1
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Gies SL, Tessmer MH, Frank DW, Feix JB. Site-directed spin label EPR studies of the structure and membrane interactions of the bacterial phospholipase ExoU. APPLIED MAGNETIC RESONANCE 2024; 55:279-295. [PMID: 39175603 PMCID: PMC11340903 DOI: 10.1007/s00723-023-01620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 08/24/2024]
Abstract
Site-directed spin labeling (SDSL) has been invaluable in the analysis of protein structure and dynamics, and has been particularly useful in the study of membrane proteins. ExoU, an important virulence factor in Pseudomonas aeruginosa infections, is a bacterial phospholipase A2 that functions at the membrane - aqueous interface. Using SDSL methodology developed in the Hubbell lab, we find that the region surrounding the catalytic site of ExoU is buried within the tertiary structure of the protein in the soluble, apoenzyme state, but shows a significant increase in dynamics upon membrane binding and activation by ubiquitin. Continuous wave (CW) power saturation EPR studies show that the conserved serine hydrolase motif of ExoU localizes to the membrane surface in the active, holoenzyme state. SDSL studies on the C-terminal four-helix bundle (4HB) domain of ExoU similarly show a co-operative effect of ubiquitin binding and membrane association. CW power saturation studies of the 4HB domain indicate that two interhelical loops intercalate into the lipid bilayer upon formation of the holoenzyme state, anchoring ExoU at the membrane surface. Together these studies establish the orientation and localization of ExoU and the membrane surface, and illustrate the power of SDSL as applied to peripheral membrane proteins.
Collapse
Affiliation(s)
- Samantha L. Gies
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Current address: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Maxx H. Tessmer
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Current address: Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jimmy B. Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
3
|
Wu T, Zhang Z, Li T, Dong X, Wu D, Zhu L, Xu K, Zhang Y. The type III secretion system facilitates systemic infections of Pseudomonas aeruginosa in the clinic. Microbiol Spectr 2024; 12:e0222423. [PMID: 38088541 PMCID: PMC10783026 DOI: 10.1128/spectrum.02224-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The identification of decisive virulence-associated genes in highly pathogenic P. aeruginosa isolates in the clinic is essential for diagnosis and the start of appropriate treatment. Over the past decades, P. aeruginosa ST463 has spread rapidly in East China and is highly resistant to β-lactams. Given the poor clinical outcome caused by this phenotype, detailed information regarding its decisive virulence genes and factors affecting virulence expression needs to be deciphered. Here, we demonstrate that the T3SS effector ExoU has toxic effects on mammalian cells and is required for virulence in the murine bloodstream infection model. Moreover, a functional downstream SpcU is required for ExoU secretion and cytotoxicity. This work highlights the potential role of ExoU in the pathogenesis of disease and provides a new perspective for further research on the development of new antimicrobials with antivirulence ability.
Collapse
Affiliation(s)
- Tiantian Wu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenchuan Zhang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Tong Li
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Dong
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Research and Service Center, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Lixia Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijin Xu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
4
|
Choudhury A, Saha S, Maiti NC, Datta S. Exploring structural features and potential lipid interactions of Pseudomonas aeruginosa type three secretion effector PemB by spectroscopic and calorimetric experiments. Protein Sci 2023; 32:e4627. [PMID: 36916835 PMCID: PMC10044109 DOI: 10.1002/pro.4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
Type Three Secretion System (T3SS) is a sophisticated nano-scale weapon utilized by several gram negative bacteria under stringent spatio-temporal regulation to manipulate and evade host immune systems in order to cause infection. To the best of our knowledge, this present study is the first report where we embark upon characterizing inherent features of native type three secretion effector protein PemB through biophysical techniques. Herein, first, we demonstrate binding affinity of PemB for phosphoinositides through isothermal calorimetric titrations. Second, we shed light on its strong homo-oligomerization propensity in aqueous solution through multiple biophysical methods. Third, we also employ several spectroscopic techniques to delineate its disordered and helical conformation. Lastly, we perform a phylogenetic analysis of this new effector to elucidate evolutionary relationship with other organisms. Taken together, our results shall surely contribute to our existing knowledge of Pseudomonas aeruginosa secretome.
