symbionts. It is often suggested that the mutual benefits of host-microbe relationships can alone explain cooperative evolution. Here, we evaluate this hypothesis with evolutionary modelling. Our model predicts that mutual benefits are insufficient to drive cooperation in systems like the human microbiome, because of competition between symbionts. However, cooperation can emerge if hosts can exert control over symbionts, so long as there are constraints that limit symbiont counter evolution. We test our model with genomic data of two bacterial traits monitored by animal immune systems. In both cases, bacteria have evolved as predicted under host control, tending to lose flagella and maintain butyrate production when host-associated. Moreover, an analysis of bacteria that retain flagella supports the evolution of host control, via toll-like receptor 5, which limits symbiont counter evolution. Our work puts host control mechanisms, including the immune system, at the centre of microbiome evolution.
Collapse
Affiliation(s)
- Connor Sharp
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Sanguankiattichai N, Buscaill P, Preston GM. How bacteria overcome flagellin pattern recognition in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102224. [PMID: 35533494 DOI: 10.1016/j.pbi.2022.102224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Efficient plant immune responses depend on the ability to recognise an invading microbe. The 22-amino acids in the N-terminal domain and the 28-amino acids in the central region of the bacterial flagellin, called flg22 and flgII-28, respectively, are important elicitors of plant immunity. Plant immunity is activated after flg22 or flgII-28 recognition by the plant transmembrane receptors FLS2 or FLS3, respectively. There is strong selective pressure on many plant pathogenic and endophytic bacteria to overcome flagellin-triggered immunity. Here we provide an overview of recent developments in our understanding of the evasion and suppression of flagellin pattern recognition by plant-associated bacteria.
Collapse
Affiliation(s)
| | - Pierre Buscaill
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
20
|
Malone M, Schultz G. Challenges in the diagnosis and management of wound infection. Br J Dermatol 2022; 187:159-166. [PMID: 35587707 DOI: 10.1111/bjd.21612] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2022] [Indexed: 12/16/2022]
Abstract
Human epithelia are constantly exposed to microorganisms present in the environment or residing as part of commensal flora. Despite this exposure, infections involving the skin and subcutaneous tissue in healthy individuals are, fortunately, quite rare. Many of the wounds that afflict the human body occur in individuals of ill health and/or where the mechanism of wounding is impeded by host immunological, physiological or regenerative dysfunction. The interplay between microorganisms and host immunity is complex and remains ill defined; however, the interpretation of downstream manifestations of the host response to invading microorganisms is still based largely on the clinical signs and symptoms of an active infectious process. In this review article we will provide a brief overview of the current challenges clinicians face in diagnosing wound infections, how chronic infections caused by biofilms are a major challenge, and how there have been minimal advancements in developing new diagnostics or therapeutics in the identification and management of wound infections.
Collapse
Affiliation(s)
- Matthew Malone
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Gregory Schultz
- Institute for Wound Research, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Scheithauer L, Thiem S, Ünal CM, Dellmann A, Steinert M. Zinc Metalloprotease ProA from Legionella pneumophila Inhibits the Pro-Inflammatory Host Response by Degradation of Bacterial Flagellin. Biomolecules 2022; 12:624. [PMID: 35625552 PMCID: PMC9138289 DOI: 10.3390/biom12050624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
The environmental bacterium Legionella pneumophila is an intracellular pathogen of various protozoan hosts and able to cause Legionnaires' disease, a severe pneumonia in humans. By encoding a wide selection of virulence factors, the infectious agent possesses several strategies to manipulate its host cells and evade immune detection. In the present study, we demonstrate that the L. pneumophila zinc metalloprotease ProA functions as a modulator of flagellin-mediated TLR5 stimulation and subsequent activation of the pro-inflammatory NF-κB pathway. We found ProA to be capable of directly degrading immunogenic FlaA monomers but not the polymeric form of bacterial flagella. These results indicate a role of the protease in antagonizing immune stimulation, which was further substantiated in HEK-BlueTM hTLR5 Detection assays. Addition of purified proteins, bacterial suspensions of L. pneumophila mutant strains as well as supernatants of human lung tissue explant infection to this reporter cell line demonstrated that ProA specifically decreases the TLR5 response via FlaA degradation. Conclusively, the zinc metalloprotease ProA serves as a powerful regulator of exogenous flagellin and presumably creates an important advantage for L. pneumophila proliferation in mammalian hosts by promoting immune evasion.
Collapse
Affiliation(s)
- Lina Scheithauer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (L.S.); (S.T.); (C.M.Ü.)
| | - Stefanie Thiem
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (L.S.); (S.T.); (C.M.Ü.)
| | - Can M. Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (L.S.); (S.T.); (C.M.Ü.)
| | - Ansgar Dellmann
- Institut für Pathologie, Städtisches Klinikum Braunschweig, Celler Straße 38, 38114 Braunschweig, Germany;
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (L.S.); (S.T.); (C.M.Ü.)
- Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
22
|
Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens 2022; 11:pathogens11030300. [PMID: 35335624 PMCID: PMC8950561 DOI: 10.3390/pathogens11030300] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is associated with several human infections, mainly related to healthcare services. In the hospital, it is associated with resistance to several antibiotics, which poses a great challenge to therapy. However, one of the biggest challenges in treating P. aeruginosa infections is that related to biofilms. The complex structure of the P. aeruginosa biofilm contributes an additional factor to the pathogenicity of this microorganism, leading to therapeutic failure, in addition to escape from the immune system, and generating chronic infections that are difficult to eradicate. In this review, we address several molecular aspects of the pathogenicity of P. aeruginosa biofilms.
Collapse
|
23
|
Matilla MA, Velando F, Monteagudo-Cascales E, Krell T. Flagella, Chemotaxis and Surface Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:185-221. [DOI: 10.1007/978-3-031-08491-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Wu T, Gagnon A, McGourty K, DosSantos R, Chanetsa L, Zhang B, Bello D, Kelleher SL. Zinc Exposure Promotes Commensal-to-Pathogen Transition in Pseudomonas aeruginosa Leading to Mucosal Inflammation and Illness in Mice. Int J Mol Sci 2021; 22:13321. [PMID: 34948118 PMCID: PMC8705841 DOI: 10.3390/ijms222413321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) is associated gastrointestinal (GI) inflammation and illness; however, factors motivating commensal-to-pathogen transition are unclear. Excessive zinc intake from supplements is common in humans. Due to the fact that zinc exposure enhances P. aeruginosa colonization in vitro, we hypothesized zinc exposure broadly activates virulence mechanisms, leading to inflammation and illness. P. aeruginosa was treated with excess zinc and growth, expression and secretion of key virulence factors, and biofilm production were determined. Effects on invasion, barrier function, and cytotoxicity were evaluated in Caco-2 cells co-cultured with P. aeruginosa pre-treated with zinc. Effects on colonization, mucosal pathology, inflammation, and illness were evaluated in mice infected with P. aeruginosa pre-treated with zinc. We found the expression and secretion of key virulence factors involved in quorum sensing (QS), motility (type IV pili, flagella), biosurfactants (rhamnolipids), toxins (exotoxin A), zinc homeostasis (CzcR), and biofilm production, were all significantly increased. Zinc exposure significantly increased P. aeruginosa invasion, permeability and cytotoxicity in Caco-2 cells, and enhanced colonization, inflammation, mucosal damage, and illness in mice. Excess zinc exposure has broad effects on key virulence mechanisms promoting commensal-to-pathogen transition of P. aeruginosa and illness in mice, suggesting excess zinc intake may have adverse effects on GI health in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shannon L. Kelleher
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 883 Broadway Street, Dugan Hall 110R, Lowell, MA 01852, USA; (T.W.); (A.G.); (K.M.); (R.D.); (L.C.); (B.Z.); (D.B.)
| |
Collapse
|
25
|
Buscaill P, van der Hoorn RAL. Defeated by the nines: nine extracellular strategies to avoid microbe-associated molecular patterns recognition in plants. THE PLANT CELL 2021; 33:2116-2130. [PMID: 33871653 PMCID: PMC8364246 DOI: 10.1093/plcell/koab109] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/07/2021] [Indexed: 05/13/2023]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) by cell-surface receptors is pivotal in host-microbe interactions. Both pathogens and symbionts establish plant-microbe interactions using fascinating intricate extracellular strategies to avoid recognition. Here we distinguish nine different extracellular strategies to avoid recognition by the host, acting at three different levels. To avoid the accumulation of MAMP precursors (Level 1), microbes take advantage of polymorphisms in both MAMP proteins and glycans, or downregulate MAMP production. To reduce hydrolytic MAMP release (Level 2), microbes shield MAMP precursors with proteins or glycans and inhibit or degrade host-derived hydrolases. And to prevent MAMP perception directly (Level 3), microbes degrade or sequester MAMPs before they are perceived. We discuss examples of these nine strategies and envisage three additional extracellular strategies to avoid MAMP perception in plants.
