1
|
Mathimaran A, Nagarajan H, Mathimaran A, Huang YC, Chen CJ, Vetrivel U, Jeyaraman J. Deciphering the pH-dependent oligomerization of aspartate semialdehyde dehydrogenase from Wolbachia endosymbiont of Brugia malayi: An in vitro and in silico approaches. Int J Biol Macromol 2024; 276:133977. [PMID: 39029846 DOI: 10.1016/j.ijbiomac.2024.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The enzyme aspartate semialdehyde dehydrogenase (ASDH) plays a pivotal role in the amino acid biosynthesis pathway, making it an attractive target for the development of new antimicrobial drugs due to its absence in humans. This study aims to investigate the presence of ASDH in the filarial parasite Wolbachia endosymbiont of Brugia malayi (WBm) using both in vitro and in silico approaches. The size exclusion chromatography (SEC) and Native-PAGE analysis demonstrate that WBm-ASDH undergoes pH-dependent oligomerization and dimerization. To gain a deeper understanding of this phenomenon, the modelled monomer and dimer structures were subjected to pH-dependent dynamics simulations in various conditions. The results reveal that residues Val240, Gln161, Thr159, Tyr160, and Trp316 form strong hydrogen bond contacts in the intersurface area to maintain the structure in the dimeric form. Furthermore, the binding of NADP+ induces conformational changes, leading to an open or closed conformation in the structure. Importantly, the binding of NADP+ does not disturb either the dimerization or oligomerization of the protein, a finding confirmed through both in vitro and in silico analysis. These findings shed light on the structural characteristics of WBm-ASDH and offer valuable insights for the development of new inhibitors specific to WBm, thereby contributing to the development of potential therapies for filarial parasitic infections.
Collapse
Affiliation(s)
- Amala Mathimaran
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Hemavathy Nagarajan
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Ahila Mathimaran
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Umashankar Vetrivel
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu 600 031, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
2
|
Setegn A, Amare GA, Mihret Y. Wolbachia and Lymphatic Filarial Nematodes and Their Implications in the Pathogenesis of the Disease. J Parasitol Res 2024; 2024:3476951. [PMID: 38725798 PMCID: PMC11081757 DOI: 10.1155/2024/3476951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Lymphatic filariasis (LF) is an infection of three closely related filarial worms such as Wuchereria bancrofti, Brugia malayi, and Brugia timori. These worms can cause a devastating disease that involves acute and chronic lymphoedema of the extremities, which can cause elephantiasis in both sexes and hydroceles in males. These important public health nematodes were found to have a mutualistic relationship with intracellular bacteria of the genus Wolbachia, which is essential for the development and survival of the nematode. The host's inflammatory response to parasites and possibly also to the Wolbachia endosymbiont is the cause of lymphatic damage and disease pathogenesis. This review tried to describe and highlight the mutualistic associations between Wolbachia and lymphatic filarial nematodes and the role of bacteria in the pathogenesis of lymphatic filariasis. Articles for this review were searched from PubMed, Google Scholar, and other databases. Article searching was not restricted by publication year; however, only English version full-text articles were included.
Collapse
Affiliation(s)
- Abebaw Setegn
- Department of Medical Parasitology, University of Gondar, Gondar, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yenesew Mihret
- Department of Medical Parasitology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Sharmin Z, Samarah H, Aldaya Bourricaudy R, Ochoa L, Serbus LR. Cross-validation of chemical and genetic disruption approaches to inform host cellular effects on Wolbachia abundance in Drosophila. Front Microbiol 2024; 15:1364009. [PMID: 38591028 PMCID: PMC10999648 DOI: 10.3389/fmicb.2024.1364009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Endosymbiotic Wolbachia bacteria are widespread in nature, present in half of all insect species. The success of Wolbachia is supported by a commensal lifestyle. Unlike bacterial pathogens that overreplicate and harm host cells, Wolbachia infections have a relatively innocuous intracellular lifestyle. This raises important questions about how Wolbachia infection is regulated. Little is known about how Wolbachia abundance is controlled at an organismal scale. Methods This study demonstrates methodology for rigorous identification of cellular processes that affect whole-body Wolbachia abundance, as indicated by absolute counts of the Wolbachia surface protein (wsp) gene. Results Candidate pathways, associated with well-described infection scenarios, were identified. Wolbachia-infected fruit flies were exposed to small molecule inhibitors known for targeting those same pathways. Sequential tests in D. melanogaster and D. simulans yielded a subset of chemical inhibitors that significantly affected whole-body Wolbachia abundance, including the Wnt pathway disruptor, IWR-1 and the mTOR pathway inhibitor, Rapamycin. The implicated pathways were genetically retested for effects in D. melanogaster, using inducible RNAi expression driven by constitutive as well as chemically-induced somatic GAL4 expression. Genetic disruptions of armadillo, tor, and ATG6 significantly affected whole-body Wolbachia abundance. Discussion As such, the data corroborate reagent targeting and pathway relevance to whole-body Wolbachia infection. The results also implicate Wnt and mTOR regulation of autophagy as important for regulation of Wolbachia titer.
Collapse
Affiliation(s)
- Zinat Sharmin
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Hani Samarah
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Rafael Aldaya Bourricaudy
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Laura Ochoa
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| |
Collapse
|
4
|
Hayashi N, Hosokawa K, Yamamoto Y, Kodama S, Kurokawa A, Nakao R, Nonaka N. A filarial parasite potentially associated with the health burden on domestic chickens in Japan. Sci Rep 2024; 14:6316. [PMID: 38491072 PMCID: PMC10943242 DOI: 10.1038/s41598-024-55284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
Chickens in free-range environments are at risk of exposure to various pathogens, such as filarioids transmitted via hematophagous vectors. However, the study of filarioids in poultry has been largely neglected compared to the extensive studies focused on viruses, bacteria, and protozoa. Here, we performed histological and molecular investigations of the filarioids detected in domestic chickens from two different flocks in Hiroshima Prefecture, Japan. In the first case, adult worms were present in the pulmonary artery and right ventricle, and microfilariae were present in multiple organs of deceased chickens. In the second case, similar filarioids were detected in the organs and blood of one necropsied layer. Phylogenetic analysis using 18S rRNA gene fragments positioned the filarioid in the same clade as that of Onchocercidae sp., previously identified in a deceased chicken from Chiba Prefecture, Japan, that is located 500 km away from Hiroshima Prefecture. Based on 28S rRNA and mitochondrial COI gene fragments, the filarioid was positioned distinctly from previously reported genera of avian filarioids. These results suggest that the filarioids are potentially associated with the health burden on domestic chickens and belong to the genus Paronchocerca. Furthermore, we developed a nested PCR assay targeting mitochondrial COI and detected the parasite DNA from the biting midge Culicoides arakawae captured near the flock, suggesting that it serves as a vector. Our findings fill the knowledge gap regarding avian filarioids, laying the groundwork for future studies examining the epidemiology, life cycle, and species diversity of this neglected parasite group.
Collapse
Affiliation(s)
- Naoki Hayashi
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Kumiko Hosokawa
- Western Center for Livestock Hygiene Service, Higashihiroshima, Hiroshima Prefecture, Japan
| | - Yu Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Sachiko Kodama
- Western Center for Livestock Hygiene Service, Higashihiroshima, Hiroshima Prefecture, Japan
| | - Aoi Kurokawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo, 060-0818, Japan.
| | - Nariaki Nonaka
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
5
|
Brealey JC, Kodama M, Rasmussen JA, Hansen SB, Santos-Bay L, Lecaudey LA, Hansen M, Fjære E, Myrmel LS, Madsen L, Bernhard A, Sveier H, Kristiansen K, Gilbert MTP, Martin MD, Limborg MT. Host-gut microbiota interactions shape parasite infections in farmed Atlantic salmon. mSystems 2024; 9:e0104323. [PMID: 38294254 PMCID: PMC10886447 DOI: 10.1128/msystems.01043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Animals and their associated microbiota share long evolutionary histories. However, it is not always clear how host genotype and microbiota interact to affect phenotype. We applied a hologenomic approach to explore how host-microbiota interactions shape lifetime growth and parasite infection in farmed Atlantic salmon (Salmo salar). Multi-omics data sets were generated from the guts of 460 salmon, 82% of which were naturally infected with an intestinal cestode. A single Mycoplasma bacterial strain, MAG01, dominated the gut metagenome of large, non-parasitized fish, consistent with previous studies showing high levels of Mycoplasma in the gut microbiota of healthy salmon. While small and/or parasitized salmon also had high abundance of MAG01, we observed increased alpha diversity in these individuals, driven by increased frequency of low-abundance Vibrionaceae and other Mycoplasma species that carried known virulence genes. Colonization by one of these cestode-associated Mycoplasma strains was associated with host individual genomic variation in long non-coding RNAs. Integrating the multi-omic data sets revealed coordinated changes in the salmon gut mRNA transcriptome and metabolome that correlated with shifts in the microbiota of smaller, parasitized fish. Our results suggest that the gut microbiota of small and/or parasitized fish is in a state of dysbiosis that partly depends on the host genotype, highlighting the value of using a hologenomic approach to incorporate the microbiota into the study of host-parasite dynamics.IMPORTANCEStudying host-microbiota interactions through the perspective of the hologenome is gaining interest across all life sciences. Intestinal parasite infections are a huge burden on human and animal health; however, there are few studies investigating the role of the hologenome during parasite infections. We address this gap in the largest multi-omics fish microbiota study to date using natural cestode infection of farmed Atlantic salmon. We find a clear association between cestode infection, salmon lifetime growth, and perturbation of the salmon gut microbiota. Furthermore, we provide the first evidence that the genetic background of the host may partly determine how the gut microbiota changes during parasite-associated dysbiosis. Our study therefore highlights the value of a hologenomic approach for gaining a more in-depth understanding of parasitism.