Collapse
Affiliation(s)
- Arkaprabha Choudhury
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
- Biological SciencesAcademy of Scientific and Innovative Research (AcSIR)201002GhaziabadIndia
| | - Saumen Saha
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
| | - Nakul Chandra Maiti
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
- Biological SciencesAcademy of Scientific and Innovative Research (AcSIR)201002GhaziabadIndia
| | - Saumen Datta
- Department of Structural Biology and BioinformaticsCSIR‐Indian Institute of Chemical Biology (CSIR‐IICB)Kolkata700032India
- Biological SciencesAcademy of Scientific and Innovative Research (AcSIR)201002GhaziabadIndia
| |
Collapse
|
5
|
Wood SJ, Goldufsky JW, Seu MY, Dorafshar AH, Shafikhani SH. Pseudomonas aeruginosa Cytotoxins: Mechanisms of Cytotoxicity and Impact on Inflammatory Responses. Cells 2023; 12:cells12010195. [PMID: 36611990 PMCID: PMC9818787 DOI: 10.3390/cells12010195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most virulent opportunistic Gram-negative bacterial pathogens in humans. It causes many acute and chronic infections with morbidity and mortality rates as high as 40%. P. aeruginosa owes its pathogenic versatility to a large arsenal of cell-associated and secreted virulence factors which enable this pathogen to colonize various niches within hosts and protect it from host innate immune defenses. Induction of cytotoxicity in target host cells is a major virulence strategy for P. aeruginosa during the course of infection. P. aeruginosa has invested heavily in this strategy, as manifested by a plethora of cytotoxins that can induce various forms of cell death in target host cells. In this review, we provide an in-depth review of P. aeruginosa cytotoxins based on their mechanisms of cytotoxicity and the possible consequences of their cytotoxicity on host immune responses.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W. Goldufsky
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michelle Y. Seu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
6
|
Ragavendran PV, Tripathi V, Gandotra S. Structure prediction-based insights into the patatin family of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748562 DOI: 10.1099/mic.0.001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its genome sequencing more than two decades ago, the majority of the genes of Mycobacterium tuberculosis remain functionally uncharacterized. Patatins are one such class of proteins that, despite undergoing an expansion in this pathogenic species compared to their non-pathogenic cousins, remain largely unstudied. Recent advances in protein structure prediction using machine learning tools such as AlphaFold2 have provided high-confidence predicted structures for all M. tuberculosis proteins. Here we present detailed analyses of the patatin family of M. tuberculosis using AlphaFold-predicted structures, providing insights into likely modes of regulation, membrane interaction and substrate binding. Regulatory domains within this family of proteins include cyclic nucleotide binding, lid-like domains and other helical domains. Using structural homologues, we identified the likely membrane localization mechanisms and substrate-binding sites. These analyses reveal diversity in their regulatory capacity, mechanisms of membrane binding and likely length of fatty acid substrates. Together, this analysis suggests unique roles for the eight predicted patatins of M. tuberculosis.
Collapse
Affiliation(s)
- P V Ragavendran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| | - Vaishnavi Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| | - Sheetal Gandotra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| |
Collapse
|
7
|
Huang D, Luo J, OuYang X, Song L. Subversion of host cell signaling: The arsenal of Rickettsial species. Front Cell Infect Microbiol 2022; 12:995933. [PMID: 36389139 PMCID: PMC9659576 DOI: 10.3389/fcimb.2022.995933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 10/10/2023] Open
Abstract
Rickettsia is a genus of nonmotile, Gram-negative, non-spore-forming, highly pleomorphic bacteria that cause severe epidemic rickettsioses. The spotted fever group and typhi group are major members of the genus Rickettsia. Rickettsial species from the two groups subvert diverse host cellular processes, including membrane dynamics, actin cytoskeleton dynamics, phosphoinositide metabolism, intracellular trafficking, and immune defense, to promote their host colonization and intercellular transmission through secreted effectors (virulence factors). However, lineage-specific rickettsiae have exploited divergent strategies to accomplish such challenging tasks and these elaborated strategies focus on distinct host cell processes. In the present review, we summarized current understandings of how different rickettsial species employ their effectors' arsenal to affect host cellular processes in order to promote their own replication or to avoid destruction.
Collapse
Affiliation(s)
- Dan Huang
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Luo
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Song
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Staudt A, Brack Y, Jr II, Leal ICR. Biocatalytic synthesis of monoterpene esters – A review study on the phylogenetic evolution of biocatalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Chamberlain K, Johnson M, Reid TE, Springer TI. Utilizing in silico and in vitro methods to identify possible binding sites of a novel ligand against Pseudomonas aeruginosa phospholipase toxin ExoU. Biochem Biophys Rep 2022; 29:101188. [PMID: 34984240 PMCID: PMC8693347 DOI: 10.1016/j.bbrep.2021.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022] Open
Abstract
Multi-drug resistant infections caused by the opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), are a continuing problem that contribute to morbidity and mortality in immunocompromised hosts such as cystic fibrosis (CF), wound and burn patients. The bacterial toxin ExoU is one of four potent toxins that P. aeruginosa secretes into the epithelial cells of hosts. In this study, NMR Saturation Transfer Difference (STD) and in silico Schrödinger Computational Modeling were used to identify a possible binding site of a novel ligand methoctramine targeting ExoU. Future project goals will be to design a structure activity relationship (SAR) study of methoctramine and ExoU and lead to a new drug solving ExoU toxicity P. aeruginosa exerts in the clinical environment. STD-NMR identified a weak binding molecule for ExoU. Schrödinger's SiteMap tool to identify potential binding sites of methoctramine to ExoU. Positively charged protonated amines on methoctramine allows for multiple salt bridge and H-bond interactions. Top ranked druggable site aligns and corresponds to ExoU C-terminus region.