Collapse
Affiliation(s)
- Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | | |
Collapse
|
26
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
27
|
Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MDC, Glick BR. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). BIOLOGY 2021; 10:biology10060475. [PMID: 34072072 PMCID: PMC8229920 DOI: 10.3390/biology10060475] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Plant growth-promoting rhizobacteria (PGPR) are an eco-friendly alternative to the use of chemicals in agricultural production and crop protection. However, the efficacy of PGPR as bioinoculants can be diminished by a low capacity to colonize spaces in the rhizosphere. In this work, we review pioneering and recent developments on several important functions that rhizobacteria exhibit in order to compete, colonize, and establish themselves in the plant rhizosphere. Therefore, the use of highly competitive strains in open field trials should be a priority, in order to have consistent and better results in agricultural production activities. Abstract The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
- Correspondence:
| | - Carlos Alberto Urtis-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
| | - Pedro Damián Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo 59103, Mexico;
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Melchor Ocampo, Uruapan 60170, Mexico;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
28
|
López-Siles M, Corral-Lugo A, McConnell MJ. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol Rev 2021; 45:fuaa054. [PMID: 33289833 DOI: 10.1093/femsre/fuaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is a major threat to global public health. Vaccination is an effective approach for preventing bacterial infections, however it has not been successfully applied to infections caused by some of the most problematic multidrug resistant pathogens. In this review, the potential for vaccines to contribute to reducing the burden of disease of infections caused by multidrug resistant Gram negative bacteria is presented. Technical, logistical and societal hurdles that have limited successful vaccine development for these infections in the past are identified, and recent advances that can contribute to overcoming these challenges are assessed. A synthesis of vaccine technologies that have been employed in the development of vaccines for key multidrug resistant Gram negative bacteria is included, and emerging technologies that may contribute to future successes are discussed. Finally, a comprehensive review of vaccine development efforts over the last 40 years for three of the most worrisome multidrug resistant Gram negative pathogens, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa is presented, with a focus on recent and ongoing studies. Finally, future directions for the vaccine development field are highlighted.
Collapse
Affiliation(s)
- Mireia López-Siles
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andrés Corral-Lugo
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
29
|
Parys K, Colaianni NR, Lee HS, Hohmann U, Edelbacher N, Trgovcevic A, Blahovska Z, Lee D, Mechtler A, Muhari-Portik Z, Madalinski M, Schandry N, Rodríguez-Arévalo I, Becker C, Sonnleitner E, Korte A, Bläsi U, Geldner N, Hothorn M, Jones CD, Dangl JL, Belkhadir Y. Signatures of antagonistic pleiotropy in a bacterial flagellin epitope. Cell Host Microbe 2021; 29:620-634.e9. [DOI: 10.1016/j.chom.2021.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022]
|
30
|
Jing C, Liu C, Liu Y, Feng R, Cao R, Guan Z, Xuan B, Gao Y, Wang Q, Yang N, Ma Y, Lan L, Feng J, Shen B, Wang H, Yu Y, Yang G. Antibodies Against Pseudomonas aeruginosa Alkaline Protease Directly Enhance Disruption of Neutrophil Extracellular Traps Mediated by This Enzyme. Front Immunol 2021; 12:654649. [PMID: 33868297 PMCID: PMC8044376 DOI: 10.3389/fimmu.2021.654649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular traps released by neutrophils (NETs) are essential for the clearance of Pseudomonas aeruginosa. Alkaline protease (AprA) secreted by P. aeruginosa negatively correlates with clinical improvement. Moreover, anti-AprA in patients with cystic fibrosis (CF) can help identify patients with aggressive forms of chronic infection. However, the mechanism underlying the clinical outcomes remains unclear. We demonstrated that aprA deficiency in P. aeruginosa decreased the bacterial burden and reduced lung infection. AprA degraded NET components in vitro and in vivo but did not affect NET formation. Importantly, antibodies induced by AprA acted as an agonist and directly enhanced the degrading activities of AprA. Moreover, antisera from patients with P. aeruginosa infection exhibited antibody-dependent enhancement (ADE) similar to that of the antibodies we prepared. Our further investigations showed that the interaction between AprA and the specific antibodies might make the enzyme active sites better exposed, and subsequently enhance the recognition of substrates and accelerate the degradation. Our findings revealed that AprA secreted by P. aeruginosa may aggravate infection by destroying formed NETs, an effect that was further enhanced by its antibodies.
Collapse
Affiliation(s)
- Chendi Jing
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yu Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruli Feng
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Run Cao
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhangchun Guan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bo Xuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yaping Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Nana Yang
- Department of Molecular Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lefu Lan
- Department of Molecular Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Guang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
31
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
32
|
LasR-deficient Pseudomonas aeruginosa variants increase airway epithelial mICAM-1 expression and enhance neutrophilic lung inflammation. PLoS Pathog 2021; 17:e1009375. [PMID: 33690714 PMCID: PMC7984618 DOI: 10.1371/journal.ppat.1009375] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/22/2021] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa causes chronic airway infections, a major determinant of lung inflammation and damage in cystic fibrosis (CF). Loss-of-function lasR mutants commonly arise during chronic CF infections, are associated with accelerated lung function decline in CF patients and induce exaggerated neutrophilic inflammation in model systems. In this study, we investigated how lasR mutants modulate airway epithelial membrane bound ICAM-1 (mICAM-1), a surface adhesion molecule, and determined its impact on neutrophilic inflammation in vitro and in vivo. We demonstrated that LasR-deficient strains induce increased mICAM-1 levels in airway epithelial cells compared to wild-type strains, an effect attributable to the loss of mICAM-1 degradation by LasR-regulated proteases and associated with enhanced neutrophil adhesion. In a subacute airway infection model, we also observed that lasR mutant-infected mice displayed greater airway epithelial ICAM-1 expression and increased neutrophilic pulmonary inflammation. Our findings provide new insights into the intricate interplay between lasR mutants, LasR-regulated proteases and airway epithelial ICAM-1 expression, and reveal a new mechanism involved in the exaggerated inflammatory response induced by lasR mutants.
