1
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Yang Y, Zhu J, Zhang M, Wang Y, Cheng F, Ma W, Li M. Systemic inflammation response index predicts the postoperative recurrence of chronic rhinosinusitis with nasal polyps: a retrospective study in the Chinese population. Eur Arch Otorhinolaryngol 2024; 281:207-217. [PMID: 37589753 DOI: 10.1007/s00405-023-08182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE Endoscopic sinus surgery (ESS) is now frequently used to treat chronic sinusitis with nasal polyps (CRSwNP), but postoperative recurrence plagues many patients. We aimed to assess the value of the systemic inflammation response index (SIRI) and the systemic immune-inflammatory index (SII) for the prediction of postoperative recurrence in patients with CRSwNP. METHODS A total of 143 patients with CRSwNP and 76 age- and sex-matched healthy subjects were enrolled. Patients were divided into the recurrence group and the non-recurrence group according to the recurrence of CRSwNP. Univariate and multivariate analyses showed independent risk factors for the recurrence. A receiver operating characteristic curve analysis was conducted to assess the predictive accuracy of the variables and determine the optimal cut-off values. Finally, a survival analysis was conducted. RESULTS Univariate analysis revealed that age, sex, CRP, EOS, SIRI, SII, NLR, ELR, and Lund-Mackay CT scores were significant predictors of the recurrence of CRSwNP. Multivariate analysis confirmed that SIRI (OR = 1.310, p < 0.001) and Lund-Mackay CT scores (OR = 1.396, p < 0.001) were independent predictors. SIRI (AUC = 0.761, 95% CI: 0.685-0.836) had a certain value in predicting the recurrence of CRSwNP. CONCLUSION SIRI is a potential predictive marker of the postoperative recurrence of CRSwNP.
Collapse
Affiliation(s)
- Yuqing Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China
| | - Jing Zhu
- Center for Health Management, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Mengyu Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China
| | - Yihong Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China
| | - Fuwei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China
| | - Wenxia Ma
- Department of Quality Management, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Manyi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
3
|
Lei B, Hanks TS, Bao Y, Liu M. Slipped-strand mispairing within a polycytidine tract in transcriptional regulator mga leads to M protein phase variation and Mga length polymorphism in Group A Streptococcus. Front Microbiol 2023; 14:1212149. [PMID: 37434706 PMCID: PMC10330708 DOI: 10.3389/fmicb.2023.1212149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
The M protein, a major virulence factor of Group A Streptococcus (GAS), is regulated by the multigene regulator Mga. An unexplained phenomena frequently occurring with in vitro genetic manipulation or culturing of M1T1 GAS strains is the loss of M protein production. This study was aimed at elucidating the basis for the loss of M protein production. The majority of M protein-negative (M-) variants had one C deletion at a tract of 8 cytidines starting at base 1,571 of the M1 mga gene, which is designated as c.1571C[8]. The C deletion led to a c.1571C[7] mga variant that has an open reading frame shift and encodes a Mga-M protein fusion protein. Transformation with a plasmid containing wild-type mga restored the production of the M protein in the c.1571C[7] mga variant. Isolates producing M protein (M+) were recovered following growth of the c.1571C[7] M protein-negative variant subcutaneously in mice. The majority of the recovered isolates with reestablished M protein production had reverted back from c.1571C[7] to c.1571C[8] tract and some M+ isolates lost another C in the c.1571C[7] tract, leading to a c.1571C[6] variant that encodes a functional Mga with 13 extra amino acid residues at the C-terminus compared with wild-type Mga. The nonfunctional c.1571C[7] and functional c.1571C[6] variants are present in M1, M12, M14, and M23 strains in NCBI genome databases, and a G-to-A nonsense mutation at base 1,657 of M12 c.1574C[7] mga leads to a functional c.1574C[7]/1657A mga variant and is common in clinical M12 isolates. The numbers of the C repeats in this polycytidine tract and the polymorphism at base 1,657 lead to polymorphism in the size of Mga among clinical isolates. These findings demonstrate the slipped-strand mispairing within the c.1574C[8] tract of mga as a reversible switch controlling M protein production phase variation in multiple GAS common M types.
Collapse
Affiliation(s)
- Benfang Lei
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Tracey S. Hanks
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Yunjuan Bao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Mengyao Liu
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
4
|
Zhang X, Wang Y, Zhu H, Zhong Z. Functional and Transcriptome Analysis of Streptococcus pyogenes Virulence on Loss of Its Secreted Esterase. Int J Mol Sci 2022; 23:ijms23147954. [PMID: 35887300 PMCID: PMC9318535 DOI: 10.3390/ijms23147954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Esterases are broadly expressed in bacteria, but much remains unknown about their pathogenic effect. In previous studies, we focused on an esterase secreted by Streptococcus pyogenes (group A Streptococcus, GAS). Streptococcal secreted esterase (Sse) can hydrolyze the sn−2 ester bonds of platelet−activating factor (PAF), converting it to an inactive form that inhibits neutrophil chemotaxis to the infection sites. However, as a virulent protein, Sse probably participates in GAS pathogenesis far beyond chemotaxis inhibition. In this study, we generated the sse gene knockout strain (Δsse) from the parent strain MGAS5005 (hypervirulent M1T1 serotype) and compared the difference in phenotypes. Absence of Sse was related to weakened skin invasion in a murine infection model, and significantly reduced GAS epithelial adherence, invasion, and intracellular survival. Reduced virulence of the Δsse mutant strain was explored through transcriptome analysis, revealing a striking reduction in the abundance of invasive virulence factors including M protein, SIC, ScpA, and SclA. Besides the influence on the virulence, Sse also affected carbohydrate, amino acid, pyrimidine, and purine metabolism pathways. By elucidating Sse−mediated pathogenic process, the study will contribute to the development of new therapeutic agents that target bacterial esterases to control clinical GAS infections.
Collapse
Affiliation(s)
| | | | - Hui Zhu
- Correspondence: (H.Z.); (Z.Z.); Tel.: +86-451-86674538 (H.Z.)
| | - Zhaohua Zhong
- Correspondence: (H.Z.); (Z.Z.); Tel.: +86-451-86674538 (H.Z.)
| |
Collapse
|
5
|
Si W, Xie Y, Dong J, Wang C, Zhang F, Yue J, Jian S, Wei J, Liu S, Wang L, Zhang H. AMPK activation enhances neutrophil's fungicidal activity in vitro and improves the clinical outcome of Fusarium solani keratitis in vivo. Curr Eye Res 2022; 47:1131-1143. [PMID: 35575029 DOI: 10.1080/02713683.2022.2078494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | - Juan Yue
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, Henan Key Laboratory for Ophthalmology and Visual Science, 450003, China.
| | - Shoujun Jian
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, Henan Key Laboratory for Ophthalmology and Visual Science, 450003, China.
| | - Jingjing Wei
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, Henan Key Laboratory for Ophthalmology and Visual Science, 450003, China.
| | - Susu Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, Henan Key Laboratory for Ophthalmology and Visual Science, 450003, China.
| | - Liya Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, Henan Key Laboratory for Ophthalmology and Visual Science, 450003, China.
| | - Hongmin Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, Henan Key Laboratory for Ophthalmology and Visual Science, 450003, China.