Collapse
Affiliation(s)
- Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Luisa Santos-Bay
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Laurène A Lecaudey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Aquaculture Department, SINTEF Ocean, Trondheim, Norway
| | - Martin Hansen
- Department of Environmental Science, Environmental Metabolomics Lab, Aarhus University, Roskilde, Denmark
| | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Norway, Bergen, Norway
| | | | | | - Karsten Kristiansen
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Voronin D, Tricoche N, Peguero R, Kaminska AM, Ghedin E, Sakanari JA, Lustigman S. Repurposed Drugs That Activate Autophagy in Filarial Worms Act as Effective Macrofilaricides. Pharmaceutics 2024; 16:256. [PMID: 38399310 PMCID: PMC10891619 DOI: 10.3390/pharmaceutics16020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Onchocerciasis and lymphatic filariasis are two neglected tropical diseases caused by filarial nematodes that utilize insect vectors for transmission to their human hosts. Current control strategies are based on annual or biannual mass drug administration (MDA) of the drugs Ivermectin or Ivermectin plus Albendazole, respectively. These drug regimens kill the first-stage larvae of filarial worms (i.e., microfilariae) and interrupt the transmission of infections. MDA programs for these microfilaricidal drugs must be given over the lifetime of the filarial adult worms, which can reach 15 years in the case of Onchocerca volvulus. This is problematic because of suboptimal responses to ivermectin in various endemic regions and inefficient reduction of transmission even after decades of MDA. There is an urgent need for the development of novel alternative treatments to support the 2030 elimination goals of onchocerciasis and lymphatic filariasis. One successful approach has been to target Wolbachia, obligatory endosymbiotic bacteria on which filarial worms are dependent for their survival and reproduction within the human host. A 4-6-week antibiotic therapy with doxycycline, for example, resulted in the loss of Wolbachia that subsequently led to extensive apoptosis of somatic cells, germline, embryos, and microfilariae, as well as inhibition of fourth-stage larval development. However, this long-course regimen has limited use in MDA programs. As an alternative approach to the use of bacteriostatic antibiotics, in this study, we focused on autophagy-inducing compounds, which we hypothesized could disturb various pathways involved in the interdependency between Wolbachia and filarial worms. We demonstrated that several such compounds, including Niclosamide, an FDA-approved drug, Niclosamide ethanolamine (NEN), and Rottlerin, a natural product derived from Kamala trees, significantly reduced the levels of Wolbachia in vitro. Moreover, when these compounds were used in vivo to treat Brugia pahangi-infected gerbils, Niclosamide and NEN significantly decreased adult worm survival, reduced the release of microfilariae, and decreased embryonic development depending on the regimen and dose used. All three drugs given orally significantly reduced Wolbachia loads and induced an increase in levels of lysosome-associated membrane protein in worms from treated animals, suggesting that Niclosamide, NEN, and Rottlerin were effective in causing drug-induced autophagy in these filarial worms. These repurposed drugs provide a new avenue for the clearance of adult worms in filarial infections.
Collapse
Affiliation(s)
- Denis Voronin
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA;
| | - Nancy Tricoche
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Ricardo Peguero
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Anna Maria Kaminska
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA;
| | - Judy A. Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA;
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| |
Collapse
|
7
|
Hegde S, Marriott AE, Pionnier N, Steven A, Bulman C, Gunderson E, Vogel I, Koschel M, Ehrens A, Lustigman S, Voronin D, Tricoche N, Hoerauf A, Hübner MP, Sakanari J, Aljayyoussi G, Gusovsky F, Dagley J, Hong DW, O'Neill P, Ward SA, Taylor MJ, Turner JD. Combinations of the azaquinazoline anti- Wolbachia agent, AWZ1066S, with benzimidazole anthelmintics synergise to mediate sub-seven-day sterilising and curative efficacies in experimental models of filariasis. Front Microbiol 2024; 15:1346068. [PMID: 38362501 PMCID: PMC10867176 DOI: 10.3389/fmicb.2024.1346068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
Lymphatic filariasis and onchocerciasis are two major neglected tropical diseases that are responsible for causing severe disability in 50 million people worldwide, whilst veterinary filariasis (heartworm) is a potentially lethal parasitic infection of companion animals. There is an urgent need for safe, short-course curative (macrofilaricidal) drugs to eliminate these debilitating parasite infections. We investigated combination treatments of the novel anti-Wolbachia azaquinazoline small molecule, AWZ1066S, with benzimidazole drugs (albendazole or oxfendazole) in up to four different rodent filariasis infection models: Brugia malayi-CB.17 SCID mice, B. malayi-Mongolian gerbils, B. pahangi-Mongolian gerbils, and Litomosoides sigmodontis-Mongolian gerbils. Combination treatments synergised to elicit threshold (>90%) Wolbachia depletion from female worms in 5 days of treatment, using 2-fold lower dose-exposures of AWZ1066S than monotherapy. Short-course lowered dose AWZ1066S-albendazole combination treatments also delivered partial adulticidal activities and/or long-lasting inhibition of embryogenesis, resulting in complete transmission blockade in B. pahangi and L. sigmodontis gerbil models. We determined that short-course AWZ1066S-albendazole co-treatment significantly augmented the depletion of Wolbachia populations within both germline and hypodermal tissues of B. malayi female worms and in hypodermal tissues in male worms, indicating that anti-Wolbachia synergy is not limited to targeting female embryonic tissues. Our data provides pre-clinical proof-of-concept that sub-seven-day combinations of rapid-acting novel anti-Wolbachia agents with benzimidazole anthelmintics are a promising curative and transmission-blocking drug treatment strategy for filarial diseases of medical and veterinary importance.
Collapse
Affiliation(s)
- Shrilakshmi Hegde
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amy E. Marriott
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicolas Pionnier
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew Steven
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christina Bulman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Emma Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Ian Vogel
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Marianne Koschel
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, Unites States
| | - Denis Voronin
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, Unites States
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, Unites States
| | - Achim Hoerauf
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Department of Immunology and Parasitology, Institute for Medical Microbiology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, Unites States
| | - Ghaith Aljayyoussi
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Jessica Dagley
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David W. Hong
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Paul O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Steven A. Ward
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mark J. Taylor
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D. Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
8
|
Rinaldi G, Paz Meseguer C, Cantacessi C, Cortés A. Form and Function in the Digenea, with an Emphasis on Host-Parasite and Parasite-Bacteria Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:3-45. [PMID: 39008262 DOI: 10.1007/978-3-031-60121-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Carla Paz Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain.
| |
Collapse
|
9
|
Serbus LR. A Light in the Dark: Uncovering Wolbachia-Host Interactions Using Fluorescence Imaging. Methods Mol Biol 2024; 2739:349-373. [PMID: 38006562 DOI: 10.1007/978-1-0716-3553-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The success of microbial endosymbionts, which reside naturally within a eukaryotic "host" organism, requires effective microbial interaction with, and manipulation of, the host cells. Fluorescence microscopy has played a key role in elucidating the molecular mechanisms of endosymbiosis. For 30 years, fluorescence analyses have been a cornerstone in studies of endosymbiotic Wolbachia bacteria, focused on host colonization, maternal transmission, reproductive parasitism, horizontal gene transfer, viral suppression, and metabolic interactions in arthropods and nematodes. Fluorescence-based studies stand to continue informing Wolbachia-host interactions in increasingly detailed and innovative ways.
Collapse
Affiliation(s)
- Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
10
|
Cain JL, Norris JK, Swan MP, Nielsen MK. A diverse microbial community and common core microbiota associated with the gonad of female Parascaris spp. Parasitol Res 2023; 123:56. [PMID: 38105374 DOI: 10.1007/s00436-023-08086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The microbiome plays an important role in health, where changes in microbiota composition can have significant downstream effects within the host, and host-microbiota relationships can be exploited to affect health outcomes. Parasitic helminths affect animals globally, but an exploration of their microbiota has been limited, despite the development of anti-Wolbachia drugs to help control infections with some filarial nematodes. The equine ascarids, Parascaris spp., are considered the most pathogenic nematodes affecting juvenile horses and are also the only ascarid parasite to have developed widespread anthelmintic resistance. The aim of this study was to characterize the microbiota of this helminth, focusing on the female gonad, determine a core microbiota for this organ, identify bacterial species, and show bacterial localization to the female gonad via in situ hybridization (ISH). A total of 22 gonads were isolated from female Parascaris spp. collected from three foals, and 9 female parasites were formalin-fixed and paraffin-embedded for ISH. Next-generation sequencing was performed using V3-V4 primers as well as the Swift Amplicon™ 16S+ ITS Panel. Overall, ten genera were identified as members of the Parascaris spp. female gonad and twelve bacterial species were identified. The most prevalent genus was Mycoplasma, followed by Reyranella, and there were no differences in alpha diversity between parasites from different horses. Specific eubacteria staining was identified in both the intestine and within the gonad using ISH. Overall, this study provided in-depth information regarding the female Parascaris spp. microbiota and was the first to identify the core microbiota within a specific parasite organ.