Collapse
Affiliation(s)
- Krista Chamberlain
- Pharmaceutical Sciences Department, School of Pharmacy, Concordia University Wisconsin, Mequon, WI, 53097, USA
| | - Mya Johnson
- Harvard Faculty of Arts and Science, School of Engineering and Applied Sciences, 150 Western Ave, Boston, MA, 02134, USA
| | - Terry-Elinor Reid
- Pharmaceutical Sciences Department, School of Pharmacy, Concordia University Wisconsin, Mequon, WI, 53097, USA
| | - Tzvia I Springer
- Pharmaceutical Sciences Department, School of Pharmacy, Concordia University Wisconsin, Mequon, WI, 53097, USA
| |
Collapse
|
10
|
Hardy KS, Tessmer MH, Frank DW, Audia JP. Perspectives on the Pseudomonas aeruginosa Type III Secretion System Effector ExoU and Its Subversion of the Host Innate Immune Response to Infection. Toxins (Basel) 2021; 13:880. [PMID: 34941717 PMCID: PMC8708460 DOI: 10.3390/toxins13120880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic, Gram-negative pathogen and an important cause of hospital acquired infections, especially in immunocompromised patients. Highly virulent P. aeruginosa strains use a type III secretion system (T3SS) to inject exoenzyme effectors directly into the cytoplasm of a target host cell. P. aeruginosa strains that express the T3SS effector, ExoU, associate with adverse outcomes in critically ill patients with pneumonia, owing to the ability of ExoU to rapidly damage host cell membranes and subvert the innate immune response to infection. Herein, we review the structure, function, regulation, and virulence characteristics of the T3SS effector ExoU, a highly cytotoxic phospholipase A2 enzyme.
Collapse
Affiliation(s)
- Kierra S. Hardy
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36608, USA;
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36608, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA;
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36608, USA;
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36608, USA
| |
Collapse
|
11
|
Ahmad S, Strunk CH, Schott-Verdugo SN, Jaeger KE, Kovacic F, Gohlke H. Substrate Access Mechanism in a Novel Membrane-Bound Phospholipase A of Pseudomonas aeruginosa Concordant with Specificity and Regioselectivity. J Chem Inf Model 2021; 61:5626-5643. [PMID: 34748335 DOI: 10.1021/acs.jcim.1c00973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PlaF is a cytoplasmic membrane-bound phospholipase A1 from Pseudomonas aeruginosa that alters the membrane glycerophospholipid (GPL) composition and fosters the virulence of this human pathogen. PlaF activity is regulated by a dimer-to-monomer transition followed by tilting of the monomer in the membrane. However, how substrates reach the active site and how the characteristics of the active site tunnels determine the activity, specificity, and regioselectivity of PlaF for natural GPL substrates have remained elusive. Here, we combined unbiased and biased all-atom molecular dynamics (MD) simulations and configurational free-energy computations to identify access pathways of GPL substrates to the catalytic center of PlaF. Our results map out a distinct tunnel through which substrates access the catalytic center. PlaF variants with bulky tryptophan residues in this tunnel revealed decreased catalysis rates due to tunnel blockage. The MD simulations suggest that GPLs preferably enter the active site with the sn-1 acyl chain first, which agrees with the experimentally demonstrated PLA1 activity of PlaF. We propose that the acyl chain-length specificity of PlaF is determined by the structural features of the access tunnel, which results in favorable free energy of binding of medium-chain GPLs. The suggested egress route conveys fatty acid (FA) products to the dimerization interface and, thus, contributes to understanding the product feedback regulation of PlaF by FA-triggered dimerization. These findings open up opportunities for developing potential PlaF inhibitors, which may act as antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Sabahuddin Ahmad
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Heinrich Strunk
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan N Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering, University of Talca, 3460000 Talca, Chile.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
12
|
Bagayoko S, Leon-Icaza SA, Pinilla M, Hessel A, Santoni K, Péricat D, Bordignon PJ, Moreau F, Eren E, Boyancé A, Naser E, Lefèvre L, Berrone C, Iakobachvili N, Metais A, Rombouts Y, Lugo-Villarino G, Coste A, Attrée I, Frank DW, Clevers H, Peters PJ, Cougoule C, Planès R, Meunier E. Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology. PLoS Pathog 2021; 17:e1009927. [PMID: 34516571 PMCID: PMC8460005 DOI: 10.1371/journal.ppat.1009927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/23/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022] Open
Abstract
Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.