Collapse
|
33
|
Seder N, Abu Bakar MH, Abu Rayyan WS. Transcriptome Analysis of Pseudomonas aeruginosa Biofilm Following the Exposure to Malaysian Stingless Bee Honey. Adv Appl Bioinform Chem 2021; 14:1-11. [PMID: 33488102 PMCID: PMC7814656 DOI: 10.2147/aabc.s292143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Malaysian stingless bee honey (Trigona) has been aroused as a potential antimicrobial compound with antibiofilm activity. The capability of the gram-negative bacillus P. aeruginosa to sustain a fatal infection is encoded in the bacterium genome. Methods In the current study, a transcriptome investigation was performed to explore the mechanism underlying the biofilm dispersal of P. aeruginosa after the exposure to Trigona honey. Results Microarray analysis of the Pseudomonas biofilm treated by 20% Trigona honey has revealed a down-regulation of 3478 genes among the 6085 screened genes. Specifically, around 13.5% of the down-regulated genes were biofilm-associated genes. The mapping of the biofilm-associated pathways has shown an ultimate decrease in the expression levels of the D-GMP signaling pathway and diguanylate cyclases (DGCs) genes responsible for c-di-GMP formation. Conclusion We predominantly report the lowering of c-di-GMP through the down-regulation of DGC genes as the main mechanism of biofilm inhibition by Trigona honey.
Collapse
Affiliation(s)
- Nesrin Seder
- Faculty of Health Sciences, University Sultan Zain Al Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | - Mohd Hilmi Abu Bakar
- Faculty of Health Sciences, University Sultan Zain Al Abidin, Kuala Nerus, Terengganu 21300, Malaysia
| | - Walid Salem Abu Rayyan
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy, University of Petra, Amman, Jordan
| |
Collapse
|
34
|
Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J 2020; 18:3539-3554. [PMID: 33304453 PMCID: PMC7711191 DOI: 10.1016/j.csbj.2020.11.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) actively colonize the soil portion under the influence of plant roots, called the rhizosphere. Many plant-beneficial Pseudomonas spp. have been characterized as PGPR. They are ubiquitous rod-shaped motile Gram-negative bacteria displaying a high metabolic versatility. Their capacity to protect plants from pathogens and improve plant growth closely depends on their rhizosphere colonization abilities. Various molecular and cellular mechanisms are involved in this complex process, such as chemotaxis, biofilm formation, secondary metabolites biosynthesis, metabolic versatility, and evasion of plant immunity. The burst in Pseudomonas spp. genome sequencing in recent years has been crucial to better understand how they colonize the rhizosphere. In this review, we discuss the recent advances regarding these mechanisms and the underlying bacterial genetic factors required for successful rhizosphere colonization.
Collapse
Affiliation(s)
- Antoine Zboralski
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
35
|
Finkel OM, Salas-González I, Castrillo G, Conway JM, Law TF, Teixeira PJPL, Wilson ED, Fitzpatrick CR, Jones CD, Dangl JL. A single bacterial genus maintains root growth in a complex microbiome. Nature 2020. [PMID: 32999461 DOI: 10.1101/645655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants grow within a complex web of species that interact with each other and with the plant1-10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7-9,11-18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria-plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops.
Collapse
Affiliation(s)
- Omri M Finkel
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Plant and Environmental Sciences, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isai Salas-González
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriel Castrillo
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Jonathan M Conway
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Theresa F Law
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paulo José Pereira Lima Teixeira
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, 'Luiz de Queiroz' College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Ellie D Wilson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
Zhang J, Coaker G, Zhou JM, Dong X. Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. MOLECULAR PLANT 2020; 13:1358-1378. [PMID: 32916334 PMCID: PMC7541739 DOI: 10.1016/j.molp.2020.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 05/19/2023]
Abstract
After three decades of the amazing progress made on molecular studies of plant-microbe interactions (MPMI), we have begun to ask ourselves "what are the major questions still remaining?" as if the puzzle has only a few pieces missing. Such an exercise has ultimately led to the realization that we still have many more questions than answers. Therefore, it would be an impossible task for us to project a coherent "big picture" of the MPMI field in a single review. Instead, we provide our opinions on where we would like to go in our research as an invitation to the community to join us in this exploration of new MPMI frontiers.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jian-Min Zhou
- CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
37
|
Finkel OM, Salas-González I, Castrillo G, Conway JM, Law TF, Teixeira PJPL, Wilson ED, Fitzpatrick CR, Jones CD, Dangl JL. A single bacterial genus maintains root growth in a complex microbiome. Nature 2020; 587:103-108. [PMID: 32999461 DOI: 10.1038/s41586-020-2778-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Plants grow within a complex web of species that interact with each other and with the plant1-10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7-9,11-18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria-plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops.