Collapse
Affiliation(s)
- Jennifer L Cain
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA.
| | - Jamie K Norris
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA
| | - Melissa P Swan
- University of Kentucky Veterinary Diagnostic Laboratory, 1490 Bull Lea Road, Lexington, KY, 40511, USA
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA
| |
Collapse
|
11
|
Bhat AH, Tak H, Ganai BA, Malik IM, Bhat TA. Bacteria associated with ovine gut parasites Trichuris ovis and Haemonchus contortus. J Helminthol 2023; 97:e75. [PMID: 37846203 DOI: 10.1017/s0022149x23000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An associated microbiome of any host helps it in different metabolic processes ranging from the decomposition of food to the maturation of gametes. Organisms with a parasitic mode of life, though present at nutritious sites inside their host, maintain their own microbiome. Nevertheless, the comprehensive characterization and functionality of microbiome in parasitic organisms remain understudied. We selected two nematode parasites of Kashmir Merino sheep viz;Haemonchus contortus and Trichuris ovis based on their higher prevalence, difference in mode of nutrition, habitation site and effect on host. The objective of the study was to explore the bacteria associated with these parasitic nematodes of sheep. We adopted a 16S rRNA metagenomic sequencing approach to estimate and compare the bacterial communities present in these two nematode species. Nematode parasites from Kashmir Merino sheep were identified morphologically and confirmed with DNA characterization. H. contortus was dominated by phylum Proteobacteria (57%), Firmicutes (25%), Bacteroidota (15%) and Actinobacteriota (3%). Conversely, T. ovis showed Proteobacteria (78%) followed by Firmicutes (8%), Bacteroidota (8%), Actinobacteriota (1%), Fusobacteriota (1%) and other phyla (4%). This study provides a comprehensive account of the microbiome composition of H. contortus and T. ovis, both of which are highly prevalent among Kashmir Merino sheep. Additionally, T. ovis exhibited a greater bacterial diversity compared to H. contortus. Notably, these nematodes were found to harbor certain pathogenic bacteria. This study can further be carried forward in gaining insights into the complex relationship between the microbiota of a parasite and its pathogenicity, reproductive potential and host microbiome modification.
Collapse
Affiliation(s)
- A H Bhat
- Department of Zoology, University of Kashmir, Hazratbal-Srinagar, India
| | - H Tak
- Department of Zoology, University of Kashmir, Hazratbal-Srinagar, India
| | - B A Ganai
- Centre of Research for Development, University of Kashmir, Hazratbal-Srinagar, India
| | - I M Malik
- Department of Zoology, University of Kashmir, Hazratbal-Srinagar, India
| | - T A Bhat
- Centre of Research for Development, University of Kashmir, Hazratbal-Srinagar, India
| |
Collapse
|
12
|
Sounart H, Voronin D, Masarapu Y, Chung M, Saarenpää S, Ghedin E, Giacomello S. Miniature spatial transcriptomics for studying parasite-endosymbiont relationships at the micro scale. Nat Commun 2023; 14:6500. [PMID: 37838705 PMCID: PMC10576761 DOI: 10.1038/s41467-023-42237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
Several important human infectious diseases are caused by microscale-sized parasitic nematodes like filarial worms. Filarial worms have their own spatial tissue organization; to uncover this tissue structure, we need methods that can spatially resolve these miniature specimens. Most filarial worms evolved a mutualistic association with endosymbiotic bacteria Wolbachia. However, the mechanisms underlying the dependency of filarial worms on the fitness of these bacteria remain unknown. As Wolbachia is essential for the development, reproduction, and survival of filarial worms, we spatially explored how Wolbachia interacts with the worm's reproductive system by performing a spatial characterization using Spatial Transcriptomics (ST) across a posterior region containing reproductive tissue and developing embryos of adult female Brugia malayi worms. We provide a proof-of-concept for miniature-ST to explore spatial gene expression patterns in small sample types, demonstrating the method's ability to uncover nuanced tissue region expression patterns, observe the spatial localization of key B. malayi - Wolbachia pathway genes, and co-localize the B. malayi spatial transcriptome in Wolbachia tissue regions, also under antibiotic treatment. We envision our approach will open up new avenues for the study of infectious diseases caused by micro-scale parasitic worms.
Collapse
Affiliation(s)
- Hailey Sounart
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Denis Voronin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuvarani Masarapu
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sami Saarenpää
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Stefania Giacomello
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden.
| |
Collapse
|
13
|
Das NC, Chakraborty P, Nandy S, Dey A, Malik T, Mukherjee S. Programmed cell death pathways as targets for developing antifilarial drugs: Lessons from the recent findings. J Cell Mol Med 2023; 27:2819-2840. [PMID: 37605891 PMCID: PMC10538269 DOI: 10.1111/jcmm.17913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
More than half a century has passed since the introduction of the National Filariasis Control Program; however, as of 2023, lymphatic filariasis (LF) still prevails globally, particularly in the tropical and subtropical regions, posing a substantial challenge to the objective of worldwide elimination. LF is affecting human beings and its economically important livestock leading to a crucial contributor to morbidities and disabilities. The current scenario has been blowing up alarms of attention to develop potent therapeutics and strategies having efficiency against the adult stage of filarial nematodes. In this context, the exploration of a suitable drug target that ensures lethality to macro and microfilariae is now our first goal to achieve. Apoptosis has been the potential target across all three stages of filarial nematodes viz. oocytes, microfilariae (mf) and adults resulting in filarial death after receiving the signal from the reactive oxygen species (ROS) and executed through intrinsic and extrinsic pathways. Hence, it is considered a leading target for developing antifilarial drugs. Herein, we have shown the efficacy of several natural and synthetic compounds/nanoformulations in triggering the apoptotic death of filarial parasites with little or no toxicity to the host body system.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| | - Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| | - Samapika Nandy
- Department of Life SciencePresidency UniversityKolkataIndia
- School of PharmacyGraphic Era Hill UniversityDehradunIndia
| | - Abhijit Dey
- Department of Life SciencePresidency UniversityKolkataIndia
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| |
Collapse
|
14
|
Rodrigues J, Lefoulon E, Gavotte L, Perillat-Sanguinet M, Makepeace B, Martin C, D'Haese CA. Wolbachia springs eternal: symbiosis in Collembola is associated with host ecology. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230288. [PMID: 37266040 PMCID: PMC10230187 DOI: 10.1098/rsos.230288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Wolbachia are endosymbiotic alpha-proteobacteria infecting a wide range of arthropods and nematode hosts with diverse interactions, from reproductive parasites to obligate mutualists. Their taxonomy is defined by lineages called supergroups (labelled by letters of the alphabet), while their evolutionary history is complex, with multiple horizontal transfers and secondary losses. One of the least recently derived, supergroup E, infects springtails (Collembola), widely distributed hexapods, with sexual and/or parthenogenetic populations depending on species. To better characterize the diversity of Wolbachia infecting springtails, the presence of Wolbachia was screened in 58 species. Eleven (20%) species were found to be positive, with three Wolbachia genotypes identified for the first time in supergroup A. The novel genotypes infect springtails ecologically and biologically different from those infected by supergroup E. To root the Wolbachia phylogeny, rather than distant other Rickettsiales, supergroup L infecting plant-parasitic nematodes was used here. We hypothesize that the ancestor of Wolbachia was consumed by soil-dwelling nematodes, and was transferred horizontally via plants into aphids, which then infected edaphic arthropods (e.g. springtails and oribatid mites) before expanding into most clades of terrestrial arthropods and filarial nematodes.
Collapse
Affiliation(s)
- Jules Rodrigues
- UMR7245, MCAM, Museum national d'Histoire naturelle, Paris, France
| | - Emilie Lefoulon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | | | | - Benjamin Makepeace
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Coralie Martin
- UMR7245, MCAM, Museum national d'Histoire naturelle, Paris, France
| | - Cyrille A D'Haese
- UMR7179 MECADEV, Museum national d'Histoire naturelle, Paris, France
| |
Collapse
|
15
|
Karpova EK, Bobrovskikh MA, Deryuzhenko MA, Shishkina OD, Gruntenko NE. Wolbachia Effect on Drosophila melanogaster Lipid and Carbohydrate Metabolism. INSECTS 2023; 14:357. [PMID: 37103172 PMCID: PMC10143037 DOI: 10.3390/insects14040357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The effect of maternally inherited endosymbiotic bacteria Wolbachia on triglyceride and carbohydrate metabolism, starvation resistance and feeding behavior of Drosophila melanogaster females was studied. Eight D. melanogaster lines of the same nuclear background were investigated; one had no infection and served as the control, and seven others were infected with different Wolbachia strains pertaining to wMel and wMelCS groups of genotypes. Most of the infected lines had a higher overall lipid content and triglyceride level than the control line and their expression of the bmm gene regulating triglyceride catabolism was reduced. The glucose content was higher in the infected lines compared to that in the control, while their trehalose levels were similar. It was also found that the Wolbachia infection reduced the level of tps1 gene expression (coding for enzyme for trehalose synthesis from glucose) and had no effect on treh gene expression (coding for trehalose degradation enzyme). The infected lines exhibited lower appetite but higher survival under starvation compared to the control. The data obtained may indicate that Wolbachia foster their hosts' energy exchange through increasing its lipid storage and glucose content to ensure the host's competitive advantage over uninfected individuals. The scheme of carbohydrate and lipid metabolism regulation under Wolbachia's influence was suggested.
Collapse
|
16
|
Eco-evolutionary implications of helminth microbiomes. J Helminthol 2023; 97:e22. [PMID: 36790127 DOI: 10.1017/s0022149x23000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The evolution of helminth parasites has long been seen as an interplay between host resistance to infection and the parasite's capacity to bypass such resistance. However, there has recently been an increasing appreciation of the role of symbiotic microbes in the interaction of helminth parasites and their hosts. It is now clear that helminths have a different microbiome from the organisms they parasitize, and sometimes amid large variability, components of the microbiome are shared among different life stages or among populations of the parasite. Helminths have been shown to acquire microbes from their parent generations (vertical transmission) and from their surroundings (horizontal transmission). In this latter case, natural selection has been strongly linked to the fact that helminth-associated microbiota is not simply a random assemblage of the pool of microbes available from their organismal hosts or environments. Indeed, some helminth parasites and specific microbial taxa have evolved complex ecological relationships, ranging from obligate mutualism to reproductive manipulation of the helminth by associated microbes. However, our understanding is still very elementary regarding the net effect of all microbiome components in the eco-evolution of helminths and their interaction with hosts. In this non-exhaustible review, we focus on the bacterial microbiome associated with helminths (as opposed to the microbiome of their hosts) and highlight relevant concepts and key findings in bacterial transmission, ecological associations, and taxonomic and functional diversity of the bacteriome. We integrate the microbiome dimension in a discussion of the evolution of helminth parasites and identify fundamental knowledge gaps, finally suggesting research avenues for understanding the eco-evolutionary impacts of the microbiome in host-parasite interactions in light of new technological developments.