| |
Collapse
|
6
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
7
|
Attenuation of virulence in multiple serotypes (M1, M3, and M28) of Group A Streptococcus after the loss of secreted esterase. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:662-670. [PMID: 34674958 DOI: 10.1016/j.jmii.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Group A Streptococcus (GAS) can produce streptococcal secreted esterase (Sse), which inhibits neutrophil recruitment to the site of infection and is crucial for GAS pathogenesis. As an effective esterase, Sse hydrolyzes the sn-2 ester bond of human platelet-activating factor, inactivating it and abolishing its ability to recruit neutrophils. OBJECTIVES The purpose of this study was to investigate the effects of sse deletion on the virulence of multiple serotypes of GAS. METHODS Isogenic strains that lack the sse gene (Δsse) were derived from the parent strains MGAS5005 (serotype M1, CovRS mutant), MGAS2221 (serotype M1, wild-type CovRS), MGAS315 (serotype M3, CovRS mutant) and MGAS6180 (serotype M28, wild-type CovRS) and were used to study the differences in virulence and pathogenicity of GAS serotypes. RESULTS In a subcutaneous infection model, mice infected with MGAS5005Δsse exhibited higher survival rates but decreased dissemination to the organs compared with mice infected with MGAS5005. When mice were infected with the four Δsse mutants, the MPO activity and IFN-γ, TNF-α, IL-2 and IL-6 levels increased, but the skin lesion sizes decreased. In an intraperitoneal infection model, the absence of Sse significantly reduced the virulence of GAS, leading to increased mouse survival rates and decreased GAS burdens in the organs in most of the challenge experiments. In addition, the numbers of the four Δsse mutants were greatly reduced 60 min after incubation with isolated rat neutrophils. CONCLUSION Our results suggest that Sse participates in the pathogenesis of multiple GAS serotypes (MGAS5005, MGAS2221, MGAS315 and MGAS6180), particularly the hypervirulent CovS mutant strains MGAS5005 and MGAS315. These strain differences were positively correlated with the virulence of the serotype.
Collapse
|
8
|
Zhang X, Wei D, Zhao Y, Zhong Z, Wang Y, Song Y, Cai M, Zhang W, Zhao J, Lv C, Zhu H. Immunization With a Secreted Esterase Protects Mice Against Multiple Serotypes (M1, M3, and M28) of Group A Streptococcus. Front Microbiol 2020; 11:565. [PMID: 32308652 PMCID: PMC7145942 DOI: 10.3389/fmicb.2020.00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcal secreted esterase (Sse) is a platelet-activating factor acetylhydrolase that is critical for Group A Streptococcus (GAS) skin invasion and innate immune evasion. There are two Sse variant complexes that share >98% identity within each complex but display about 37% variation between the complexes in amino acid sequences. Sse immunization protects mice against lethal infection and skin invasion in subcutaneous infection with the hypervirulent CovRS mutant strain, MGAS5005. However, it is not known whether Sse immunization provides significant protection against infection of GAS with functional CovRS and whether immunization with Sse of one variant complex provides protection against infection of GAS that produces Sse of another variant complex. This study was designed to address these questions. Mice were immunized with recombinant Sse of M1 GAS (SseM1) and challenged with MGAS5005 (serotype M1, CovS mutant, and Sse of variant complex I), MGAS315 (M3, CovS mutant, and Sse of variant complex I), MGAS2221 (M1, wild-type CovRS, and Sse of variant complex I), and MGAS6180 (M28, wild-type CovRS, and Sse of variant complex II). SseM1 immunization significantly increased survival rates of mice in subcutaneous MGAS5005 and intraperitoneal MGAS6180 challenges and showed consistently higher or longer survival in the other challenges. Immunized mice had smaller skin lesion and higher neutrophil responses in subcutaneous infections and lower GAS burdens in spleen, liver, and kidney in most of the challenge experiments than control mice. SseM1 immunization enhanced proinflammatory responses. These data suggest that Sse immunization has a broad benefit against GAS infections that can vary in extent from strain to strain and that the benefit may be due to the immunization-enhanced proinflammatory responses. In particular, immunization with SseM1 can provide protection against M28 GAS infection even though its Sse and SseM1 have significant variations.
Collapse
Affiliation(s)
- Xiaolan Zhang
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Deqin Wei
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuan Zhao
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yue Wang
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yingli Song
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Minghui Cai
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Wenli Zhang
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jizi Zhao
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Bernard PE, Kachroo P, Eraso JM, Zhu L, Madry JE, Linson SE, Ojeda Saavedra M, Cantu C, Musser JM, Olsen RJ. Polymorphisms in Regulator of Cov Contribute to the Molecular Pathogenesis of Serotype M28 Group A Streptococcus. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2002-2018. [PMID: 31369755 PMCID: PMC6892226 DOI: 10.1016/j.ajpath.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Two-component systems (TCSs) are signal transduction proteins that enable bacteria to respond to external stimuli by altering the global transcriptome. Accessory proteins interact with TCSs to fine-tune their activity. In group A Streptococcus (GAS), regulator of Cov (RocA) is an accessory protein that functions with the control of virulence regulator/sensor TCS, which regulates approximately 15% of the GAS transcriptome. Whole-genome sequencing analysis of serotype M28 GAS strains collected from invasive infections in humans identified a higher number of missense (amino acid-altering) and nonsense (protein-truncating) polymorphisms in rocA than expected. We hypothesized that polymorphisms in RocA alter the global transcriptome and virulence of serotype M28 GAS. We used naturally occurring clinical isolates with rocA polymorphisms (n = 48), an isogenic rocA deletion mutant strain, and five isogenic rocA polymorphism mutant strains to perform genome-wide transcript analysis (RNA sequencing), in vitro virulence factor assays, and mouse and nonhuman primate pathogenesis studies to test this hypothesis. Results demonstrated that polymorphisms in rocA result in either a subtle transcriptome change, causing a wild-type-like virulence phenotype, or a substantial transcriptome change, leading to a significantly increased virulence phenotype. Each polymorphism had a unique effect on the global GAS transcriptome. Taken together, our data show that naturally occurring polymorphisms in one gene encoding an accessory protein can significantly alter the global transcriptome and virulence phenotype of GAS, an important human pathogen.
Collapse
Affiliation(s)
- Paul E Bernard
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jessica E Madry
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Sarah E Linson
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Concepcion Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
10
|
Tissue Tropism in Streptococcal Infection: Wild-Type M1T1 Group A Streptococcus Is Efficiently Cleared by Neutrophils Using an NADPH Oxidase-Dependent Mechanism in the Lung but Not in the Skin. Infect Immun 2019; 87:IAI.00527-19. [PMID: 31331954 DOI: 10.1128/iai.00527-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) commonly causes pharyngitis and skin infections. Little is known why streptococcal pharyngitis usually does not lead to pneumonia and why the skin is a favorite niche for GAS. To partially address these questions, the effectiveness of neutrophils in clearing wild-type (wt) M1T1 GAS strain MGAS2221 from the lung and from the skin was examined in murine models of intratracheal pneumonia and subcutaneous infection. Ninety-nine point seven percent of the MGAS2221 inoculum was cleared from the lungs of C57BL/6J mice at 24 h after inoculation, while there was no MGAS2221 clearance from skin infection sites. The bronchial termini had robust neutrophil infiltration, and depletion of neutrophils abolished MGAS2221 clearance from the lung. Phagocyte NADPH oxidase but not myeloperoxidase was required for MGAS2221 clearance. Thus, wt M1T1 GAS can be cleared by neutrophils using an NADPH oxidase-dependent mechanism in the lung. MGAS2221 induced robust neutrophil infiltration at the edge of skin infection sites and throughout infection sites at 24 h and 48 h after inoculation, respectively. Neutrophils within MGAS2221 infection sites had no nuclear staining. Skin infection sites of streptolysin S-deficient MGAS2221 ΔsagA were full of neutrophils with nuclear staining, whereas MGAS2221 ΔsagA infection was not cleared. Gp91phox knockout (KO) and control mice had similar GAS numbers at skin infection sites and similar abilities to select SpeB activity-negative (SpeBA-) variants. These results indicate that phagocyte NADPH oxidase-mediated GAS killing is compromised in the skin. Our findings support a model for GAS skin tropism in which GAS generates an anoxic niche to evade phagocyte NADPH oxidase-mediated clearance.