Collapse
Affiliation(s)
- Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Miriam Pinilla
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Audrey Hessel
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - David Péricat
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Pierre-Jean Bordignon
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Flavie Moreau
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Level 3 Biosafety Animal Core facility, Anexplo platform, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Elif Eren
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Aurélien Boyancé
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Emmanuelle Naser
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Cytometry & Imaging Core facility, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Lise Lefèvre
- RESTORE institute, University of Toulouse, CNRS, Toulouse, France
| | - Céline Berrone
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Level 3 Biosafety Animal Core facility, Anexplo platform, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Nino Iakobachvili
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Arnaud Metais
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Yoann Rombouts
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Agnès Coste
- RESTORE institute, University of Toulouse, CNRS, Toulouse, France
| | - Ina Attrée
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Netherlands
| | - Peter J. Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| |
Collapse
|
13
|
The bacterial toxin ExoU requires a host trafficking chaperone for transportation and to induce necrosis. Nat Commun 2021; 12:4024. [PMID: 34188051 PMCID: PMC8241856 DOI: 10.1038/s41467-021-24337-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa can cause nosocomial infections, especially in ventilated or cystic fibrosis patients. Highly pathogenic isolates express the phospholipase ExoU, an effector of the type III secretion system that acts on plasma membrane lipids, causing membrane rupture and host cell necrosis. Here, we use a genome-wide screen to discover that ExoU requires DNAJC5, a host chaperone, for its necrotic activity. DNAJC5 is known to participate in an unconventional secretory pathway for misfolded proteins involving anterograde vesicular trafficking. We show that DNAJC5-deficient human cells, or Drosophila flies knocked-down for the DNAJC5 orthologue, are largely resistant to ExoU-dependent virulence. ExoU colocalizes with DNAJC5-positive vesicles in the host cytoplasm. DNAJC5 mutations preventing vesicle trafficking (previously identified in adult neuronal ceroid lipofuscinosis, a human congenital disease) inhibit ExoU-dependent cell lysis. Our results suggest that, once injected into the host cytoplasm, ExoU docks to DNAJC5-positive secretory vesicles to reach the plasma membrane, where it can exert its phospholipase activity Phospholipase ExoU from Pseudomonas aeruginosa acts on plasma membrane lipids in infected cells, causing membrane rupture and host cell necrosis. Here, Deruelle et al. show that once injected into the host cytoplasm, ExoU requires a host chaperone found on secretory vesicles to reach the plasma membrane and exerts its phospholipase activity.
Collapse
|
14
|
A pipeline to evaluate inhibitors of the Pseudomonas aeruginosa exotoxin U. Biochem J 2021; 478:647-668. [PMID: 33459338 PMCID: PMC7886320 DOI: 10.1042/bcj20200780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa has recently been highlighted by the World Health Organisation (WHO) as a major threat with high priority for the development of new therapies. In severe P. aeruginosa infections, the phospholipase activity of the type 3 secretion system toxin, ExoU, induces lysis of target host cells and results in the poorest clinical outcomes. We have developed an integrated pipeline to evaluate small molecule inhibitors of ExoU in vitro and in cultured cell models, including a disease-relevant corneal epithelial (HCE-T) scratch and infection model using florescence microscopy and cell viability assays. Compounds Pseudolipasin A, compound A and compound B were effective in vitro inhibitors of ExoU and mitigated P. aeruginosa ExoU-dependent cytotoxicity after infection of HCE-T cells at concentrations as low as 0.5 µM. Addition of the antimicrobial moxifloxacin controlled bacterial load, allowing these assays to be extended from 6 h to 24 h. P. aeruginosa remained cytotoxic to HCE-T cells with moxifloxacin, present at the minimal inhibitory concentration for 24 h, but, when used in combination with either Pseudolipasin A, compound A or compound B, a greater amount of viable cells and scratch healing were observed. Thus, our pipeline provides evidence that ExoU inhibitors could be used in combination with certain antimicrobials as a novel means to treat infections due to ExoU producing P. aeruginosa, as well as the means to identify more potent ExoU inhibitors for future therapeutics.
Collapse
|
15
|
Gazi AD, Kokkinidis M, Fadouloglou VE. α-Helices in the Type III Secretion Effectors: A Prevalent Feature with Versatile Roles. Int J Mol Sci 2021; 22:ijms22115412. [PMID: 34063760 PMCID: PMC8196651 DOI: 10.3390/ijms22115412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Type III Secretion Systems (T3SSs) are multicomponent nanomachines located at the cell envelope of Gram-negative bacteria. Their main function is to transport bacterial proteins either extracellularly or directly into the eukaryotic host cell cytoplasm. Type III Secretion effectors (T3SEs), latest to be secreted T3S substrates, are destined to act at the eukaryotic host cell cytoplasm and occasionally at the nucleus, hijacking cellular processes through mimicking eukaryotic proteins. A broad range of functions is attributed to T3SEs, ranging from the manipulation of the host cell's metabolism for the benefit of the bacterium to bypassing the host's defense mechanisms. To perform this broad range of manipulations, T3SEs have evolved numerous novel folds that are compatible with some basic requirements: they should be able to easily unfold, pass through the narrow T3SS channel, and refold to an active form when on the other side. In this review, the various folds of T3SEs are presented with the emphasis placed on the functional and structural importance of α-helices and helical domains.