Collapse
Affiliation(s)
- Omri M Finkel
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Plant and Environmental Sciences, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isai Salas-González
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriel Castrillo
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Jonathan M Conway
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Theresa F Law
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paulo José Pereira Lima Teixeira
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, 'Luiz de Queiroz' College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Ellie D Wilson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Zhang WB, Yan HL, Zhu ZC, Zhang C, Du PX, Zhao WJ, Li WM. Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit. J Zhejiang Univ Sci B 2020; 21:716-726. [PMID: 32893528 DOI: 10.1631/jzus.b2000281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The general secretory (Sec) pathway represents a common mechanism by which bacteria secrete proteins, including virulence factors, into the extracytoplasmic milieu. However, there is little information about this system, as well as its associated secretory proteins, in relation to the fire blight pathogen Erwinia amylovora. In this study, data mining revealed that E. amylovora harbors all of the essential components of the Sec system. Based on this information, we identified putative Sec-dependent secretory proteases in E. amylovora on a genome-wide scale. Using the programs SignalP, LipoP, and Phobius, a total of 15 putative proteases were predicted to contain the N-terminal signal peptides (SPs) that might link them to the Sec-dependent pathway. The activities of the predicted SPs were further validated using an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system that confirmed their extracytoplasmic property. Transcriptional analyses showed that the expression of 11 of the 15 extracytoplasmic protease genes increased significantly when E. amylovora was used to inoculate immature pears, suggesting their potential roles in plant infection. The results of this study support the suggestion that E. amylovora might employ the Sec system to secrete a suite of proteases to enable successful infection of plants, and shed new light on the interaction of E. amylovora with host plants.
Collapse
Affiliation(s)
- Wang-Bin Zhang
- College of Plant Science, Tarim University, Alar 843300, China.,Southern Xinjiang Key Laboratory of Integrated Pest Management, Tarim University, Alar 843300, China
| | - Hai-Lin Yan
- College of Plant Science, Tarim University, Alar 843300, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zong-Cai Zhu
- College of Plant Science, Tarim University, Alar 843300, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei-Xiu Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen-Jun Zhao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Wei-Min Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
39
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Pseudomonas syringae AlgU Downregulates Flagellin Gene Expression, Helping Evade Plant Immunity. J Bacteriol 2020; 202:JB.00418-19. [PMID: 31740494 DOI: 10.1128/jb.00418-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Flagella power bacterial movement through liquids and over surfaces to access or avoid certain environmental conditions, ultimately increasing a cell's probability of survival and reproduction. In some cases, flagella and chemotaxis are key virulence factors enabling pathogens to gain entry and attach to suitable host tissues. However, flagella are not always beneficial; both plant and animal immune systems have evolved receptors to sense the proteins that make up flagellar filaments as signatures of bacterial infection. Microbes poorly adapted to avoid or counteract these immune functions are unlikely to be successful in host environments, and this selective pressure has driven the evolution of diverse and often redundant pathogen compensatory mechanisms. We tested the role of AlgU, the Pseudomonas extracytoplasmic function sigma factor σE/σ22 ortholog, in regulating flagellar expression in the context of Pseudomonas syringae-plant interactions. We found that AlgU is necessary for downregulating bacterial flagellin expression in planta and that this results in a corresponding reduction in plant immune elicitation. This AlgU-dependent regulation of flagellin gene expression is beneficial to bacterial growth in the course of plant infection, and eliminating the plant's ability to detect flagellin makes this AlgU-dependent function irrelevant for bacteria growing in the apoplast. Together, these results add support to an emerging model in which P. syringae AlgU functions at a key control point that serves to optimize the expression of bacterial functions during host interactions, including minimizing the expression of immune elicitors and concomitantly upregulating beneficial virulence functions.IMPORTANCE Foliar plant pathogens, like Pseudomonas syringae, adjust their physiology and behavior to facilitate host colonization and disease, but the full extent of these adaptations is not known. Plant immune systems are triggered by bacterial molecules, such as the proteins that make up flagellar filaments. In this study, we found that during plant infection, AlgU, a gene expression regulator that is responsive to external stimuli, downregulates expression of fliC, which encodes the flagellin protein, a strong elicitor of plant immune systems. This change in gene expression and resultant change in behavior correlate with reduced plant immune activation and improved P. syringae plant colonization. The results of this study demonstrate the proximate and ultimate causes of flagellar regulation in a plant-pathogen interaction.