Collapse
|
17
|
Mills MK, McCabe LG, Rodrigue EM, Lechtreck KF, Starai VJ. Wbm0076, a candidate effector protein of the Wolbachia endosymbiont of Brugia malayi, disrupts eukaryotic actin dynamics. PLoS Pathog 2023; 19:e1010777. [PMID: 36800397 PMCID: PMC9980815 DOI: 10.1371/journal.ppat.1010777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/02/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Brugia malayi, a parasitic roundworm of humans, is colonized by the obligate intracellular bacterium, Wolbachia pipientis. The symbiosis between this nematode and bacterium is essential for nematode reproduction and long-term survival in a human host. Therefore, identifying molecular mechanisms required by Wolbachia to persist in and colonize B. malayi tissues will provide new essential information regarding the basic biology of this endosymbiosis. Wolbachia utilize a Type IV secretion system to translocate so-called "effector" proteins into the cytosol of B. malayi cells to promote colonization of the eukaryotic host. However, the characterization of these Wolbachia secreted proteins has remained elusive due to the genetic intractability of both organisms. Strikingly, expression of the candidate Wolbachia Type IV-secreted effector protein, Wbm0076, in the surrogate eukaryotic cell model, Saccharomyces cerevisiae, resulted in the disruption of the yeast actin cytoskeleton and inhibition of endocytosis. Genetic analyses show that Wbm0076 is a member of the family of Wiskott-Aldrich syndrome proteins (WAS [p]), a well-conserved eukaryotic protein family required for the organization of actin skeletal structures. Thus, Wbm0076 likely plays a central role in the active cell-to-cell movement of Wolbachia throughout B. malayi tissues during nematode development. As most Wolbachia isolates sequenced to date encode at least partial orthologs of wBm0076, we find it likely that the ability of Wolbachia to directly manipulate host actin dynamics is an essential requirement of all Wolbachia endosymbioses, independent of host cell species.
Collapse
Affiliation(s)
- Michael K. Mills
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Lindsey G. McCabe
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Eugenie M. Rodrigue
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
18
|
Hodžić A, Dheilly NM, Cabezas-Cruz A, Berry D. The helminth holobiont: a multidimensional host-parasite-microbiota interaction. Trends Parasitol 2023; 39:91-100. [PMID: 36503639 DOI: 10.1016/j.pt.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Gastrointestinal helminths have developed multiple mechanisms by which they manipulate the host microbiome to make a favorable environment for their long-term survival. While the impact of helminth infections on vertebrate host immunity and its gut microbiota is relatively well studied, little is known about the structure and functioning of microbial populations supported by metazoan parasites. Here we argue that an integrated understanding of the helminth-associated microbiome and its role in the host disease pathogenesis may facilitate the discovery of specific microbial and/or genetic patterns critical for parasite biology and subsequently pave the way for the development of alternative control strategies against parasites and parasitic disease.
Collapse
Affiliation(s)
- Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Nolwenn M Dheilly
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - David Berry
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
19
|
Fordjour FA, Kwarteng A. The filarial and the antibiotics: Single or combination therapy using antibiotics for filariasis. Front Cell Infect Microbiol 2022; 12:1044412. [PMID: 36467729 PMCID: PMC9712956 DOI: 10.3389/fcimb.2022.1044412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2023] Open
Abstract
Filarial infections caused by nematodes are one of the major neglected tropical diseases with public health concern. Although there is significant decrease in microfilariae (mf) prevalence following mass drug administration (IVM/DEC/ALB administration), this is transient, in that there is reported microfilaria repopulation 6-12 months after treatment. Wolbachia bacteria have been recommended as a novel target presenting antibiotic-based treatment for filarial disease. Potency of antibiotics against filarial diseases is undoubtful, however, the duration for treatment remains a hurdle yet to be overcome in filarial disease treatment.
Collapse
Affiliation(s)
- Fatima Amponsah Fordjour
- Department of Microbiology, University for Development Studies (UDS), Tamale, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
20
|
Brealey JC, Lecaudey LA, Kodama M, Rasmussen JA, Sveier H, Dheilly NM, Martin MD, Limborg MT. Microbiome "Inception": an Intestinal Cestode Shapes a Hierarchy of Microbial Communities Nested within the Host. mBio 2022; 13:e0067922. [PMID: 35502903 PMCID: PMC9239044 DOI: 10.1128/mbio.00679-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
The concept of a holobiont, a host organism and its associated microbial communities, encapsulates the vital role the microbiome plays in the normal functioning of its host. Parasitic infections can disrupt this relationship, leading to dysbiosis. However, it is increasingly recognized that multicellular parasites are themselves holobionts. Intestinal parasites share space with the host gut microbiome, creating a system of nested microbiomes within the primary host. However, how the parasite, as a holobiont, interacts with the host holobiont remains unclear, as do the consequences of these interactions for host health. Here, we used 16S amplicon and shotgun metagenomics sequencing to characterize the microbiome of the intestinal cestode Eubothrium and its effect on the gut microbiome of its primary host, Atlantic salmon. Our results indicate that cestode infection is associated with salmon gut dysbiosis by acting as a selective force benefiting putative pathogens and potentially introducing novel bacterial species to the host. Our results suggest that parasitic cestodes may themselves be holobionts nested within the microbial community of their holobiont host, emphasizing the importance of also considering microbes associated with parasites when studying intestinal parasitic infections. IMPORTANCE The importance of the parasite microbiome is gaining recognition. Of particular concern is understanding how these parasite microbiomes influence host-parasite interactions and parasite interactions with the vertebrate host microbiome as part of a system of nested holobionts. However, there are still relatively few studies focusing on the microbiome of parasitic helminths in general and almost none on cestodes in particular, despite the significant burden of disease caused by these parasites globally. Our study provides insights into a system of significance to the aquaculture industry, cestode infections of Atlantic salmon and, more broadly, expands our general understanding of parasite-microbiome-host interactions and introduces a new element, the microbiome of the parasite itself, which may play a critical role in modulating the host microbiome, and, therefore, the host response, to parasite infection.
Collapse
Affiliation(s)
- Jaelle C. Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Laurène A. Lecaudey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob A. Rasmussen
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Nolwenn M. Dheilly
- UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, Maisons-Alfort, France
| | - Michael D. Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten T. Limborg
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Marriott AE, Furlong Silva J, Pionnier N, Sjoberg H, Archer J, Steven A, Kempf D, Taylor MJ, Turner JD. A mouse infection model and long-term lymphatic endothelium co-culture system to evaluate drugs against adult Brugia malayi. PLoS Negl Trop Dis 2022; 16:e0010474. [PMID: 35671324 PMCID: PMC9205518 DOI: 10.1371/journal.pntd.0010474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/17/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022] Open
Abstract
The development of new drugs targeting adult-stage lymphatic filarial nematodes is hindered by the lack of a robust long-term in vitro culture model. Testing potential direct-acting and anti-Wolbachia therapeutic candidates against adult lymphatic filariae in vitro requires their propagation via chronic infection of gerbils. We evaluated Brugia malayi parasite burden data from male Mongolian gerbils compared with two immune-deficient mouse strains highly susceptible to B. malayi: CB.17 Severe-Combined Immmuno-Deficient (SCID) and interleukin-4 receptor alpha, interleukin-5 double knockout (IL-4Rα-/-IL-5-/-) mice. Adult worms generated in IL-4Rα-/-IL-5-/- mice were tested with different feeder cells (human embryonic kidney cells, human adult dermal lymphatic endothelial cells and human THP-1 monocyte differentiated macrophages) and comparative cell-free conditions to optimise and validate a long-term in vitro culture system. Cultured parasites were compared against those isolated from mice using motility scoring, metabolic viability assay (MTT), ex vivo microfilariae release assay and Wolbachia content by qPCR. A selected culture system was validated as a drug screen using reference anti-Wolbachia (doxycycline, ABBV-4083 / flubentylosin) or direct-acting compounds (flubendazole, suramin). BALB/c IL-4Rα-/-IL-5-/- or CB.17 SCID mice were superior to Mongolian gerbils in generating adult worms and supporting in vivo persistence for periods of up to 52 weeks. Adult females retrieved from BALB/c IL-4Rα-/-IL-5-/- mice could be cultured for up to 21 days in the presence of a lymphatic endothelial cell co-culture system with comparable motility, metabolic activity and Wolbachia titres to those maintained in vivo. Drug studies confirmed significant Wolbachia depletions or direct macrofilaricidal activities could be discerned when female B. malayi were cultured for 14 days. We therefore demonstrate a novel methodology to generate adult B. malayi in vivo and accurately evaluate drug efficacy ex vivo which may be adopted for drug screening with the dual benefit of reducing overall animal use and improving anti-filarial drug development.