Collapse
Affiliation(s)
- Anastasia D. Gazi
- Unit of Technology & Service Ultrastructural Bio-Imaging (UTechS UBI), Institut Pasteur, 75015 Paris, France
- Correspondence: (A.D.G.); (V.E.F.)
| | - Michael Kokkinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion, 70013 Crete, Greece;
- Department of Biology, Voutes University Campus, University of Crete, Heraklion, 70013 Crete, Greece
| | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence: (A.D.G.); (V.E.F.)
| |
Collapse
|
16
|
Tessmer MH, DeCero SA, Del Alamo D, Riegert MO, Meiler J, Frank DW, Feix JB. Characterization of the ExoU activation mechanism using EPR and integrative modeling. Sci Rep 2020; 10:19700. [PMID: 33184362 PMCID: PMC7665212 DOI: 10.1038/s41598-020-76023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
ExoU, a type III secreted phospholipase effector of Pseudomonas aeruginosa, serves as a prototype to model large, dynamic, membrane-associated proteins. ExoU is synergistically activated by interactions with membrane lipids and ubiquitin. To dissect the activation mechanism, structural homology was used to identify an unstructured loop of approximately 20 residues in the ExoU amino acid sequence. Mutational analyses indicate the importance of specific loop amino acid residues in mediating catalytic activity. Engineered disulfide cross-links show that loop movement is required for activation. Site directed spin labeling EPR and DEER (double electron-electron resonance) studies of apo and holo states demonstrate local conformational changes at specific sites within the loop and a conformational shift of the loop during activation. These data are consistent with the formation of a substrate-binding pocket providing access to the catalytic site. DEER distance distributions were used as constraints in RosettaDEER to construct ensemble models of the loop in both apo and holo states, significantly extending the range for modeling a conformationally dynamic loop.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Samuel A DeCero
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Diego Del Alamo
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Molly O Riegert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig SAC, Germany
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
17
|
Ngo TD, Perdu C, Jneid B, Ragno M, Novion Ducassou J, Kraut A, Couté Y, Stopford C, Attrée I, Rietsch A, Faudry E. The PopN Gate-keeper Complex Acts on the ATPase PscN to Regulate the T3SS Secretion Switch from Early to Middle Substrates in Pseudomonas aeruginosa. J Mol Biol 2020; 432:166690. [PMID: 33289667 DOI: 10.1016/j.jmb.2020.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium of which the main virulence factor is the Type III Secretion System. The ATPase of this machinery, PscN (SctN), is thought to be localized at the base of the secretion apparatus and to participate in the recognition, chaperone dissociation and unfolding of exported T3SS proteins. In this work, a protein-protein interaction ELISA revealed the interaction of PscN with a wide range of exported T3SS proteins including the needle, translocator, gate-keeper and effector. These interactions were further confirmed by Microscale Thermophoresis that also indicated a preferential interaction of PscN with secreted proteins or protein-chaperone complex rather than with chaperones alone, in line with the release of the chaperones in the bacterial cytoplasm after the dissociation from their exported proteins. Moreover, we suggest a new role of the gate-keeper complex and the ATPase in the regulation of early substrates recognition by the T3SS. This finding sheds a new light on the mechanism of secretion switching from early to middle substrates in P. aeruginosa.
Collapse
Affiliation(s)
- Tuan-Dung Ngo
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France
| | - Caroline Perdu
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France
| | - Bakhos Jneid
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France
| | - Michel Ragno
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France
| | | | - Alexandra Kraut
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, 38000 Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, 38000 Grenoble, France
| | - Charles Stopford
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ina Attrée
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eric Faudry
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France.