Collapse
|
41
|
Deng Y, Chen H, Li C, Xu J, Qi Q, Xu Y, Zhu Y, Zheng J, Peng D, Ruan L, Sun M. Endophyte Bacillus subtilis evade plant defense by producing lantibiotic subtilomycin to mask self-produced flagellin. Commun Biol 2019; 2:368. [PMID: 31633059 PMCID: PMC6787100 DOI: 10.1038/s42003-019-0614-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/06/2019] [Indexed: 02/01/2023] Open
Abstract
Microbes can enter into healthy plants as endophytes and confer beneficial functions. The entry of commensal microbes into plants involves penetrating plant defense. Most mechanisms about overcoming plant defense are focused on adapted pathogens, while the mechanism involved in beneficial endophyte evades plant defense to achieve harmonious commensalism is unclear. Here, we discover a mechanism that an endophyte bacterium Bacillus subtilis BSn5 reduce to stimulate the plant defensive response by producing lantibiotic subtilomycin to bind self-produced flagellin. Subtilomycin bind with flagellin and affect flg22-induced plant defense, by which means promotes the endophytic colonization in A. thaliana. Subtilomycin also promotes the BSn5 colonization in a distinct plant, Amorphophallus konjac, where the BSn5 was isolated. Our investigation shows more independent subtilomycin/-like producers are isolated from distinct plants. Our work unveils a common strategy that is used for bacterial endophytic colonization.
Collapse
Affiliation(s)
- Yun Deng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Hanqiao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Congzhi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jianyi Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qingdong Qi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuanyuan Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yiguang Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
42
|
Yu K, Pieterse CM, Bakker PA, Berendsen RL. Beneficial microbes going underground of root immunity. PLANT, CELL & ENVIRONMENT 2019; 42:2860-2870. [PMID: 31353481 PMCID: PMC6851990 DOI: 10.1111/pce.13632] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 05/19/2023]
Abstract
Plant roots interact with an enormous diversity of commensal, mutualistic, and pathogenic microbes, which poses a big challenge to roots to distinguish beneficial microbes from harmful ones. Plants can effectively ward off pathogens following immune recognition of conserved microbe-associated molecular patterns (MAMPs). However, such immune elicitors are essentially not different from those of neutral and beneficial microbes that are abundantly present in the root microbiome. Recent studies indicate that the plant immune system plays an active role in influencing rhizosphere microbiome composition. Moreover, it has become increasingly clear that root-invading beneficial microbes, including rhizobia and arbuscular mycorrhiza, evade or suppress host immunity to establish a mutualistic relationship with their host. Evidence is accumulating that many free-living rhizosphere microbiota members can suppress root immune responses, highlighting root immune suppression as an important function of the root microbiome. Thus, the gate keeping functions of the plant immune system are not restricted to warding off root-invading pathogens but also extend to rhizosphere microbiota, likely to promote colonization by beneficial microbes and prevent growth-defense tradeoffs triggered by the MAMP-rich rhizosphere environment.
Collapse
Affiliation(s)
- Ke Yu
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| | - Corné M.J. Pieterse
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| | - Peter A.H.M. Bakker
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| | - Roeland L. Berendsen
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| |
Collapse
|
43
|
Stringlis IA, Zamioudis C, Berendsen RL, Bakker PAHM, Pieterse CMJ. Type III Secretion System of Beneficial Rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374. Front Microbiol 2019; 10:1631. [PMID: 31379783 PMCID: PMC6647874 DOI: 10.3389/fmicb.2019.01631] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
Plants roots host myriads of microbes, some of which enhance the defense potential of plants by activating a broad-spectrum immune response in leaves, known as induced systemic resistance (ISR). Nevertheless, establishment of this mutualistic interaction requires active suppression of local root immune responses to allow successful colonization. To facilitate host colonization, phytopathogenic bacteria secrete immune-suppressive effectors into host cells via the type III secretion system (T3SS). Previously, we searched the genomes of the ISR-inducing rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374 for the presence of a T3SS and identified the components for a T3SS in the genomes of WCS417 and WCS374. By performing a phylogenetic and gene cluster alignment analysis we show that the T3SS of WCS417 and WCS374 are grouped in a clade that is enriched for beneficial rhizobacteria. We also found sequences of putative novel effectors in their genomes, which may facilitate future research on the role of T3SS effectors in plant-beneficial microbe interactions in the rhizosphere.
Collapse
Affiliation(s)
- Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
44
|
Silva RN, Monteiro VN, Steindorff AS, Gomes EV, Noronha EF, Ulhoa CJ. Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biol 2019; 123:565-583. [PMID: 31345411 DOI: 10.1016/j.funbio.2019.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/17/2023]
Abstract
Large losses before crop harvesting are caused by plant pathogens, such as viruses, bacteria, oomycetes, fungi, and nematodes. Among these, fungi are the major cause of losses in agriculture worldwide. Plant pathogens are still controlled through application of agrochemicals, causing human disease and impacting environmental and food security. Biological control provides a safe alternative for the control of fungal plant pathogens, because of the ability of biocontrol agents to establish in the ecosystem. Some Trichoderma spp. are considered potential agents in the control of fungal plant diseases. They can interact directly with roots, increasing plant growth, resistance to diseases, and tolerance to abiotic stress. Furthermore, Trichoderma can directly kill fungal plant pathogens by antibiosis, as well as via mycoparasitism strategies. In this review, we will discuss the interactions between Trichoderma/fungal pathogens/plants during the pre-harvest of crops. In addition, we will highlight how these interactions can influence crop production and food security. Finally, we will describe the future of crop production using antimicrobial peptides, plants carrying pathogen-derived resistance, and plantibodies.