Collapse
|
11
|
Abstract
Group A Streptococcus (GAS) causes common pharyngitis and skin infections and occasional severe invasive infections. This review describes the recent progress on the pathogenesis of hypervirulent GAS. CovRS mutations are frequent among invasive GAS isolates and lead to hypervirulence. GAS CovRS mutants can be selected in vivo by neutrophils. The role of protease SpeB in source-sink dynamics of wild-type GAS and hypervirulent variants is discussed. Streptolysin S and PAF acetylhydrolase Sse critically and synergistically contribute to the inhibition of neutrophil recruitment by GAS CovS mutants. CovS mutations in emm3 GAS lead to the vascular invasion and enhance systemic GAS dissemination.
Collapse
|
12
|
RocA Has Serotype-Specific Gene Regulatory and Pathogenesis Activities in Serotype M28 Group A Streptococcus. Infect Immun 2018; 86:IAI.00467-18. [PMID: 30126898 DOI: 10.1128/iai.00467-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Serotype M28 group A streptococcus (GAS) is a common cause of infections such as pharyngitis ("strep throat") and necrotizing fasciitis ("flesh-eating" disease). Relatively little is known about the molecular mechanisms underpinning M28 GAS pathogenesis. Whole-genome sequencing studies of M28 GAS strains recovered from patients with invasive infections found an unexpectedly high number of missense (amino acid-changing) and nonsense (protein-truncating) polymorphisms in rocA (regulator of Cov), leading us to hypothesize that altered RocA activity contributes to M28 GAS molecular pathogenesis. To test this hypothesis, an isogenic rocA deletion mutant strain was created. Transcriptome sequencing (RNA-seq) analysis revealed that RocA inactivation significantly alters the level of transcripts for 427 and 323 genes at mid-exponential and early stationary growth phases, respectively, including genes for 41 transcription regulators and 21 virulence factors. In contrast, RocA transcriptomes from other GAS M protein serotypes are much smaller and include fewer transcription regulators. The rocA mutant strain had significantly increased secreted activity of multiple virulence factors and grew to significantly higher colony counts under acid stress in vitro RocA inactivation also significantly increased GAS virulence in a mouse model of necrotizing myositis. Our results demonstrate that RocA is an important regulator of transcription regulators and virulence factors in M28 GAS and raise the possibility that naturally occurring polymorphisms in rocA in some fashion contribute to human invasive infections caused by M28 GAS strains.
Collapse
|
13
|
Song Y, Zhang X, Cai M, Lv C, Zhao Y, Wei D, Zhu H. The Heme Transporter HtsABC of Group A Streptococcus Contributes to Virulence and Innate Immune Evasion in Murine Skin Infections. Front Microbiol 2018; 9:1105. [PMID: 29887858 PMCID: PMC5981463 DOI: 10.3389/fmicb.2018.01105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
Group A Streptococcus (GAS) requires iron for growth, and heme is an important source of iron for GAS. Streptococcus heme transporter A (HtsA) is the lipoprotein component of the GAS heme-specific ABC transporter (HtsABC). The objective of this study is to examine the contribution of HtsABC to virulence and host interaction of hypervirulent M1T1 GAS using an isogenic htsA deletion mutant (ΔhtsA). The htsA deletion exhibited a significantly increased survival rate, reduced skin lesion size, and reduced systemic GAS dissemination in comparison to the wild type strain. The htsA deletion also decreased the GAS adhesion rate to Hep-2 cells, the survival in human blood and rat neutrophils, and increased the production of cytokine IL-1β, IL-6, and TNF-α levels in air pouch exudate of a mouse model of subcutaneous infection. Complementation of ΔhtsA restored the wild type phenotype. These findings support that the htsA gene is required for GAS virulence and that the htsA deletion augments host innate immune responses.
Collapse
Affiliation(s)
- Yingli Song
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaolan Zhang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Minghui Cai
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yuan Zhao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Deqin Wei
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Requirement and Synergistic Contribution of Platelet-Activating Factor Acetylhydrolase Sse and Streptolysin S to Inhibition of Neutrophil Recruitment and Systemic Infection by Hypervirulent emm3 Group A Streptococcus in Subcutaneous Infection of Mice. Infect Immun 2017; 85:IAI.00530-17. [PMID: 28947648 DOI: 10.1128/iai.00530-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/18/2017] [Indexed: 01/18/2023] Open
Abstract
Hypervirulent group A streptococcus (GAS) can inhibit neutrophil recruitment and cause systemic infection in a mouse model of skin infection. The purpose of this study was to determine whether platelet-activating factor acetylhydrolase Sse and streptolysin S (SLS) have synergistic contributions to inhibition of neutrophil recruitment and systemic infection in subcutaneous infection of mice by MGAS315, a hypervirulent genotype emm3 GAS strain. Deletion of sse and sagA in MGAS315 synergistically reduced the skin lesion size and GAS burden in the liver and spleen. However, the mutants were persistent at skin sites and had similar growth factors in nonimmune blood. Thus, the low numbers of Δsse ΔsagA mutants in the liver and spleen were likely due to their reduction in the systemic dissemination. Few intact and necrotic neutrophils were detected at MGAS315 infection sites. In contrast, many neutrophils and necrotic cells were present at the edge of Δsse mutant infection sites on day 1 and at the edge of and inside Δsse mutant infection sites on day 2. ΔsagA mutant infection sites had massive numbers of and few intact neutrophils at the edge and center of the infection sites, respectively, on day 1 and were full of intact neutrophils or necrotic cells on day 2. Δsse ΔsagA mutant infection sites had massive numbers of intact neutrophils throughout the whole infection site. These sse and sagA deletion-caused changes in the histological pattern at skin infection sites could be complemented. Thus, the sse and sagA deletions synergistically enhance neutrophil recruitment. These findings indicate that both Sse and SLS are required but that neither is sufficient for inhibition of neutrophil recruitment and systemic infection by hypervirulent GAS.
Collapse
|
15
|
Borges AF, Morato CI, Gomes RS, Dorta ML, de Oliveira MAP, Ribeiro-Dias F. Platelet-activating factor increases reactive oxygen species-mediated microbicidal activity of human macrophages infected with Leishmania (Viannia) braziliensis. Pathog Dis 2017; 75:3983173. [DOI: 10.1093/femspd/ftx082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/19/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arissa Felipe Borges
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal Goiás, Goiânia, Goiás, Rua 235 S/N, Setor Leste Universitário, Goiânia - GO 74605-050, Brazil
| | - Camila Imai Morato
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal Goiás, Goiânia, Goiás, Rua 235 S/N, Setor Leste Universitário, Goiânia - GO 74605-050, Brazil
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal Goiás, Goiânia, Goiás, Rua 235 S/N, Setor Leste Universitário, Goiânia - GO 74605-050, Brazil
| | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal Goiás, Goiânia, Goiás, Rua 235 S/N, Setor Leste Universitário, Goiânia - GO 74605-050, Brazil
| | - Milton Adriano Pelli de Oliveira
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal Goiás, Goiânia, Goiás, Rua 235 S/N, Setor Leste Universitário, Goiânia - GO 74605-050, Brazil
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal Goiás, Goiânia, Goiás, Rua 235 S/N, Setor Leste Universitário, Goiânia - GO 74605-050, Brazil
| |
Collapse
|
16
|
Essential roles for platelets during neutrophil-dependent or lymphocyte-mediated defense against bacterial pathogens. Blood Coagul Fibrinolysis 2017; 27:667-72. [PMID: 26588444 DOI: 10.1097/mbc.0000000000000455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Emerging evidence from animal models suggests that platelets may participate in a wide variety of processes including the immune response against infection. More than 200 whole blood samples from patients and healthy controls were run in the System XE-5000 analyzer, and plasma fractions were separated for the following tests by ELISA, Luminex and light scattering. We describe two mechanisms by which platelets may contribute to immune function against various bacterial pathogens based on increased mean platelet volume in gram-positive bacterial infections and increased platelet counts in gram-negative bacterial infections. Gram-negative bacteria activate platelets to recruit neutrophils, which participate in the immune response against infection. During this process, fractalkine, macrophage inflammatory protein-1β, interleukin-17A, tumor necrosis factor-α and platelet-activating factor were higher in patients infected with Escherichia coli; additionally, giant platelets were observed under the microscope. Meanwhile, we found that platelets played a different role in gram-positive bacterial infections. Specifically, they could actively adhere to gram-positive bacteria in circulation and transfer them to immune sites to promote antibacterial lymphocyte expansion. During this process, complement C3 and factor XI were more highly expressed in patients infected with Staphylococcus aureus; additionally, we detected more small platelets under the microscope. Platelets participate in the immune response against both gram-negative and gram-positive bacteria, although the mechanisms differ. These results will help us understand the complex roles of platelets during infections, and direct our use of antibiotics based on clinical platelet data.