| |
Collapse
|
18
|
Cui Z, Dang G, Song N, Cui Y, Li Z, Zang X, Liu H, Wang Z, Liu S. Rv3091, An Extracellular Patatin-Like Phospholipase in Mycobacterium tuberculosis, Prolongs Intracellular Survival of Recombinant Mycolicibacterium smegmatis by Mediating Phagosomal Escape. Front Microbiol 2020; 11:2204. [PMID: 33042041 PMCID: PMC7517356 DOI: 10.3389/fmicb.2020.532371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/19/2020] [Indexed: 12/02/2022] Open
Abstract
Patatin-like phospholipases (PLPs) are important virulence factors of many pathogens. However, there are no prevailing studies regarding PLPs as a virulence factor of Mycobacterium tuberculosis (Mtb). Analysis of Rv3091, a putative protein of Mtb, shows that it belongs to the PLPs family. Here, we cloned and expressed the rv3091 gene in Mycobacterium smegmatis and, subsequently, conducted protein purification and characterization. We show that it possesses phospholipase A1, phospholipase A2, and lipase activity. We confirm the putative active site residues, namely, Ser214 and Asp407, using site directed mutagenesis. The Rv3091 is an extracellular protein that alters the colony morphology of M. smegmatis. The presence of Rv3091 enhances the intracellular survival capability of M. smegmatis in murine peritoneal macrophages. Additionally, it promotes M. smegmatis phagosomal escape from macrophages. Moreover, Rv3091 significantly increased the survival of M. smegmatis and aggravated lesions in C57BL/6 J murine lungs in vivo. Taken together, our results indicate that Rv3091 as an extracellular PLP that is critical to the pathogenicity of mycobacterium as it allows mycobacterium to utilize phospholipids for its growth and provides resistance to phagosome killing, resulting in its enhanced intracellular survival.
Collapse
Affiliation(s)
- Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhe Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinxin Zang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongxiu Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhongxing Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
19
|
Pseudomonas aeruginosa Toxin ExoU as a Therapeutic Target in the Treatment of Bacterial Infections. Microorganisms 2019; 7:microorganisms7120707. [PMID: 31888268 PMCID: PMC6955817 DOI: 10.3390/microorganisms7120707] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa employs the type III secretion system (T3SS) and four effector proteins, ExoS, ExoT, ExoU, and ExoY, to disrupt cellular physiology and subvert the host’s innate immune response. Of the effector proteins delivered by the T3SS, ExoU is the most toxic. In P. aeruginosa infections, where the ExoU gene is expressed, disease severity is increased with poorer prognoses. This is considered to be due to the rapid and irreversible damage exerted by the phospholipase activity of ExoU, which cannot be halted before conventional antibiotics can successfully eliminate the pathogen. This review will discuss what is currently known about ExoU and explore its potential as a therapeutic target, highlighting some of the small molecule ExoU inhibitors that have been discovered from screening approaches.
Collapse
|
20
|
Yahalom A, Davidov G, Kolusheva S, Shaked H, Barber-Zucker S, Zarivach R, Chill JH. Structure and membrane-targeting of a Bordetella pertussis effector N-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183054. [DOI: 10.1016/j.bbamem.2019.183054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
|
21
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
22
|
Springer TI, Reid TE, Gies SL, Feix JB. Interactions of the effector ExoU from Pseudomonas aeruginosa with short-chain phosphatidylinositides provide insights into ExoU targeting to host membranes. J Biol Chem 2019; 294:19012-19021. [PMID: 31662432 DOI: 10.1074/jbc.ra119.010278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic multidrug-resistant pathogen and a common cause of infection in cystic fibrosis and ventilator-associated pneumonia and in burn and wound patients. P. aeruginosa uses its type III secretion system to secrete various effector proteins directly into mammalian host cells. ExoU is a potent type III secretion system effector that, after secretion, localizes to the inner cytoplasmic membrane of eukaryotic cells, where it exerts its phospholipase A2 activity upon interacting with ubiquitin and/or ubiquitinated proteins. In this study, we used site-directed spin-labeling electron paramagnetic resonance spectroscopy to examine the interaction of ExoU with soluble analogs of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2). We found that dioctanoyl PI(4,5)P2 binds to and induces conformational changes in a C-terminal four-helix bundle (4HB) domain of ExoU implicated previously in membrane binding. Other soluble phosphoinositides also interacted with the 4HB but less effectively. Molecular modeling and ligand docking studies indicated the potential for numerous hydrogen bond interactions within and between interhelical loops of the 4HB and suggested several potential interaction sites for PI(4,5)P2 Site-directed mutagenesis experiments confirmed that the side chains of Gln-623 and Arg-661 play important roles in mediating PI(4,5)P2-induced conformational changes in ExoU. These results support a mechanism in which direct interactions with phosphatidylinositol-containing lipids play an essential role in targeting ExoU to host membrane bilayers. Molecules or peptides that block this interaction may prove useful in preventing the cytotoxic effects of ExoU to mitigate the virulence of P. aeruginosa strains that express this potent phospholipase toxin.