Collapse
Affiliation(s)
- Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Valdirene Neves Monteiro
- Campus of Exact Sciences and Technologies, Campus Henrique Santillo, Anapolis, Goiás State, Brazil
| | - Andrei Stecca Steindorff
- U.S. Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Eriston Vieira Gomes
- Department of Biofunctional, Center of Higher Education Morgana Potrich Eireli, Morgana Potrich College, Mineiros, Goiás, Brazil
| | | | - Cirano J Ulhoa
- Department of Biochemistry and Cellular Biology, Biological Sciences Institute, Campus Samambaia, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| |
Collapse
|
45
|
Figaj D, Ambroziak P, Przepiora T, Skorko-Glonek J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2019; 20:ijms20030672. [PMID: 30720762 PMCID: PMC6386880 DOI: 10.3390/ijms20030672] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
A pathogenic lifestyle is inextricably linked with the constant necessity of facing various challenges exerted by the external environment (both within and outside the host). To successfully colonize the host and establish infection, pathogens have evolved sophisticated systems to combat the host defense mechanisms and also to be able to withstand adverse environmental conditions. Proteases, as crucial components of these systems, are involved in a variety of processes associated with infection. In phytopathogenic bacteria, they play important regulatory roles and modulate the expression and functioning of various virulence factors. Secretory proteases directly help avoid recognition by the plant immune systems, and contribute to the deactivation of the defense response pathways. Finally, proteases are important components of protein quality control systems, and thus enable maintaining homeostasis in stressed bacterial cells. In this review, we discuss the known protease functions and protease-regulated signaling processes associated with virulence of plant pathogenic bacteria.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Patrycja Ambroziak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | | |
Collapse
|
46
|
Pascale A, Proietti S, Pantelides IS, Stringlis IA. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. FRONTIERS IN PLANT SCIENCE 2019; 10:1741. [PMID: 32038698 PMCID: PMC6992662 DOI: 10.3389/fpls.2019.01741] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Plants host a mesmerizing diversity of microbes inside and around their roots, known as the microbiome. The microbiome is composed mostly of fungi, bacteria, oomycetes, and archaea that can be either pathogenic or beneficial for plant health and fitness. To grow healthy, plants need to surveil soil niches around the roots for the detection of pathogenic microbes, and in parallel maximize the services of beneficial microbes in nutrients uptake and growth promotion. Plants employ a palette of mechanisms to modulate their microbiome including structural modifications, the exudation of secondary metabolites and the coordinated action of different defence responses. Here, we review the current understanding on the composition and activity of the root microbiome and how different plant molecules can shape the structure of the root-associated microbial communities. Examples are given on interactions that occur in the rhizosphere between plants and soilborne fungi. We also present some well-established examples of microbiome harnessing to highlight how plants can maximize their fitness by selecting their microbiome. Understanding how plants manipulate their microbiome can aid in the design of next-generation microbial inoculants for targeted disease suppression and enhanced plant growth.