Collapse
|
17
|
Null Mutations of Group A Streptococcus Orphan Kinase RocA: Selection in Mouse Infection and Comparison with CovS Mutations in Alteration of In Vitro and In Vivo Protease SpeB Expression and Virulence. Infect Immun 2016; 85:IAI.00790-16. [PMID: 27795364 DOI: 10.1128/iai.00790-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022] Open
Abstract
Group A Streptococcus (GAS) acquires mutations of the virulence regulator CovRS in human and mouse infections, and these mutations result in the upregulation of virulence genes and the downregulation of the protease SpeB. To identify in vivo mutants with novel phenotypes, GAS isolates from infected mice were screened by enzymatic assays for SpeB and the platelet-activating factor acetylhydrolase Sse, and a new type of variant that had enhanced Sse expression and normal levels of SpeB production was identified (the variants had a phenotype referred to as enhanced Sse activity [SseA+] and normal SpeB activity [SpeBA+]). SseA+ SpeBA+ variants had transcript levels of CovRS-controlled virulence genes comparable to those of a covS mutant but had no covRS mutations. Genome resequencing of an SseA+ SpeBA+ isolate identified a C605A nonsense mutation in orphan kinase gene rocA, and 6 other SseA+ SpeBA+ isolates also had nonsense mutations or small indels in rocA RocA and CovS mutants had similar levels of enhancement of the expression of CovRS-controlled virulence genes at the exponential growth phase; however, mutations of RocA but not mutations of CovS did not result in the downregulation of speB transcription at stationary growth phase or in subcutaneous infection of mice. GAS with RocA and CovS mutations caused greater enhancement of the expression of hasA than spyCEP in mouse skin infection than wild-type GAS did. RocA mutants ranked between wild-type GAS and CovS mutants in skin invasion, inhibition of neutrophil recruitment, and virulence in subcutaneous infection of mice. Thus, GAS RocA mutants can be selected in subcutaneous infections in mice and exhibit gene expression patterns and virulences distinct from those of CovS mutants. The findings provide novel information for understanding GAS fitness mutations in vivo, virulence gene regulation, in vivo gene expression, and virulence.
Collapse
|
18
|
Liu Y, Shields LBE, Gao Z, Wang Y, Zhang YP, Chu T, Zhu Q, Shields CB, Cai J. Current Understanding of Platelet-Activating Factor Signaling in Central Nervous System Diseases. Mol Neurobiol 2016; 54:5563-5572. [PMID: 27613281 DOI: 10.1007/s12035-016-0062-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
Platelet-activating factor (PAF) is a bioactive lipid mediator which serves as a reciprocal messenger between the immune and nervous systems. PAF, a pluripotent inflammatory mediator, is extensively expressed in many cells and tissues and has either beneficial or detrimental effects on the progress of inflammation-related neuropathology. Its wide distribution and various biological functions initiate a cascade of physiological or pathophysiological responses during development or diseases. Current evidence indicates that excess PAF accumulation in CNS diseases exacerbates the inflammatory response and pathological consequences, while application of PAF inhibitors or PAFR antagonists by blocking this signaling pathway significantly reduces inflammation, protects cells, and improves the recovery of neural functions. In this review, we integrate the current findings of PAF signaling in CNS diseases and elucidate topics less appreciated but important on the role of PAF signaling in neurological diseases. We propose that the precise use of PAF inhibitors or PAFR antagonists that target the specific neural cells during the appropriate temporal window may constitute a potential therapy for CNS diseases.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Zhongwen Gao
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
| | - Yuanyi Wang
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Tianci Chu
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | | | - Jun Cai
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA.
| |
Collapse
|
19
|
Feng W, Liu M, Chen DG, Yiu R, Fang FC, Lei B. Contemporary Pharyngeal and Invasive emm1 and Invasive emm12 Group A Streptococcus Isolates Exhibit Similar In Vivo Selection for CovRS Mutants in Mice. PLoS One 2016; 11:e0162742. [PMID: 27611332 PMCID: PMC5017694 DOI: 10.1371/journal.pone.0162742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022] Open
Abstract
Group A Streptococcus (GAS) causes diverse infections ranging from common pharyngitis to rare severe invasive infections. Invasive GAS isolates can have natural mutations in the virulence regulator CovRS, which result in enhanced expression of multiple virulence genes, suppressed the expression of the protease SpeB, and increased virulence. It is believed that CovRS mutations arise during human infections with GAS carrying wild-type CovRS and are not transmissible. CovRS mutants of invasive GAS of the emm1 genotype arise readily during experimental infection in mice. It is possible that invasive GAS arises from pharyngeal GAS through rare genetic mutations that confer the capacity of mutated GAS to acquire covRS mutations during infection. The objective of this study was to determine whether contemporary pharyngeal emm1 GAS isolates have a reduced propensity to acquire CovRS mutations in vivo compared with invasive emm1 GAS and whether emm3, emm12, and emm28 GAS acquire CovRS mutants in mouse infection. The propensity of invasive and pharyngeal emm1 and invasive emm3, emm12, and emm28 SpeBA+ isolates to acquire variants with the SpeBA- phenotype was determined during subcutaneous infection of mice. The majority of both invasive and pharyngeal emm1 SpeBA+ isolates and two of three emm12 isolates, but not emm3 and emm28 isolates, were found to acquire SpeBA- variants during skin infection in mice. All analyzed SpeBA- variants of emm1 and emm12 GAS from the mouse infection acquired covRS mutations and produced more platelet-activating factor acetylhydrolase SsE. Thus, contemporary invasive and pharyngeal emm1 GAS isolates and emm12 GAS have a similar capacity to acquire covRS mutations in vivo. The rarity of severe invasive infections caused by GAS does not appear to be attributable to a reduced ability of pharyngeal isolates to acquire CovRS mutations.
Collapse
Affiliation(s)
- Wenchao Feng
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Mengyao Liu
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Daniel G. Chen
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Rossana Yiu
- Harborview Medical Center Clinical Microbiology Laboratory and University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ferric C. Fang
- Harborview Medical Center Clinical Microbiology Laboratory and University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Benfang Lei
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
- * E-mail:
| |
Collapse
|
20
|
Affiliation(s)
- Simon Döhrmann
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, UC San Diego, La Jolla, California, United States of America
| | - Jason N. Cole
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, UC San Diego, La Jolla, California, United States of America
- The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Victor Nizet
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, UC San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, United States of America
| |
Collapse
|
21
|
Opportunities for the development of novel therapies based on host-microbial interactions. Pharmacol Res 2016; 112:68-83. [PMID: 27107789 DOI: 10.1016/j.phrs.2016.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
Abstract
Immune responses are fundamental for protecting against most infectious agents. However, there is now much evidence to suggest that the pathogenesis and tissue damage after infection are not usually related to the direct action of the replication of microorganisms, but instead to altered immune responses triggered after the contact with the pathogen. This review article discusses several mechanisms necessary for the host to protect against microbial infection and focuses in aspects that cause altered inflammation and drive immunopathology. These basic findings can ultimately reveal pathways amenable to host-directed therapy in adjunct to antimicrobial therapy for future improved control measures for many infectious diseases. Therefore, modulating the effects of inflammatory pathways may represent a new therapy during infection outcome and disease.