Collapse
Affiliation(s)
- Tzvia I Springer
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, Wisconsin 53097
| | - Terry-Elinor Reid
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, Wisconsin 53097
| | - Samantha L Gies
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
23
|
Identification and Verification of Ubiquitin-Activated Bacterial Phospholipases. J Bacteriol 2019; 201:JB.00623-18. [PMID: 30455285 DOI: 10.1128/jb.00623-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
ExoU is a potent type III secretion system effector that is injected directly into mammalian cells by the opportunistic pathogen Pseudomonas aeruginosa As a ubiquitin-activated phospholipase A2 (PLA2), ExoU exhibits cytotoxicity by cleaving membrane phospholipids, resulting in lysis of the host cells and inhibition of the innate immune response. Recently, ExoU has been established as a model protein for a group of ubiquitin-activated PLA2 enzymes encoded by a variety of bacteria. Bioinformatic analyses of homologous proteins is a powerful approach that can complement and enhance the overall understanding of protein structure and function. To conduct homology studies, it is important to have efficient and effective tools to screen and to validate the putative homologs of interest. Here we make use of an Escherichia coli-based dual expression system to screen putative ubiquitin-activated PLA2 enzymes from a variety of bacteria that are known to colonize humans and to cause human infections. The screen effectively identified multiple ubiquitin-activated phospholipases, which were validated using both biological and biochemical techniques. In this study, two new ExoU orthologs were identified and the ubiquitin activation of the rickettsial enzyme RP534 was verified. Conversely, ubiquitin was not found to regulate the activity of several other tested enzymes. Based on structural homology analyses, functional properties were predicted for AxoU, a unique member of the group expressed by Achromobacter xylosoxidans IMPORTANCE Bacterial phospholipases act as intracellular and extracellular enzymes promoting the destruction of phospholipid barriers and inflammation during infections. Identifying enzymes with a common mechanism of activation is an initial step in understanding structural and functional properties. These properties serve as critical information for the design of specific inhibitors to reduce enzymatic activity and ameliorate host cell death. In this study, we identify and verify cytotoxic PLA2 enzymes from several bacterial pathogens. Similar to the founding member of the group, ExoU, these enzymes share the property of ubiquitin-mediated activation. The identification and validation of potential toxins from multiple bacterial species provide additional proteins from which to derive structural insights that could lead to paninhibitors useful for treating a variety of infections.
Collapse
|
24
|
In Situ Imaging and Structure Determination of Bacterial Toxin Delivery Systems Using Electron Cryotomography. Methods Mol Biol 2019; 1921:249-265. [PMID: 30694497 DOI: 10.1007/978-1-4939-9048-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Determining the three-dimensional structure of biomacromolecules at high resolution in their native cellular environment is a major challenge for structural biology. Toward this end, electron cryotomography (ECT) allows large bio-macromolecular assemblies to be imaged directly in their hydrated physiological milieu to ~4 nm resolution. Combining ECT with other techniques like fluorescent imaging, immunogold labeling, and genetic manipulation has allowed the in situ investigation of complex biological processes at macromolecular resolution. Furthermore, the advent of cryogenic focused ion beam (FIB) milling has extended the domain of ECT to include regions even deep within thick eukaryotic cells. Anticipating two audiences (scientists who just want to understand the potential and general workflow involved and scientists who are learning how to do the work themselves), here we present both a broad overview of this kind of work and a step-by-step example protocol for ECT and subtomogram averaging using the Legionella pneumophila Dot/Icm type IV secretion system (T4SS) as a case study. While the general workflow is presented in step-by-step detail, we refer to online tutorials, user's manuals, and other training materials for the essential background understanding needed to perform each step.
Collapse
|
25
|
Belyy A, Santecchia I, Renault L, Bourigault B, Ladant D, Mechold U. The extreme C terminus of the Pseudomonas aeruginosa effector ExoY is crucial for binding to its eukaryotic activator, F-actin. J Biol Chem 2018; 293:19785-19796. [PMID: 30377256 DOI: 10.1074/jbc.ra118.003784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial nucleotidyl cyclase toxins are potent virulence factors that upon entry into eukaryotic cells are stimulated by endogenous cofactors to catalyze the production of large amounts of 3'5'-cyclic nucleoside monophosphates. The activity of the effector ExoY from Pseudomonas aeruginosa is stimulated by the filamentous form of actin (F-actin). Utilizing yeast phenotype analysis, site-directed mutagenesis, functional biochemical assays, and confocal microscopy, we demonstrate that the last nine amino acids of the C terminus of ExoY are crucial for the interaction with F-actin and, consequently, for ExoY's enzymatic activity in vitro and toxicity in a yeast model. We observed that isolated C-terminal sequences of P. aeruginosa ExoY that had been fused to a carrier protein bind to F-actin and that synthetic peptides corresponding to the extreme ExoY C terminus inhibit ExoY enzymatic activity in vitro and compete with the full-length enzyme for F-actin binding. Interestingly, we noted that various P. aeruginosa isolates of the PA14 family, including highly virulent strains, harbor ExoY variants with a mutation altering the C terminus of this effector. We found that these naturally occurring ExoY variants display drastically reduced enzymatic activity and toxicity. Our findings shed light on the molecular basis of the ExoY-F-actin interaction, revealing that the extreme C terminus of ExoY is critical for binding to F-actin in target cells and that some P. aeruginosa isolates carry C-terminally mutated, low-activity ExoY variants.