Collapse
Affiliation(s)
- Alberto Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Iakovos S. Pantelides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| | - Ioannis A. Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| |
Collapse
|
47
|
Lorenz A, Preuße M, Bruchmann S, Pawar V, Grahl N, Pils MC, Nolan LM, Filloux A, Weiss S, Häussler S. Importance of flagella in acute and chronicPseudomonas aeruginosainfections. Environ Microbiol 2018; 21:883-897. [DOI: 10.1111/1462-2920.14468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Anne Lorenz
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| | - Matthias Preuße
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| | - Sebastian Bruchmann
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
- Wellcome Sanger Institute Cambridge UK
| | - Vinay Pawar
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Immunology, Medical School Hannover Hannover Germany
| | - Nora Grahl
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| | - Marina C. Pils
- Mouse PathologyAnimal Experimental Unit, Helmholtz Centre for Infection Research Braunschweig Germany
| | - Laura M. Nolan
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life SciencesImperial College London London UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life SciencesImperial College London London UK
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover Hannover Germany
| | - Susanne Häussler
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| |
Collapse
|
48
|
Villena J, Kitazawa H, Van Wees SCM, Pieterse CMJ, Takahashi H. Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Front Immunol 2018; 9:2223. [PMID: 30319660 PMCID: PMC6170637 DOI: 10.3389/fimmu.2018.02223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/07/2018] [Indexed: 01/24/2023] Open
Abstract
Modern animal and crop production practices are associated with the regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Alternative approaches are needed in order to satisfy the demands of the growing human population without the indiscriminate use of antimicrobials. Researchers have brought a different perspective to solve this problem and have emphasized the exploitation of animal- and plant-associated microorganisms that are beneficial to their hosts through the modulation of the innate immune system. There is increasing evidence that plants and animals employ microbial perception and defense pathways that closely resemble each other. Formation of pattern recognition receptor (PRR) complexes involving leucine-rich repeat (LRR)-containing proteins, mitogen-activated protein kinase (MAPK)-mediated activation of immune response genes, and subsequent production of antimicrobial products and reactive oxygen species (ROS) and nitric oxide (NO) to improve defenses against pathogens, add to the list of similarities between both systems. Recent pioneering work has identified that animal and plant cells use similar receptors for sensing beneficial commensal microbes that are important for the maintenance of the host's health. Here, we reviewed the current knowledge about the molecular mechanisms involved in the recognition of pathogenic and commensal microbes by the innate immune systems of animal and plants highlighting their differences and similarities. In addition, we discuss the idea of using beneficial microbes to modulate animal and plant immune systems in order to improve the resistance to infections and reduce the use of antimicrobial compounds.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
49
|
The cloak, dagger, and shield: proteases in plant-pathogen interactions. Biochem J 2018; 475:2491-2509. [PMID: 30115747 DOI: 10.1042/bcj20170781] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Plants sense the presence of pathogens or pests through the recognition of evolutionarily conserved microbe- or herbivore-associated molecular patterns or specific pathogen effectors, as well as plant endogenous danger-associated molecular patterns. This sensory capacity is largely mediated through plasma membrane and cytosol-localized receptors which trigger complex downstream immune signaling cascades. As immune signaling outputs are often associated with a high fitness cost, precise regulation of this signaling is critical. Protease-mediated proteolysis represents an important form of pathway regulation in this context. Proteases have been widely implicated in plant-pathogen interactions, and their biochemical mechanisms and targets continue to be elucidated. During the plant and pathogen arms race, specific proteases are employed from both the plant and the pathogen sides to contribute to either defend or invade. Several pathogen effectors have been identified as proteases or protease inhibitors which act to functionally defend or camouflage the pathogens from plant proteases and immune receptors. In this review, we discuss known protease functions and protease-regulated signaling processes involved in both sides of plant-pathogen interactions.
Collapse
|
50
|
Bastaert F, Kheir S, Saint-Criq V, Villeret B, Dang PMC, El-Benna J, Sirard JC, Voulhoux R, Sallenave JM. Pseudomonas aeruginosa LasB Subverts Alveolar Macrophage Activity by Interfering With Bacterial Killing Through Downregulation of Innate Immune Defense, Reactive Oxygen Species Generation, and Complement Activation. Front Immunol 2018; 9:1675. [PMID: 30083156 PMCID: PMC6064941 DOI: 10.3389/fimmu.2018.01675] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortality, in particular, in hospital patients undergoing ventilation and in patients with cystic fibrosis. Among the virulence factors secreted or injected into host cells, the physiopathological relevance of type II secretions system (T2SS) is less studied. Although there is extensive literature on the destructive role of LasB in vitro on secreted innate immune components and on some stromal cell receptors, studies on its direct action on myeloid cells are scant. Using a variety of methods, including the use of bacterial mutants, gene-targeted mice, and proteomics technology, we show here, using non-opsonic conditions (thus mimicking resting and naïve conditions in the alveolar space), that LasB, an important component of the P.a T2SS is highly virulent in vivo, and can subvert alveolar macrophage (AM) activity and bacterial killing, in vitro and in vivo by downregulating important secreted innate immune molecules (complement factors, cytokines, etc.) and receptors (IFNAR, Csf1r, etc.). In particular, we show that LasB downregulates the production of C3 and factor B complement molecules, as well as the activation of reactive oxygen species production by AM. In addition, we showed that purified LasB impaired significantly the ability of AM to clear an unrelated bacterium, namely Streptococcus pneumoniae. These data provide a new mechanism of action for LasB, potentially partly explaining the early onset of P.a, alone, or with other bacteria, within the alveolar lumen in susceptible individuals, such as ventilated, chronic obstructive pulmonary disease and cystic fibrosis patients.
Collapse
Affiliation(s)
- Fabien Bastaert
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Saadé Kheir
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Vinciane Saint-Criq
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bérengère Villeret
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pham My-Chan Dang
- INSERM UMR1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jamel El-Benna
- INSERM UMR1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jean-Claude Sirard
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, INSERM, U1019, Lille, CNRS, UMR 8204, Université de Lille, Lille, France
| | - Romé Voulhoux
- CNRS & Aix-Marseille Université, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Jean-Michel Sallenave
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|