Collapse
Affiliation(s)
- Amy E. Marriott
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Julio Furlong Silva
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Nicolas Pionnier
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Hanna Sjoberg
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - John Archer
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Andrew Steven
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Dale Kempf
- Pharmaceutical R&D, AbbVie, North Chicago, Illinois, United States of America
| | - Mark J. Taylor
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Joseph D. Turner
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Wolbachia depletion blocks transmission of lymphatic filariasis by preventing chitinase-dependent parasite exsheathment. Proc Natl Acad Sci U S A 2022; 119:e2120003119. [PMID: 35377795 PMCID: PMC9169722 DOI: 10.1073/pnas.2120003119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lymphatic filariasis is a vector-borne neglected tropical disease prioritized for global elimination. The filarial nematodes that cause the disease host a symbiotic bacterium, Wolbachia, which has been targeted using antibiotics, leading to cessation of parasite embryogenesis, waning of circulating larvae (microfilariae [mf]), and gradual cure of adult infection. One of the benefits of the anti-Wolbachia mode of action is that it avoids the rapid killing of mf, which can drive inflammatory adverse events. However, mf depleted of Wolbachia persist for several months in circulation, and thus patients treated with antibiotics are assumed to remain at risk for transmitting infections. Here, we show that Wolbachia-depleted mf rapidly lose the capacity to develop in the mosquito vector through a defect in exsheathment and inability to migrate through the gut wall. Transcriptomic and Western blotting analyses demonstrate that chitinase, an enzyme essential for mf exsheathment, is down-regulated in Wolbachia-depleted mf and correlates with their inability to exsheath and escape the mosquito midgut. Supplementation of in vitro cultures of Wolbachia-depleted mf with chitinase enzymes restores their ability to exsheath to a similar level to that observed in untreated mf. Our findings elucidate a mechanism of rapid transmission-blocking activity of filariasis after depletion of Wolbachia and adds to the broad range of biological processes of filarial nematodes that are dependent on Wolbachia symbiosis.
Collapse
|
23
|
Gangwar M, Jha R, Goyal M, Srivastava M. Biochemical characterization of Recombinase A from Wolbachia endosymbiont of filarial nematode Brugia malayi (wBmRecA). Int J Parasitol 2021; 51:841-853. [PMID: 34273392 DOI: 10.1016/j.ijpara.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022]
Abstract
Lymphatic filariasis is a debilitating disease that affects over 890 million people in 49 countries. A lack of vaccines, non-availability of adulticidal drugs, the threat of emerging drug resistance against available chemotherapeutics and an incomplete understanding of the immunobiology of the disease have sustained the problem. Characterization of Wolbachia proteins, the bacterial endosymbiont which helps in the growth and development of filarial worms, regulates fecundity in female worms and mediates immunopathogenesis of Lymphatic Filariasis, is an important approach to gain insights into the immunopathogenesis of the disease. In this study, we carried out extensive biochemical characterization of Recombinase A from Wolbachia of the filarial nematode Brugia malayi (wBmRecA) using an Electrophoretic Mobility Shift Assay, an ATP binding and hydrolysis assay, DNA strand exchange reactions, DAPI displacement assay and confocal microscopy, and evaluated anti-filarial activity of RecA inhibitors. Confocal studies showed that wBmRecA was expressed and localised within B. malayi microfilariae (Mf) and uteri and lateral chord of adult females. Recombinant wBmRecA was biochemically active and showed intrinsic binding capacity towards both single-stranded DNA and double-stranded DNA that were enhanced by ATP, suggesting ATP-induced cooperativity. wBmRecA promoted ATP hydrolysis and DNA strand exchange reactions in a concentration-dependent manner, and its binding to DNA was sensitive to temperature, pH and salt concentration. Importantly, the anti-parasitic drug Suramin, and Phthalocyanine tetrasulfonate (PcTs)-based inhibitors Fe-PcTs and 3,4-Cu-PcTs, inhibited wBmRecA activity and affected the motility and viability of Mf. The addition of Doxycycline further enhanced microfilaricidal activity of wBmRecA, suggesting potential synergism. Taken together, the omnipresence of wBmRecA in B. malayi life stages and the potent microfilaricidal activity of RecA inhibitors suggest an important role of wBmRecA in filarial pathogenesis.
Collapse
Affiliation(s)
- Mamta Gangwar
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ruchi Jha
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manish Goyal
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Mrigank Srivastava
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
24
|
Lefoulon E, Foster JM, Truchon A, Carlow CKS, Slatko BE. The Wolbachia Symbiont: Here, There and Everywhere. Results Probl Cell Differ 2021; 69:423-451. [PMID: 33263882 DOI: 10.1007/978-3-030-51849-3_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wolbachia symbionts, first observed in the 1920s, are now known to be present in about 30-70% of tested arthropod species, in about half of tested filarial nematodes (including the majority of human filarial nematodes), and some plant-parasitic nematodes. In arthropods, they are generally viewed as parasites while in nematodes they appear to be mutualists although this demarcation is not absolute. Their presence in arthropods generally leads to reproductive anomalies, while in nematodes, they are generally required for worm development and reproduction. In mosquitos, Wolbachia inhibit RNA viral infections, leading to populational reductions in human RNA virus pathogens, whereas in filarial nematodes, their requirement for worm fertility and survival has been channeled into their use as drug targets for filariasis control. While much more research on these ubiquitous symbionts is needed, they are viewed as playing significant roles in biological processes, ranging from arthropod speciation to human health.
Collapse
Affiliation(s)
- Emilie Lefoulon
- Molecular Parasitology Group, New England Biolabs, Inc., Ipswich, MA, USA
| | - Jeremy M Foster
- Molecular Parasitology Group, New England Biolabs, Inc., Ipswich, MA, USA
| | - Alex Truchon
- Molecular Parasitology Group, New England Biolabs, Inc., Ipswich, MA, USA
| | - C K S Carlow
- Molecular Parasitology Group, New England Biolabs, Inc., Ipswich, MA, USA
| | - Barton E Slatko
- Molecular Parasitology Group, New England Biolabs, Inc., Ipswich, MA, USA.
| |
Collapse
|
25
|
Chevignon G, Foray V, Pérez-Jiménez MM, Libro S, Chung M, Foster JM, Landmann F. Dual RNAseq analyses at soma and germline levels reveal evolutionary innovations in the elephantiasis-agent Brugia malayi, and adaptation of its Wolbachia endosymbionts. PLoS Negl Trop Dis 2021; 15:e0008935. [PMID: 33406151 PMCID: PMC7787461 DOI: 10.1371/journal.pntd.0008935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/31/2020] [Indexed: 12/23/2022] Open
Abstract
Brugia malayi is a human filarial nematode responsible for elephantiasis, a debilitating condition that is part of a broader spectrum of diseases called filariasis, including lymphatic filariasis and river blindness. Almost all filarial nematode species infecting humans live in mutualism with Wolbachia endosymbionts, present in somatic hypodermal tissues but also in the female germline which ensures their vertical transmission to the nematode progeny. These α-proteobacteria potentially provision their host with essential metabolites and protect the parasite against the vertebrate immune response. In the absence of Wolbachia wBm, B. malayi females become sterile, and the filarial nematode lifespan is greatly reduced. In order to better comprehend this symbiosis, we investigated the adaptation of wBm to the host nematode soma and germline, and we characterized these cellular environments to highlight their specificities. Dual RNAseq experiments were performed at the tissue-specific and ovarian developmental stage levels, reaching the resolution of the germline mitotic proliferation and meiotic differentiation stages. We found that most wBm genes, including putative effectors, are not differentially regulated between infected tissues. However, two wBm genes involved in stress responses are upregulated in the hypodermal chords compared to the germline, indicating that this somatic tissue represents a harsh environment to which wBm have adapted. A comparison of the B. malayi and C. elegans germline transcriptomes reveals a poor conservation of genes involved in the production of oocytes, with the filarial germline proliferative zone relying on a majority of genes absent from C. elegans. The first orthology map of the B. malayi genome presented here, together with tissue-specific expression enrichment analyses, indicate that the early steps of oogenesis are a developmental process involving genes specific to filarial nematodes, that likely result from evolutionary innovations supporting the filarial parasitic lifestyle.
Collapse
Affiliation(s)
- Germain Chevignon
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Vincent Foray
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Mercedes Maria Pérez-Jiménez
- CRBM, University of Montpellier, CNRS, Montpellier, France
- Centro Andaluz de Biología del Desarrollo (CABD)–Universidad Pablo de Olavide (UPO), Departamento de Biología Molecular e Ingeniería Bioquímica, UPO/CSIC/JA, Sevilla, Spain
| | - Silvia Libro
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy M. Foster
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, Massachusetts, United States of America
| | | |
Collapse
|
26
|
Guo Y, Khan J, Zheng XY, Wu Y. Wolbachia increase germ cell mitosis to enhance the fecundity of Laodelphax striatellus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103471. [PMID: 32966874 DOI: 10.1016/j.ibmb.2020.103471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/20/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Wolbachia are intracellular bacteria that infect a wide range of invertebrates and have evolved various strategies to alter host reproduction for their own survival and dissemination. In small brown planthopper Laodelphax striatellus, Wolbachia-infected females lay more eggs than uninfected females. Our previous study has shown that Wolbachia are abundant in ovarian cells of L. striatellus and change the number of apoptotic nurse cells in a caspase-dependent manner to provide nutrition for oogenesis. The cellular and molecular bases of the Wolbachia-mediated alterations in L. striatellus oogenesis remain largely unknown. Here, we investigated whether germ cell mitosis, which has been implicated in determination of egg production rates, influences the interaction between fecundity and Wolbachia in L.striatellus. We used an anti-phospho-histone 3 (pH3) antibody to label and visualize mitotic cells. Microscopic observations indicated that the Wolbachia strain wStri increased the number of ovarioles that contained mitotic germ cells. The increased fecundity of Wolbachia-infected females was a result of mitosis of germ cells; the frequency of germ cell mitosis was much higher in infected females than in uninfected females. In addition, mitosis inhibition by Cdc20, CDK1, and CycB messenger RNA interference in Wolbachia-infected L. striatellus markedly decreased egg numbers. Live Wolbachia recolonization enhanced the egg production of uninfected L. striatellus by directly affecting mitosis regulators. Together, these data suggest that wStri might increase germ cell mitosis to enhance the fecundity of L. striatellus in a mitosis-regulating manner. Our findings establish a link between Wolbachia-induced mitosis and Wolbachia-mediated egg production effects.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jehangir Khan
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China; Department of Zoology, Abdul Wali Khan University Mardan, Pakistan.