Collapse
|
22
|
Acinetobacter baumannii Is Dependent on the Type II Secretion System and Its Substrate LipA for Lipid Utilization and In Vivo Fitness. J Bacteriol 2015; 198:711-9. [PMID: 26668261 DOI: 10.1128/jb.00622-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Gram-negative bacteria express a number of sophisticated secretion systems to transport virulence factors across the cell envelope, including the type II secretion (T2S) system. Genes for the T2S components GspC through GspN and PilD are conserved among isolates of Acinetobacter baumannii, an increasingly common nosocomial pathogen that is developing multidrug resistance at an alarming rate. In contrast to most species, however, the T2S genes are dispersed throughout the genome rather than linked into one or two operons. Despite this unique genetic organization, we show here that the A. baumannii T2S system is functional. Deletion of gspD or gspE in A. baumannii ATCC 17978 results in loss of secretion of LipA, a lipase that breaks down long-chain fatty acids. Due to a lack of extracellular lipase, the gspD mutant, the gspE mutant, and a lipA deletion strain are incapable of growth on long-chain fatty acids as a sole source of carbon, while their growth characteristics are indistinguishable from those of the wild-type strain in nutrient-rich broth. Genetic inactivation of the T2S system and its substrate, LipA, also has a negative impact on in vivo fitness in a neutropenic murine model for bacteremia. Both the gspD and lipA mutants are outcompeted by the wild-type strain as judged by their reduced numbers in spleen and liver following intravenous coinoculation. Collectively, our findings suggest that the T2S system plays a hitherto-unrecognized role in in vivo survival of A. baumannii by transporting a lipase that may contribute to fatty acid metabolism. IMPORTANCE Infections by multidrug-resistant Acinetobacter baumannii are a growing health concern worldwide, underscoring the need for a better understanding of the molecular mechanisms by which this pathogen causes disease. In this study, we demonstrated that A. baumannii expresses a functional type II secretion (T2S) system that is responsible for secretion of LipA, an extracellular lipase required for utilization of exogenously added lipids. The T2S system and the secreted lipase support in vivo colonization and thus contribute to the pathogenic potential of A. baumannii.
Collapse
|
23
|
Hergott CB, Roche AM, Naidu NA, Mesaros C, Blair IA, Weiser JN. Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection. J Clin Invest 2015; 125:3878-90. [PMID: 26426079 DOI: 10.1172/jci81888] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
Regulation of neutrophil activity is critical for immune evasion among extracellular pathogens, yet the mechanisms by which many bacteria disrupt phagocyte function remain unclear. Here, we have shown that the respiratory pathogen Streptococcus pneumoniae disables neutrophils by exploiting molecular mimicry to degrade platelet-activating factor (PAF), a host-derived inflammatory phospholipid. Using mass spectrometry and murine upper airway infection models, we demonstrated that phosphorylcholine (ChoP) moieties that are shared by PAF and the bacterial cell wall allow S. pneumoniae to leverage a ChoP-remodeling enzyme (Pce) to remove PAF from the airway. S. pneumoniae-mediated PAF deprivation impaired viability, activation, and bactericidal capacity among responding neutrophils. In the absence of Pce, neutrophils rapidly cleared S. pneumoniae from the airway and impeded invasive disease and transmission between mice. Abrogation of PAF signaling rendered Pce dispensable for S. pneumoniae persistence, reinforcing that this enzyme deprives neutrophils of essential PAF-mediated stimulation. Accordingly, exogenous activation of neutrophils overwhelmed Pce-mediated phagocyte disruption. Haemophilus influenzae also uses an enzyme, GlpQ, to hydrolyze ChoP and subvert PAF function, suggesting that mimicry-driven immune evasion is a common paradigm among respiratory pathogens. These results identify a mechanism by which shared molecular structures enable microbial enzymes to subvert host lipid signaling, suppress inflammation, and ensure bacterial persistence at the mucosa.
Collapse
|
24
|
The Mga Regulon but Not Deoxyribonuclease Sda1 of Invasive M1T1 Group A Streptococcus Contributes to In Vivo Selection of CovRS Mutations and Resistance to Innate Immune Killing Mechanisms. Infect Immun 2015; 83:4293-303. [PMID: 26283338 DOI: 10.1128/iai.00857-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022] Open
Abstract
Invasive M1T1 group A Streptococcus (GAS) can have a mutation in the regulatory system CovRS, and this mutation can render strains hypervirulent. Interestingly, via mechanisms that are not well understood, the host innate immune system's neutrophils select spontaneous M1T1 GAS CovRS hypervirulent mutants, thereby enhancing the pathogen's ability to evade immune killing. It has been reported that the DNase Sda1 is critical for the resistance of M1T1 strain 5448 to killing in human blood and provides pressure for in vivo selection of CovRS mutations. We reexamined the role of Sda1 in the selection of CovRS mutations and in GAS innate immune evasion. Deletion of sda1 or all DNase genes in M1T1 strain MGAS2221 did not alter emergence of CovRS mutants during murine infection. Deletion of sda1 in strain 5448 resulted in Δsda1 mutants with (5448 Δsda1(M+) strain) and without (5448 Δsda1(M-) strain) M protein production. The 5448 Δsda1(M+) strain accumulated CovRS mutations in vivo and resisted killing in the bloodstream, whereas the 5448 Δsda1(M-) strain lost in vivo selection of CovRS mutations and was sensitive to killing. The deletion of emm and a spontaneous Mga mutation in MGAS2221 reduced and prevented in vivo selection for CovRS mutants, respectively. Thus, in contrast to previous reports, Sda1 is not critical for in vivo selection of invasive M1T1 CovRS mutants and GAS resistance to innate immune killing mechanisms. In contrast, M protein and other Mga-regulated proteins contribute to the in vivo selection of M1T1 GAS CovRS mutants. These findings advance the understanding of the progression of invasive M1T1 GAS infections.
Collapse
|
25
|
Miller EW, Danger JL, Ramalinga AB, Horstmann N, Shelburne SA, Sumby P. Regulatory rewiring confers serotype-specific hyper-virulence in the human pathogen group A Streptococcus. Mol Microbiol 2015; 98:473-89. [PMID: 26192205 DOI: 10.1111/mmi.13136] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2015] [Indexed: 12/18/2022]
Abstract
Phenotypic heterogeneity is commonly observed between isolates of a given pathogen. Epidemiological analyses have identified that some serotypes of the group A Streptococcus (GAS) are non-randomly associated with particular disease manifestations. Here, we present evidence that a contributing factor to the association of serotype M3 GAS isolates with severe invasive infections is the presence of a null mutant allele for the orphan kinase RocA. Through use of RNAseq analysis, we identified that the natural rocA mutation present within M3 isolates leads to the enhanced expression of more than a dozen immunomodulatory virulence factors, enhancing phenotypes such as hemolysis and NAD(+) hydrolysis. Consequently, an M3 GAS isolate survived human phagocytic killing at a level 13-fold higher than a rocA complemented derivative, and was significantly more virulent in a murine bacteremia model of infection. Finally, we identified that RocA functions through the CovR/S two-component system as levels of phosphorylated CovR increase in the presence of functional RocA, and RocA has no regulatory activity following covR or covS mutation. Our data are consistent with RocA interfacing with the CovR/S two-component system, and that the absence of this activity in M3 GAS potentiates the severity of invasive infections caused by isolates of this serotype.
Collapse
Affiliation(s)
- Eric W Miller
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Jessica L Danger
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Anupama B Ramalinga
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Nicola Horstmann
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Sumby
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
26
|
Stetzner ZW, Li D, Feng W, Liu M, Liu G, Wiley J, Lei B. Serotype M3 and M28 Group A Streptococci Have Distinct Capacities to Evade Neutrophil and TNF-α Responses and to Invade Soft Tissues. PLoS One 2015; 10:e0129417. [PMID: 26047469 PMCID: PMC4457532 DOI: 10.1371/journal.pone.0129417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/10/2015] [Indexed: 11/18/2022] Open
Abstract
The M3 Serotype of Group A Streptococcus (GAS) is one of the three most frequent serotypes associated with severe invasive GAS infections, such as necrotizing fasciitis, in the United States and other industrialized countries. The basis for this association and hypervirulence of invasive serotype M3 GAS is not fully understood. In this study, the sequenced serotype M3 strain, MGAS315, and serotype M28 strain, MGAS6180, were characterized in parallel to determine whether contemporary M3 GAS has a higher capacity to invade soft tissues than M28 GAS. In subcutaneous infection, MGAS315 invaded almost the whole skin, inhibited neutrophil recruitment and TNF-α production, and was lethal in subcutaneous infection of mice, whereas MGAS6180 did not invade skin, induced robust neutrophil infiltration and TNF-α production, and failed to kill mice. In contrast to MGAS6180, MGAS315 had covS G1370T mutation. Either replacement of the covS1370T gene with wild-type covS in MGAS315 chromosome or in trans expression of wild-type covS in MGAS315 reduced expression of CovRS-controlled virulence genes hasA, spyCEP, and sse by >10 fold. MGAS315 covSwt lost the capacity to extensively invade skin and to inhibit neutrophil recruitment and had attenuated virulence, indicating that the covS G1370T mutation critically contribute to the hypervirulence of MGAS315. Under the background of functional CovRS, MGAS315 covSwt still caused greater lesions than MGAS6180, and, consistently under the background of covS deletion, MGAS6180 ΔcovS caused smaller lesions than MGAS315 ΔcovS. Thus, contemporary invasive M3 GAS has a higher capacity to evade neutrophil and TNF-α responses and to invade soft tissue than M28 GAS and that this skin-invading capacity of M3 GAS is maximized by natural CovRS mutations. These findings enhance our understanding of the basis for the frequent association of M3 GAS with necrotizing fasciitis.
Collapse
Affiliation(s)
- Zachary W. Stetzner
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Dengfeng Li
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Wenchao Feng
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Mengyao Liu
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Guanghui Liu
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - James Wiley
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
| | - Benfang Lei
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59718, United States of America
- * E-mail:
| |
Collapse
|
27
|
A Neutralizing Monoclonal IgG1 Antibody of Platelet-Activating Factor Acetylhydrolase SsE Protects Mice against Lethal Subcutaneous Group A Streptococcus Infection. Infect Immun 2015; 83:2796-805. [PMID: 25916987 DOI: 10.1128/iai.00073-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/21/2015] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) can cause life-threatening invasive infections, including necrotizing fasciitis. There are no effective treatments for severe invasive GAS infections. The platelet-activating factor (PAF) acetylhydrolase SsE produced by GAS is required for invasive GAS to evade innate immune responses and to invade soft tissues. This study determined whether the enzymatic activity of SsE is critical for its function in GAS skin invasion and inhibition of neutrophil recruitment and whether SsE is a viable target for immunotherapy for severe invasive GAS infections. An isogenic derivative of M1T1 strain MGAS5005 producing SsE with an S178A substitution (SsE(S178A)), an enzymatically inactive SsE mutant protein, was generated. This strain induced higher levels of neutrophil infiltration and caused smaller lesions than MGAS5005 in subcutaneous infections of mice. This phenotype is similar to that of MGAS5005 sse deletion mutants, indicating that the enzymatic activity of SsE is critical for its function. An anti-SsE IgG1 monoclonal antibody (MAb), 2B11, neutralized the PAF acetylhydrolase activity of SsE. Passive immunization with 2B11 increased neutrophil infiltration, reduced skin invasion, and protected mice against MGAS5005 infection. However, 2B11 did not protect mice when it was administered after MGAS5005 inoculation. MGAS5005 induced vascular effusion at infection sites at early hours after GAS inoculation, suggesting that 2B11 did not always have access to infection sites. Thus, the enzymatic activity of SsE mediates its function, and SsE has the potential to be included in a vaccine but is not a therapeutic target. An effective MAb-based immunotherapy for severe invasive GAS infections may need to target virulence factors that are critical for systemic survival of GAS.
Collapse
|
28
|
Wen YT, Wang JS, Tsai SH, Chuan CN, Wu JJ, Liao PC. Label-free proteomic analysis of environmental acidification-influenced Streptococcus pyogenes secretome reveals a novel acid-induced protein histidine triad protein A (HtpA) involved in necrotizing fasciitis. J Proteomics 2014; 109:90-103. [DOI: 10.1016/j.jprot.2014.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 06/11/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
|
29
|
Unusual carboxylesterase bearing a GGG(A)X-type oxyanion hole discovered in Paenibacillus barcinonensis BP-23. Biochimie 2014; 104:108-16. [PMID: 24929101 DOI: 10.1016/j.biochi.2014.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/04/2014] [Indexed: 11/23/2022]
Abstract
Strain Paenibacillus barcinonensis BP-23, previously isolated from Ebro's river delta (Spain), bears a complex hydrolytic system showing the presence of at least two enzymes with activity on lipidic substrates. EstA, a cell-bound B-type carboxylesterase from the strain was previously isolated and characterized. The gene coding for a second putative lipase, located upstream cellulase Cel5A, was obtained using a genome walking strategy and cloned in Escherichia coli for further characterization. The recombinant clone obtained displayed high activity on medium/short-chain fatty acid-derivative substrates. The enzyme, named Est23, was purified and characterized, showing maximum activity on pNP-caprylate (C8:0) or MUF-heptanoate (C7:0) under conditions of moderate temperature and pH. Although Est23 displays a GGG(A)X-type oxyanion hole, described as an important motif for tertiary alcohol ester resolution, neither conversion nor enantiomeric resolution of tertiary alcohols could be detected. Amino acid sequence alignment of Est23 with those of known bacterial lipase families and with closely related proteins suggests that the cloned enzyme does not belong to any of the described bacterial lipase families. A phylogenetic tree including Est23 and similar amino acid sequences showed that the enzyme belongs to a differentiated sequence cluster which probably constitutes a new family of bacterial lipolytic enzymes.
Collapse
|
30
|
Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis. PLoS Pathog 2014; 10:e1004088. [PMID: 24788524 PMCID: PMC4006921 DOI: 10.1371/journal.ppat.1004088] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that CovR is phosphorylated in vivo and elucidate how the complex interplay between CovR D53 activating phosphorylation, T65 inhibiting phosphorylation, and auto-regulation impacts streptococcal host-pathogen interaction. Group A Streptococcus (GAS) causes a variety of human diseases ranging from mild throat infections to deadly invasive infections. The capacity of GAS to cause infections at such diverse locations is dependent on its ability to precisely control the production of a broad variety of virulence factors. The control of virulence regulator (CovR) is a master regulator of GAS genes encoding virulence factors. It is known that CovR can be phosphorylated on aspartate-53 in vitro and that such phosphorylation increases its regulatory activity, but what additional factors influence CovR-mediated gene expression have not been established. Herein we show for the first time that CovR is phosphorylated in vivo and that phosphorylation of CovR on threonine-65 by the threonine/serine kinase Stk prevents aspartate-53 phosphorylation, thereby decreasing CovR regulatory activity. Further, while CovR-mediated gene repression is highly dependent on aspartate-53 phosphorylation, CovR-mediated gene activation proceeds via a phosphorylation-independent mechanism. Modifications in CovR phosphorylation sites significantly affected the expression of GAS virulence factors during infection and markedly altered the ability of GAS to cause disease in mice. These data establish that multiple inter-related pathways converge to influence CovR phosphorylation, thereby providing new insight into the complex regulatory network used by GAS during infection.