| | - Xiao-Ying Zheng
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Yu Wu
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
A Meta-Analysis of Wolbachia Transcriptomics Reveals a Stage-Specific Wolbachia Transcriptional Response Shared Across Different Hosts. G3-GENES GENOMES GENETICS 2020; 10:3243-3260. [PMID: 32718933 PMCID: PMC7467002 DOI: 10.1534/g3.120.401534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Wolbachia is a genus containing obligate, intracellular endosymbionts with arthropod and nematode hosts. Numerous studies have identified differentially expressed transcripts in Wolbachia endosymbionts that potentially inform the biological interplay between these endosymbionts and their hosts, albeit with discordant results. Here, we re-analyze previously published Wolbachia RNA-Seq transcriptomics data sets using a single workflow consisting of the most up-to-date algorithms and techniques, with the aim of identifying trends or patterns in the pan-Wolbachia transcriptional response. We find that data from one of the early studies in filarial nematodes did not allow for robust conclusions about Wolbachia differential expression with these methods, suggesting the original interpretations should be reconsidered. Across datasets analyzed with this unified workflow, there is a general lack of global gene regulation with the exception of a weak transcriptional response resulting in the upregulation of ribosomal proteins in early larval stages. This weak response is observed across diverse Wolbachia strains from both nematode and insect hosts suggesting a potential pan-Wolbachia transcriptional response during host development that diverged more than 700 million years ago.
Collapse
|
28
|
Taubenheim J, Willoweit-Ohl D, Knop M, Franzenburg S, He J, Bosch TCG, Fraune S. Bacteria- and temperature-regulated peptides modulate β-catenin signaling in Hydra. Proc Natl Acad Sci U S A 2020; 117:21459-21468. [PMID: 32817436 PMCID: PMC7474684 DOI: 10.1073/pnas.2010945117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Animal development has traditionally been viewed as an autonomous process directed by the host genome. But, in many animals, biotic and abiotic cues, like temperature and bacterial colonizers, provide signals for multiple developmental steps. Hydra offers unique features to encode these complex interactions of developmental processes with biotic and abiotic factors, and we used it here to investigate the impact of bacterial colonizers and temperature on the pattern formation process. In Hydra, formation of the head organizer involves the canonical Wnt pathway. Treatment with alsterpaullone (ALP) results in acquiring characteristics of the head organizer in the body column. Intriguingly, germfree Hydra polyps are significantly more sensitive to ALP compared to control polyps. In addition to microbes, β-catenin-dependent pattern formation is also affected by temperature. Gene expression analyses led to the identification of two small secreted peptides, named Eco1 and Eco2, being up-regulated in the response to both Curvibacter sp., the main bacterial colonizer of Hydra, and low temperatures. Loss-of-function experiments revealed that Eco peptides are involved in the regulation of pattern formation and have an antagonistic function to Wnt signaling in Hydra.
Collapse
Affiliation(s)
- Jan Taubenheim
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Zoological Institute, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Doris Willoweit-Ohl
- Zoological Institute, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Mirjam Knop
- Zoological Institute, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Jinru He
- Zoological Institute, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Zoological Institute, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
29
|
Ashour DS, Othman AA. Parasite-bacteria interrelationship. Parasitol Res 2020; 119:3145-3164. [PMID: 32748037 DOI: 10.1007/s00436-020-06804-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Parasites and bacteria have co-evolved with humankind, and they interact all the time in a myriad of ways. For example, some bacterial infections result from parasite-dwelling bacteria as in the case of Salmonella infection during schistosomiasis. Other bacteria synergize with parasites in the evolution of human disease as in the case of the interplay between Wolbachia endosymbiont bacteria and filarial nematodes as well as the interaction between Gram-negative bacteria and Schistosoma haematobium in the pathogenesis of urinary bladder cancer. Moreover, secondary bacterial infections may complicate several parasitic diseases such as visceral leishmaniasis and malaria, due to immunosuppression of the host during parasitic infections. Also, bacteria may colonize the parasitic lesions; for example, hydatid cysts and skin lesions of ectoparasites. Remarkably, some parasitic helminths and arthropods exhibit antibacterial activity usually by the release of specific antimicrobial products. Lastly, some parasite-bacteria interactions are induced as when using probiotic bacteria to modulate the outcome of a variety of parasitic infections. In sum, parasite-bacteria interactions involve intricate processes that never cease to intrigue the researchers. However, understanding and exploiting these interactions could have prophylactic and curative potential for infections by both types of pathogens.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
30
|
Shrivastava S, Gupta A, Kaur CD. The Epitome of Novel Techniques and Targeting Approaches in Drug Delivery for Treating Lymphatic Filariasis. Curr Drug Targets 2020; 21:1250-1263. [PMID: 32603280 DOI: 10.2174/1389450121666200630111250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lymphatic filariasis is a pervasive and life-threatening disease for human beings. Currently, 893 million people in 49 countries worldwide affected by lymphatic filariasis as per WHO statistics. The concealed aspects of lymphatic diseases such as delayed disease detection, inappropriate disease imaging, the geographical outbreak of infection, and lack of preventive chemotherapy have brought this epidemic to the edge of Neglected Tropical Diseases. Many medications and natural bioactive substances have seen to promote filaricidal activity against the target parasitic species. However, the majority of failures have occurred in pharmaceutical and pharmacokinetic issues. OBJECTIVE The purpose of the study is to focus on the challenges and therapeutic issues in the treatment of filariasis. The review brings novel techniques and therapeutic approaches for combating lymphatic filariasis. It also offers significant developments and opportunities for such therapeutic interventions. CONCLUSION Through this review, an attempt has made to critically evaluate the avenues of innovative pharmaceuticals and molecular targeting approaches to bring an integrated solution to combat lymphatic filariasis.
Collapse
Affiliation(s)
- Saurabh Shrivastava
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, 490042, India
| | - Anshita Gupta
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, 490042, India
| | - Chanchal Deep Kaur
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, 490042, India
| |
Collapse
|
31
|
Herran B, Geniez S, Delaunay C, Raimond M, Lesobre J, Bertaux J, Slatko B, Grève P. The shutting down of the insulin pathway: a developmental window for Wolbachia load and feminization. Sci Rep 2020; 10:10551. [PMID: 32601334 PMCID: PMC7324399 DOI: 10.1038/s41598-020-67428-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023] Open
Abstract
Using the isopod Armadillidium vulgare as a case study, we review the significance of the "bacterial dosage model", which connects the expression of the extended phenotype to the rise of the Wolbachia load. In isopods, the Insulin-like Androgenic Gland hormone (IAG) induces male differentiation: Wolbachia feminizes males through insulin resistance, presumably through defunct insulin receptors. This should prevent an autocrine development of the androgenic glands so that females differentiate instead: feminization should translate as IAG silencing and increased Wolbachia load in the same developmental window. In line with the autocrine model, uninfected males expressed IAG from the first larval stage on, long before the androgenic gland primordia begin to differentiate, and exponentially throughout development. In contrast in infected males, expression fully stopped at stage 4 (juvenile), when male differentiation begins. This co-occurred with the only significant rise in the Wolbachia load throughout the life-stages. Concurrently, the raw expression of the bacterial Secretion Systems co-increased, but they were not over-expressed relative to the number of bacteria. The isopod model leads to formulate the "bacterial dosage model" throughout extended phenotypes as the conjunction between bacterial load as the mode of action, timing of multiplication (pre/post-zygotic), and site of action (soma vs. germen).
Collapse
Affiliation(s)
- Benjamin Herran
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Sandrine Geniez
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, USA
| | - Carine Delaunay
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Maryline Raimond
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Jérôme Lesobre
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, 63178, Aubière, France
| | - Joanne Bertaux
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France.
| | - Barton Slatko
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, USA
| | - Pierre Grève
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
32
|
Sariola S, Gilbert SF. Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. Microorganisms 2020; 8:E746. [PMID: 32429344 PMCID: PMC7285259 DOI: 10.3390/microorganisms8050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.
Collapse
Affiliation(s)
- Salla Sariola
- Faculty of Social Sciences, Sociology, University of Helsinki, 00014 Helsinki, Finland;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
33
|
Wan Sulaiman WA, Kamtchum-Tatuene J, Mohamed MH, Ramachandran V, Ching SM, Sazlly Lim SM, Hashim HZ, Inche Mat LN, Hoo FK, Basri H. Anti- Wolbachia therapy for onchocerciasis & lymphatic filariasis: Current perspectives. Indian J Med Res 2020; 149:706-714. [PMID: 31496523 PMCID: PMC6755775 DOI: 10.4103/ijmr.ijmr_454_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Onchocerciasis and lymphatic filariasis (LF) are human filarial diseases belonging to the group of neglected tropical diseases, leading to permanent and long-term disability in infected individuals in the endemic countries such as Africa and India. Microfilaricidal drugs such as ivermectin and albendazole have been used as the standard therapy in filariasis, although their efficacy in eliminating the diseases is not fully established. Anti-Wolbachia therapy employs antibiotics and is a promising approach showing potent macrofilaricidal activity and also prevents embryogenesis. This has translated to clinical benefits resulting in successful eradication of microfilarial burden, thus averting the risk of adverse events from target species as well as those due to co-infection with loiasis. Doxycycline shows potential as an anti-Wolbachia treatment, leading to the death of adult parasitic worms. It is readily available, cheap and safe to use in adult non-pregnant patients. Besides doxycycline, several other potential antibiotics are also being investigated for the treatment of LF and onchocerciasis. This review aims to discuss and summarise recent developments in the use of anti-Wolbachia drugs to treat onchocerciasis and LF.