Collapse
|
31
|
Neutrophils select hypervirulent CovRS mutants of M1T1 group A Streptococcus during subcutaneous infection of mice. Infect Immun 2014; 82:1579-90. [PMID: 24452689 DOI: 10.1128/iai.01458-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogen mutants arise during infections. Mechanisms of selection for pathogen variants are poorly understood. We tested whether neutrophils select mutations in the two-component regulatory system CovRS of group A Streptococcus (GAS) during infection using the lack of production of the protease SpeB (SpeB activity negative [SpeB(A-)]) as a marker. Depletion of neutrophils by antibodies RB6-8C5 and 1A8 reduced the percentage of SpeB(A-) variants (SpeB(A-)%) recovered from mice infected with GAS strain MGAS2221 by >76%. Neutrophil recruitment and SpeB(A-)% among recovered GAS were reduced by 95% and 92%, respectively, in subcutaneous MGAS2221 infection of CXCR2(-/-) mice compared with control mice. In air sac infection with MGAS2221, levels of neutrophils and macrophages in lavage fluid were reduced by 49% and increased by 287%, respectively, in CXCR2(-/-) mice compared with control mice, implying that macrophages play an insignificant role in the reduction of selection for SpeB(A-) variants in CXCR2(-/-) mice. One randomly chosen SpeB(A-) mutant outcompeted MGAS2221 in normal mice but was outcompeted by MGAS2221 in neutropenic mice and had enhancements in expression of virulence factors, innate immune evasion, skin invasion, and virulence. This and nine other SpeB(A-) variants from a mouse all had nonsynonymous covRS mutations that resulted in the SpeB(A-) phenotype and enhanced expression of the CovRS-controlled secreted streptococcal esterase (SsE). Our findings are consistent with a model that neutrophils select spontaneous covRS mutations that maximize the potential of GAS to evade neutrophil responses, resulting in variants with enhanced survival and virulence. To our knowledge, this is the first report of the critical contribution of neutrophils to the selection of pathogen variants.
Collapse
|
32
|
Zhou Y, Hanks TS, Feng W, Li J, Liu G, Liu M, Lei B. The sagA/pel locus does not regulate the expression of the M protein of the M1T1 lineage of group A Streptococcus. Virulence 2013; 4:698-706. [PMID: 24121654 DOI: 10.4161/viru.26413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Altered expression of Group A Streptococcus (GAS) virulence factors, including the M protein, can result as a consequence of spontaneous genetic changes that occur during laboratory and animal passage. Occurrence of such secondary mutations during targeted gene deletion could confound the interpretation of effects attributable to the function of the gene being investigated. Contradicting reports on whether the sagA/pel locus regulates the M protein-encoding emm might be due to inconsistent occurrence of mutations unrelated with sagA. This study examined the possibility that altered emm expression observed in association with sagA/pel deletion mutants is artifactual. sagA deletion mutants (MGAS2221ΔsagA) of M1T1 isolate MGAS2221 obtained using liquid broth for GAS growth during the deletion process had diminished emm transcription and no detectable M protein production. In contrast, a ΔsagA mutant of another closely genetically related M1T1 isolate had normal emm expression. The sagB gene does not regulate emm; however, one of three MGAS2221ΔsagB mutants had diminished emm expression. The emm regulator mga was downregulated in these M protein expression-negative strains. These results argue that sagA deletion does not directly cause the downregulation of emm expression. Indeed, two MGAS2221ΔsagA mutants obtained using agar plates for GAS growth during the deletion process both had normal emm expression. We conclude that the sagA/pel locus does not regulate emm expression in the M1T1 lineage and provide a protocol for targeted gene deletion that we find less prone to the generation of mutants exhibiting downregulation in emm expression.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan, P.R. China; Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Tracey S Hanks
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Wenchao Feng
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology; College of Veterinary Medicine; Huazhong Agricultural University; Wuhan, P.R. China; Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Guanghui Liu
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Mengyao Liu
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| | - Benfang Lei
- Department of Immunology and Infectious Diseases; Montana State University; Bozeman, MT USA
| |
Collapse
|
33
|
Chacón-Salinas R, Chen L, Chávez-Blanco AD, Limón-Flores AY, Ma Y, Ullrich SE. An essential role for platelet-activating factor in activating mast cell migration following ultraviolet irradiation. J Leukoc Biol 2013; 95:139-48. [PMID: 24009177 DOI: 10.1189/jlb.0811409] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The UVB (290-320 nm) radiation in sunlight is responsible for inducing skin cancer. Exposure to UV radiation is also immunosuppressive, and the systemic immune suppression induced by UV is a well-recognized risk factor for cancer induction. As UVB radiation is absorbed within the upper layers of the skin, indirect mechanisms must play a role in activating systemic immune suppression. One prominent example is mast cell migration, which from the skin to the draining LN is an essential step in the cascade of events leading to immune suppression. What triggers mast cell migration is not entirely clear. Here, we tested the hypothesis that PAF, a lipid mediator of inflammation produced by the skin in response to UV exposure, is involved. Mast cell-deficient mice (Kit(W-sh/W-sh)) are resistant to the suppressive effect of UV radiation, and reconstituting mast cell-deficient mice with normal bone marrow-derived mast cells restores susceptibility to immunosuppression. However, when mast cells from PAFR-/- mice were used, the reconstituted mice were not susceptible to the suppressive effects of UV. Furthermore, PAFR-/- mice showed impaired UV-induced mast cell migration when compared with WT mice. Finally, injecting PAF into WT mice mimicked the effect of UV irradiation and induced mast cell migration but not in PAFR-/- mice. Our findings indicate that PAFR binding induces mast cells to migrate from the skin to the LNs, where they mediate immune suppression.
Collapse
Affiliation(s)
- Rommel Chacón-Salinas
- 1.Unit 902, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Platelet-activating factor receptor blockade ameliorates Aggregatibacter actinomycetemcomitans-induced periodontal disease in mice. Infect Immun 2013; 81:4244-51. [PMID: 24002061 DOI: 10.1128/iai.01046-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Periodontal disease (PD) is a chronic inflammatory and alveolar bone destructive disease triggered by oral biofilm-producing microorganisms, such as Aggregatibacter actinomycetemcomitans. The levels of the phospholipid platelet-activating factor (PAF) in the saliva, gingival crevicular fluid, and periodontal tissues are significantly increased during inflammatory conditions, such as PD, but the exact mechanism that links PAF to alveolar bone resorption is not well understood. In the current study, alveolar bone resorption was induced by experimental PD through the oral inoculation of A. actinomycetemcomitans in wild-type (WT) and PAF receptor knockout (Pafr(-/-)) mice. In vitro experiments using A. actinomycetemcomitans lipopolysaccharide (LPS)-stimulated RAW 264.7 cells treated with a PAF receptor antagonist (UK74505) were also performed. The expression of lyso-PAF acetyltransferase in periodontal tissues was significantly increased 3 h after A. actinomycetemcomitans LPS injection in mice. WT and Pafr(-/-) mice that were subjected to oral inoculation of A. actinomycetemcomitans presented neutrophil accumulation and increased levels of CXCL-1 and tumor necrosis factor alpha (TNF-α) in periodontal tissues. However, Pafr(-/-) mice presented less alveolar bone loss than WT mice. The in vitro blockade of the PAF receptor impaired the resorptive activity of A. actinomycetemcomitans LPS-activated osteoclasts. In conclusion, this study shows for the first time that the blockade of PAF receptor may contribute to the progression of PD triggered by A. actinomycetemcomitans by directly affecting the differentiation and activity of osteoclasts.
Collapse
|
35
|
Characterization of streptococcal platelet-activating factor acetylhydrolase variants that are involved in innate immune evasion. Infect Immun 2013; 81:3128-38. [PMID: 23774595 DOI: 10.1128/iai.00398-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human pathogen group A streptococcus (GAS) has developed mechanisms to subvert innate immunity. We recently reported that the secreted esterase produced by serotype M1 GAS (SsE(M1)) reduces neutrophil recruitment by targeting platelet-activating factor (PAF). SsE(M1) and SsE produced by serotype M28 GAS (SsE(M28)) have a 37% sequence difference. This study aims at determining whether SsE(M28) is also a PAF acetylhydrolase and participates in innate immune evasion. We also examined whether SsE evolved to target PAF by characterizing the PAF acetylhydrolase (PAF-AH) activity and substrate specificity of SsE(M1), SsE(M28), SeE, the SsE homologue in Streptococcus equi, and human plasma PAF-AH (hpPAF-AH). PAF incubated with SsE(M28) or SeE was converted into lyso-PAF. SsE(M1) and SsE(M28) had kcat values of 373 s(-1) and 467 s(-1), respectively, that were ≥ 30-fold greater than that of hpPAF-AH (12 s(-1)). The comparison of SsE(M1), SsE(M28), and hpPAF-AH in kcat and Km in hydrolyzing triglycerides, acetyl esters, and PAF indicates that the SsE proteins are more potent hydrolases against PAF and have high affinity for PAF. SsE(M28) possesses much lower esterase activities against triglycerides and other esters than SsE(M1) but have similar potency with SsE(M1) in PAF hydrolysis. Deletion of sse(M28) in a covS deletion mutant of GAS increased neutrophil recruitment and reduced skin infection, whereas in trans expression of SsE(M28) in GAS reduced neutrophil infiltration and increased skin invasion in subcutaneous infection of mice. These results suggest that the SsE proteins evolved to target PAF for enhancing innate immune evasion and skin invasion.
Collapse
|
36
|
Regulation of inhibition of neutrophil infiltration by the two-component regulatory system CovRS in subcutaneous murine infection with group A streptococcus. Infect Immun 2013; 81:974-83. [PMID: 23319556 DOI: 10.1128/iai.01218-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypervirulent invasive group A streptococcus (GAS) isolates inhibit neutrophil infiltration more than pharyngitis isolates do, and the molecular basis of this difference is not well understood. This study was designed to first determine whether natural null mutation of the two-component regulatory system CovRS is responsible for the enhancement of the inhibition of neutrophil recruitment seen in hypervirulent GAS. Next, we examined the role of CovRS-regulated interleukin-8/CXC chemokine peptidase (SpyCEP), C5a peptidase (ScpA), and platelet-activating factor acetylhydrolase (SsE) in the enhanced innate immune evasion. Invasive isolate MGAS5005 induces less neutrophil infiltration and produced a greater lesion area than pharyngitis isolate MGAS2221 in subcutaneous infections of mice. It is known that MGAS5005, but not MGAS2221, has a natural 1-bp deletion in the covS gene. Replacement of covS(Δ1bp) in MGAS5005 with wild-type covS resulted in the MGAS2221 phenotype. Deletion of covS from MGAS2221 resulted in the MGAS5005 phenotype. Tests of single, double, and triple deletion mutants of the MGAS5005 sse, spyCEP, and scpA genes found that SsE plays a more important role than SpyCEP and ScpA in the inhibition of neutrophil recruitment and that SsE, SpyCEP, and ScpA do not have synergistic effects on innate immune evasion by MGAS5005. Deletion of sse, but not spyCEP or scpA, of MGAS2221 enhances neutrophil recruitment. Thus, covS null mutations can cause substantial inhibition of neutrophil recruitment by enhancing the expression of the chemoattractant-degrading virulence factors, and SsE, but not SpyCEP or ScpA, is required for CovRS-regulated GAS inhibition of neutrophil infiltration.
Collapse
|
37
|
Jiang Z, Fehrenbach ML, Ravaioli G, Kokalari B, Redai IG, Sheardown SA, Wilson S, Macphee C, Haczku A. The effect of lipoprotein-associated phospholipase A2 deficiency on pulmonary allergic responses in Aspergillus fumigatus sensitized mice. Respir Res 2012; 13:100. [PMID: 23140447 PMCID: PMC3546878 DOI: 10.1186/1465-9921-13-100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/06/2012] [Indexed: 12/05/2022] Open
Abstract
Background Lipoprotein-associated phospholipase A2 (Lp-PLA2)/platelet-activating factor acetylhydrolase (PAF-AH) has been implicated in the pathogenesis of cardiovascular disease. A therapeutic targeting of this enzyme was challenged by the concern that increased circulating platelet activating factor (PAF) may predispose to or increase the severity of the allergic airway response. The aim of this study was to investigate whether Lp-PLA2 gene deficiency increases the risk of PAF and IgE-mediated inflammatory responses in vitro and in vivo using mouse models. Methods Lp-PLA2-/- mice were generated and back crossed to the C57BL/6 background. PAF-AH activity was measured using a hydrolysis assay in serum and bronchoalveolar lavage (BAL) samples obtained from mice. Aspergillus fumigatus (Af)-specific serum was prepared for passive allergic sensitization of mice in vivo and mast cells in vitro. β- hexosaminidase release was studied in bone marrow derived mast cells sensitized with Af-specific serum or DNP-IgE and challenged with Af or DNP, respectively. Mice were treated with lipopolysaccharide (LPS) and PAF intratracheally and studied 24 hours later. Mice were sensitized either passively or actively against Af and were studied 48 hours after a single intranasal Af challenge. Airway responsiveness to methacholine, inflammatory cell influx in the lung tissue and BAL, immunoglobulin (ELISA) and cytokine (Luminex) profiles were compared between the wild type (WT) and Lp-PLA2-/- mice. Results PAF-AH activity was reduced but not completely abolished in Lp-PLA2-/- serum or by in vitro treatment of serum samples with a high saturating concentration of the selective Lp-PLA2 inhibitor, SB-435495. PAF inhalation significantly enhanced airway inflammation of LPS treated WT and Lp-PLA2-/- mice to a similar extent. Sensitized WT and Lp-PLA2-/- bone-marrow derived mast cells released β-hexosaminidase following stimulation by allergen or IgE crosslinking to equivalent levels. Wild type and Lp-PLA2-/- mice responded to passive or active allergic sensitization by significant IgE production, airway inflammation and hyperresponsiveness after Af challenge. BAL cell influx was not different between these strains while IL-4, IL-5, IL-6 and eotaxin release was attenuated in Lp-PLA2-/- mice. There were no differences in the amount of total IgE levels in the Af sensitized WT and Lp-PLA2-/- mice. Conclusions We conclude that Lp-PLA2 deficiency in C57BL/6 mice did not result in a heightened airway inflammation or hyperresponsiveness after PAF/LPS treatment or passive or active allergic sensitization and challenge.
Collapse
Affiliation(s)
- Zhilong Jiang
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Henningham A, Gillen CM, Walker MJ. Group a streptococcal vaccine candidates: potential for the development of a human vaccine. Curr Top Microbiol Immunol 2012; 368:207-42. [PMID: 23250780 DOI: 10.1007/82_2012_284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently there is no commercial Group A Streptococcus (GAS; S. pyogenes) vaccine available. The development of safe GAS vaccines is challenging, researchers are confronted with obstacles such as the occurrence of many unique serotypes (there are greater than 150 M types), antigenic variation within the same serotype, large variations in the geographical distribution of serotypes, and the production of antibodies cross-reactive with human tissue which can lead to host auto-immune disease. Cell wall anchored, cell membrane associated, secreted and anchorless proteins have all been targeted as GAS vaccine candidates. As GAS is an exclusively human pathogen, the quest for an efficacious vaccine is further complicated by the lack of an animal model which mimics human disease and can be consistently and reproducibly colonized by multiple GAS strains.
Collapse
Affiliation(s)
- Anna Henningham
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre, University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|