Collapse
Affiliation(s)
- Wan Aliaa Wan Sulaiman
- Department of Medicine, Faculty of Medicine & Health Sciences; Laboratory of Medical Gerontology, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Joseph Kamtchum-Tatuene
- Liverpool Brain Infection Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Mohd Hazmi Mohamed
- Department of Surgery, Faculty of Medicine & Health Sciences; Laboratory of Medical Gerontology, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Vasudevan Ramachandran
- Laboratory of Medical Gerontology, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siew Mooi Ching
- Department of Family Medicine, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sazlyna Mohd Sazlly Lim
- Department of Medicine, Faculty of Medicine & Health Sciences, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hasnur Zaman Hashim
- Department of Medicine, Faculty of Medicine & Health Sciences, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Medicine, Faculty of Medicine & Health Sciences; Laboratory of Medical Gerontology, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Fan Kee Hoo
- Department of Medicine, Faculty of Medicine & Health Sciences, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hamidon Basri
- Department of Medicine, Faculty of Medicine & Health Sciences; Laboratory of Medical Gerontology, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
34
|
Abstract
Bacteria participate in a wide diversity of symbiotic associations with eukaryotic hosts that require precise interactions for bacterial recognition and persistence. Most commonly, host-associated bacteria interfere with host gene expression to modulate the immune response to the infection. However, many of these bacteria also interfere with host cellular differentiation pathways to create a hospitable niche, resulting in the formation of novel cell types, tissues, and organs. In both of these situations, bacterial symbionts must interact with eukaryotic regulatory pathways. Here, we detail what is known about how bacterial symbionts, from pathogens to mutualists, control host cellular differentiation across the central dogma, from epigenetic chromatin modifications, to transcription and mRNA processing, to translation and protein modifications. We identify four main trends from this survey. First, mechanisms for controlling host gene expression appear to evolve from symbionts co-opting cross-talk between host signaling pathways. Second, symbiont regulatory capacity is constrained by the processes that drive reductive genome evolution in host-associated bacteria. Third, the regulatory mechanisms symbionts exhibit correlate with the cost/benefit nature of the association. And, fourth, symbiont mechanisms for interacting with host genetic regulatory elements are not bound by native bacterial capabilities. Using this knowledge, we explore how the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may modulate host cellular differentiation to manipulate host reproduction. Our survey of the literature on how infection alters gene expression in Wolbachia and its hosts revealed that, despite their intermediate-sized genomes, different strains appear capable of a wide diversity of regulatory manipulations. Given this and Wolbachia's diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-induced host differentiation mechanisms will be discovered in this system.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
35
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
36
|
Dheilly NM, Martínez Martínez J, Rosario K, Brindley PJ, Fichorova RN, Kaye JZ, Kohl KD, Knoll LJ, Lukeš J, Perkins SL, Poulin R, Schriml L, Thompson LR. Parasite microbiome project: Grand challenges. PLoS Pathog 2019; 15:e1008028. [PMID: 31600339 PMCID: PMC6786532 DOI: 10.1371/journal.ppat.1008028] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (NMD); (JMM)
| | - Joaquín Martínez Martínez
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
- * E-mail: (NMD); (JMM)
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States of America
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Raina N. Fichorova
- Genital Tract Biology Division, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan Z. Kaye
- Gordon and Betty Moore Foundation, Palo Alto, California, United States of America
| | - Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan L. Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Lynn Schriml
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Luke R. Thompson
- Department of Biological Sciences and Northern Gulf Institute, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, La Jolla, California, United States of America
| |
Collapse
|
37
|
Bakowski MA, McNamara CW. Advances in Antiwolbachial Drug Discovery for Treatment of Parasitic Filarial Worm Infections. Trop Med Infect Dis 2019; 4:tropicalmed4030108. [PMID: 31323841 PMCID: PMC6789823 DOI: 10.3390/tropicalmed4030108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/09/2023] Open
Abstract
The intracellular bacteria now known as Wolbachia were first described in filarial worms in the 1970s, but the idea of Wolbachia being used as a macrofilaricidal target did not gain wide attention until the early 2000s, with research in filariae suggesting the requirement of worms for the endosymbiont. This new-found interest prompted the eventual organization of the Anti-Wolbachia Consortium (A-WOL) at the Liverpool School of Tropical Medicine, who, among others have been active in the field of antiwolbachial drug discovery to treat filarial infections. Clinical proof of concept studies using doxycycline demonstrated the utility of the antiwolbachial therapy, but efficacious treatments were of long duration and not safe for all infected. With the advance of robotics, automation, and high-speed computing, the search for superior antiwolbachials shifted away from smaller studies with a select number of antibiotics to high-throughput screening approaches, centered largely around cell-based phenotypic screens due to the rather limited knowledge about, and tools available to manipulate, this bacterium. A concomitant effort was put towards developing validation approaches and in vivo models supporting drug discovery efforts. In this review, we summarize the strategies behind and outcomes of recent large phenotypic screens published within the last 5 years, hit compound validation approaches and promising candidates with profiles superior to doxycycline, including ones positioned to advance into clinical trials for treatment of filarial worm infections.
Collapse
|
38
|
Abstract
Microbial symbioses exhibit astounding adaptations, yet all symbionts face the problem of how to reliably associate with host offspring every generation. A common strategy is vertical transmission, in which symbionts are directly transmitted from the female to her offspring. The diversity of symbionts and vertical transmission mechanisms is as expansive as the diversity of eukaryotic host taxa that house them. However, there are several common themes among these mechanisms based on the degree to which symbionts associate with the host germline during transmission. In this review, we detail three distinct vertical transmission strategies, starting with associations that are transmitted from host somatic cells to offspring somatic cells, either due to lacking a germline or avoiding it. A second strategy involves somatically-localized symbionts that migrate into the germline during host development. The third strategy we discuss is one in which the symbiont maintains continuous association with the germline throughout development. Unexpectedly, the vast majority of documented vertically inherited symbionts rely on the second strategy: soma-to-germline migration. Given that not all eukaryotes contain a sequestered germline and instead produce offspring from somatic stem cell lineages, this soma-to-germline migration is discussed in the context of multicellular evolution. Lastly, as recent genomics data have revealed an abundance of horizontal gene transfer events from symbiotic and non-symbiotic bacteria to host genomes, we discuss their impact on eukaryotic host evolution.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Laura Chappell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
39
|
Abstract
The Wolbachia endosymbionts encompass a large group of intracellular bacteria of biomedical and veterinary relevance, closely related to Anaplasma, Ehrlichia, and Rickettsia. This genus of Gram-negative members of the Alphaproteobacteria does not infect vertebrates but is instead restricted to ecdysozoan species, including terrestrial arthropods and a family of parasitic filarial nematodes, the Onchocercidae. The Wolbachia profoundly impact not only the ecology and evolution but also the reproductive biology of their hosts, through a wide range of symbiotic interactions. Because they are essential to the survival and reproduction of their filarial nematode hosts, they represent an attractive target to fight filariasis. Their abilities to spread through insect populations and to affect vector competence through pathogen protection have made Wolbachia a staple for controlling vector-borne diseases. Estimated to be present in up to 66% of insect species, the Wolbachia are probably the most abundant endosymbionts on earth. Their success resides in their unique capacity to infect and manipulate the host germ line to favor their vertical transmission through the maternal lineage. Because the Wolbachia resist genetic manipulation and growth in axenic culture, our understanding of their biology is still in its infancy. Despite these limitations, the "-omics" revolution combined with the use of well-established and emerging experimental host models is accelerating our comprehension of the host phenotypes caused by Wolbachia, and the identification of Wolbachia effectors is ongoing.
Collapse
|
40
|
Gangwar M, Jha R, Goyal M, Srivastava M. Immunogenicity and protective efficacy of Recombinase A from Wolbachia endosymbiont of filarial nematode Brugia malayi (wBmRecA). Vaccine 2019; 37:571-580. [DOI: 10.1016/j.vaccine.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/13/2018] [Indexed: 01/20/2023]
|
41
|
Jenkins T, Brindley P, Gasser R, Cantacessi C. Helminth Microbiomes – A Hidden Treasure Trove? Trends Parasitol 2019; 35:13-22. [DOI: 10.1016/j.pt.2018.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
|
42
|
Guo Y, Hoffmann AA, Xu XQ, Zhang X, Huang HJ, Ju JF, Gong JT, Hong XY. Wolbachia-induced apoptosis associated with increased fecundity in Laodelphax striatellus (Hemiptera: Delphacidae). INSECT MOLECULAR BIOLOGY 2018; 27:796-807. [PMID: 29989657 DOI: 10.1111/imb.12518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wolbachia influence the fitness of their invertebrate hosts. They have effects on reproductive incompatibility and egg production. Although the former are well characterized, the mechanistic basis of the latter is unclear. Here, we investigate whether apoptosis, which has been implicated in fecundity in model insects, influences the interaction between fecundity and Wolbachia in the planthopper Laodelphax striatellus. Wolbachia-infected females produced about 30% more eggs than uninfected females. We used the terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling staining to visualize apoptosis. Microscopic observations indicated that the Wolbachia strain wStri increased the number of ovarioles that contained apoptotic nurse cells in both young and aged adult females. The frequency of apoptosis was much higher in the infected females. The increased fecundity appeared to be a result of apoptosis of nurse cells, which provide nutrients to the growing oocytes. In addition, cell apoptosis inhibition by caspase messenger RNA interference in Wolbachia-infected L. striatellus markedly decreased egg numbers. Together, these data suggest that wStri might enhance fecundity by increasing the number of apoptotic cells in the ovaries in a caspase-dependent manner. Our findings establish a link between Wolbachia-induced apoptosis and egg production effects mediated by Wolbachia, although the way in which the endosymbiont influences caspase levels remains to be determined.
Collapse
Affiliation(s)
- Y Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - A A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - X-Q Xu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - H-J Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-F Ju
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-T Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
44
|
Carpinone EM, Li Z, Mills MK, Foltz C, Brannon ER, Carlow CKS, Starai VJ. Identification of putative effectors of the Type IV secretion system from the Wolbachia endosymbiont of Brugia malayi. PLoS One 2018; 13:e0204736. [PMID: 30261054 PMCID: PMC6160203 DOI: 10.1371/journal.pone.0204736] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/13/2018] [Indexed: 11/19/2022] Open
Abstract
Wolbachia is an unculturable, intracellular bacterium that persists within an extremely broad range of arthropod and parasitic nematode hosts, where it is transmitted maternally to offspring via vertical transmission. In the filarial nematode Brugia malayi, a causative agent of human lymphatic filariasis, Wolbachia is an endosymbiont, and its presence is essential for proper nematode development, survival, and pathogenesis. While the elucidation of Wolbachia:nematode interactions that promote the bacterium’s intracellular persistence is of great importance, research has been hampered due to the fact that Wolbachia cannot be cultured in the absence of host cells. The Wolbachia endosymbiont of B. malayi (wBm) has an active Type IV secretion system (T4SS). Here, we have screened 47 putative T4SS effector proteins of wBm for their ability to modulate growth or the cell biology of a typical eukaryotic cell, Saccharomyces cerevisiae. Five candidates strongly inhibited yeast growth upon expression, and 6 additional proteins showed toxicity in the presence of zinc and caffeine. Studies on the uptake of an endocytic vacuole-specific fluorescent marker, FM4-64, identified 4 proteins (wBm0076 wBm00114, wBm0447 and wBm0152) involved in vacuole membrane dynamics. The WAS(p)-family protein, wBm0076, was found to colocalize with yeast cortical actin patches and disrupted actin cytoskeleton dynamics upon expression. Deletion of the Arp2/3-activating protein, Abp1p, provided resistance to wBm0076 expression, suggesting a role for wBm0076 in regulating eukaryotic actin dynamics and cortical actin patch formation. Furthermore, wBm0152 was found to strongly disrupt endosome:vacuole cargo trafficking in yeast. This study provides molecular insight into the potential role of the T4SS in the Wolbachia endosymbiont:nematode relationship.
Collapse
Affiliation(s)
- Emily M. Carpinone
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Zhiru Li
- Division of Genome Biology, New England Biolabs, Ipswich, MA, United States of America
| | - Michael K. Mills
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Clemence Foltz
- Division of Genome Biology, New England Biolabs, Ipswich, MA, United States of America
| | - Emma R. Brannon
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Clotilde K. S. Carlow
- Division of Genome Biology, New England Biolabs, Ipswich, MA, United States of America
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
- * E-mail:
| |
Collapse
|
45
|
Foray V, Pérez-Jiménez MM, Fattouh N, Landmann F. Wolbachia Control Stem Cell Behavior and Stimulate Germline Proliferation in Filarial Nematodes. Dev Cell 2018; 45:198-211.e3. [PMID: 29689195 DOI: 10.1016/j.devcel.2018.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/20/2018] [Accepted: 03/23/2018] [Indexed: 01/04/2023]
Abstract
Although symbiotic interactions are ubiquitous in the living world, examples of developmental symbioses are still scarce. We show here the crucial role of Wolbachia in the oogenesis of filarial nematodes, a class of parasites of biomedical and veterinary relevance. We applied newly developed techniques to demonstrate the earliest requirements of Wolbachia in the parasite germline preceding the production of faulty embryos in Wolbachia-depleted nematodes. We show that Wolbachia stimulate germline proliferation in a cell-autonomous manner, and not through nucleotide supplementation as previously hypothesized. We also found Wolbachia to maintain the quiescence of a pool of germline stem cells to ensure a constant delivery of about 1,400 eggs per day for many years. The loss of quiescence upon Wolbachia depletion as well as the disorganization of the distal germline suggest that Wolbachia are required to execute the proper germline stem cell developmental program in order to produce viable eggs and embryos.
Collapse
Affiliation(s)
- Vincent Foray
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | | | - Nour Fattouh
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
46
|
Abstract
Transmission of the human parasite Brugia malayi relies on the sustained production of larvae in blood. In this issue of Developmental Cell,Foray et al. (2018) use methods developed in the model nematode C. elegans to reveal how a symbiotic bacterium supports the female germ cell development underlying this massive fecundity.
Collapse
|
47
|
Roder AC, Stock SP. Influence of Xenorhabdus (Gamma-Proteobacteria: Enterobacteriaceae) symbionts on gonad postembryonic development in Steinernema (Nematoda: Steinernematidae) nematodes. J Invertebr Pathol 2018; 153:65-74. [DOI: 10.1016/j.jip.2018.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
|
48
|
Sullivan W. Wolbachia, bottled water, and the dark side of symbiosis. Mol Biol Cell 2017; 28:2343-2346. [PMID: 28855327 PMCID: PMC5576898 DOI: 10.1091/mbc.e17-02-0132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 12/04/2022] Open
Abstract
Obligate endosymbiosis is operationally defined when loss or removal of the endosymbiont from the host results in the death of both. Whereas these relationships are typically viewed as mutualistic, molecular and cellular analysis reveals numerous instances in which these symbiotic relationships are established by alternative, nonmutualistic strategies. The endosymbiont usurps or integrates into core host processes, creating a need where none previously existed. Here I discuss examples of these addictive symbiotic relationships and how they are a likely outcome of all complex evolving systems.
Collapse
Affiliation(s)
- William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
49
|
Albendazole and antibiotics synergize to deliver short-course anti- Wolbachia curative treatments in preclinical models of filariasis. Proc Natl Acad Sci U S A 2017; 114:E9712-E9721. [PMID: 29078351 PMCID: PMC5692564 DOI: 10.1073/pnas.1710845114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Filarial nematode infections, caused by Wuchereria bancrofti, Brugia malayi (elephantiasis), and Onchocerca volvulus (river blindness) infect 150 million of the world’s poorest populations and cause profound disability. Standard treatments require repetitive, long-term, mass drug administrations and have failed to interrupted transmission in certain sub-Saharan African regions. A drug cure using doxycycline, which targets the essential filarial endosymbiont Wolbachia, is clinically effective but programmatically challenging to implement due to long treatment durations and contraindications. Here we provide proof-of-concept of a radical improvement of targeting Wolbachia via identification of drug synergy between the anthelmintic albendazole and antibiotics. This synergy enables the shortening of treatment duration of macrofilaricidal anti-Wolbachia based treatments from 4 wk to 7 d with registered drugs ready for clinical testing. Elimination of filariasis requires a macrofilaricide treatment that can be delivered within a 7-day period. Here we have identified a synergy between the anthelmintic albendazole (ABZ) and drugs depleting the filarial endosymbiont Wolbachia, a proven macrofilaricide target, which reduces treatment from several weeks to 7 days in preclinical models. ABZ had negligible effects on Wolbachia but synergized with minocycline or rifampicin (RIF) to deplete symbionts, block embryogenesis, and stop microfilariae production. Greater than 99% Wolbachia depletion following 7-day combination of RIF+ABZ also led to accelerated macrofilaricidal activity. Thus, we provide preclinical proof-of-concept of treatment shortening using antibiotic+ABZ combinations to deliver anti-Wolbachia sterilizing and macrofilaricidal effects. Our data are of immediate public health importance as RIF+ABZ are registered drugs and thus immediately implementable to deliver a 1-wk macrofilaricide. They also suggest that novel, more potent anti-Wolbachia drugs under development may be capable of delivering further treatment shortening, to days rather than weeks, if combined with benzimidazoles.
Collapse
|
50
|
Almeida F, Suesdek L. Effects of Wolbachia on ovarian apoptosis in Culex quinquefasciatus (Say, 1823) during the previtellogenic and vitellogenic periods. Parasit Vectors 2017; 10:398. [PMID: 28841917 PMCID: PMC5574119 DOI: 10.1186/s13071-017-2332-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Apoptosis is programmed cell death that ordinarily occurs in ovarian follicular cells in various organisms. In the best-studied holometabolous insect, Drosophila, this kind of cell death occurs in all three cell types found in the follicles, sometimes leading to follicular atresia and egg degeneration. On the other hand, egg development, quantity and viability in the mosquito Culex quinquefasciatus are disturbed by the infection with the endosymbiont Wolbachia. Considering that Wolbachia alters reproductive traits, we hypothesised that such infection would also alter the apoptosis in the ovarian cells of this mosquito. The goal of this study was to comparatively describe the occurrence of apoptosis in Wolbachia-infected and uninfected ovaries of Cx. quinquefasciatus during oogenesis and vitellogenesis. For this, we recorded under confocal microscopy the occurrence of apoptosis in all three cell types of the ovarian follicle. In the first five days of adult life we observed oogenesis and, after a blood meal, the initiation step of vitellogenesis. RESULTS Apoptoses in follicular cells were found at all observation times during both oogenesis and vitellogenesis, and less commonly in nurse cells and the oocyte, as well as in atretic follicles. Our results suggested that apoptosis in follicular cells occurred in greater numbers in infected mosquitoes than in uninfected ones during the second and third days of adult life and at the initiation step of vitellogenesis. CONCLUSIONS The presence of Wolbachia leads to an increase of apoptosis occurrence in the ovaries of Cx. quinquefasciatus. Future studies should investigate if this augmented apoptosis frequency is the cause of the reduction in the number of eggs laid by Wolbachia-infected females. Follicular atresia is first reported in the previtellogenic period of oogenesis. Our findings may have implications for the use of Wolbachia as a mosquito and pathogens control strategy.
Collapse
Affiliation(s)
- Fabio Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
| | - Lincoln Suesdek
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|