Collapse
Affiliation(s)
- Alexander Belyy
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie and
| | - Ignacio Santecchia
- Unité Biologie et Génétique de la Paroi Bactérienne, Département de Microbiologie, 75724 Paris cedex 15, France and
| | - Louis Renault
- the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Blandine Bourigault
- the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Daniel Ladant
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie and
| | - Undine Mechold
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie and
| |
Collapse
|
26
|
Feix JB, Kohn S, Tessmer MH, Anderson DM, Frank DW. Conformational Changes and Membrane Interaction of the Bacterial Phospholipase, ExoU: Characterization by Site-Directed Spin Labeling. Cell Biochem Biophys 2018; 77:79-87. [PMID: 30047043 DOI: 10.1007/s12013-018-0851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
Abstract
Numerous pathogenic bacteria produce proteins evolved to facilitate their survival and dissemination by modifying the host environment. These proteins, termed effectors, often play a significant role in determining the virulence of the infection. Consequently, bacterial effectors constitute an important class of targets for the development of novel antibiotics. ExoU is a potent phospholipase effector produced by the opportunistic pathogen Pseudomonas aeruginosa. Previous studies have established that the phospholipase activity of ExoU requires non-covalent interaction with ubiquitin, however the molecular details of the mechanism of activation and the manner in which ExoU associates with a target lipid bilayer are not understood. In this review we describe our recent studies using site-directed spin labeling (SDSL) and EPR spectroscopy to elucidate the conformational changes and membrane interactions that accompany activation of ExoU. We find that ubiquitin binding and membrane interaction act synergistically to produce structural transitions that occur upon ExoU activation, and that the C-terminal four-helix bundle of ExoU functions as a phospholipid-binding domain, facilitating the association of ExoU with the membrane surface.
Collapse
Affiliation(s)
- Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Samantha Kohn
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maxx H Tessmer
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David M Anderson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
27
|
Abstract
ExoU is a type III-secreted cytotoxin expressing A2 phospholipase activity when injected into eukaryotic target cells by the bacterium Pseudomonas aeruginosa The enzymatic activity of ExoU is undetectable in vitro unless ubiquitin, a required cofactor, is added to the reaction. The role of ubiquitin in facilitating ExoU enzymatic activity is poorly understood but of significance for designing inhibitors to prevent tissue injury during infections with strains of P. aeruginosa producing this toxin. Most ubiquitin-binding proteins, including ExoU, demonstrate a low (micromolar) affinity for monoubiquitin (monoUb). Additionally, ExoU is a large and dynamic protein, limiting the applicability of traditional structural techniques such as NMR and X-ray crystallography to define this protein-protein interaction. Recent advancements in computational methods, however, have allowed high-resolution protein modeling using sparse data. In this study, we combine double electron-electron resonance (DEER) spectroscopy and Rosetta modeling to identify potential binding interfaces of ExoU and monoUb. The lowest-energy scoring model was tested using biochemical, biophysical, and biological techniques. To verify the binding interface, Rosetta was used to design a panel of mutations to modulate binding, including one variant with enhanced binding affinity. Our analyses show the utility of computational modeling when combined with sensitive biological assays and biophysical approaches that are exquisitely suited for large dynamic proteins.
Collapse
|
28
|
Phosphatidylinositol 4,5-Bisphosphate-Dependent Oligomerization of the Pseudomonas aeruginosa Cytotoxin ExoU. Infect Immun 2017; 86:IAI.00402-17. [PMID: 28993456 DOI: 10.1128/iai.00402-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022] Open
Abstract
The Pseudomonas aeruginosa type III secretion system delivers effector proteins directly into target cells, allowing the bacterium to modulate host cell functions. ExoU is the most cytotoxic of the known effector proteins and has been associated with more severe infections in humans. ExoU is a patatin-like A2 phospholipase requiring the cellular host factors phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and ubiquitin for its activation in vitro We demonstrated that PI(4,5)P2 also induces the oligomerization of ExoU and that this PI(4,5)P2-mediated oligomerization does not require ubiquitin. Single amino acid substitutions in the C-terminal membrane localization domain of ExoU reduced both its activity and its ability to form higher-order complexes in transfected cells and in vitro Combining inactive truncated ExoU proteins partially restored phospholipase activity and cytotoxicity, indicating that ExoU oligomerization may have functional significance. Our results indicate that PI(4,5)P2 induces the oligomerization of ExoU, which may be a mechanism by which this coactivator enhances the phospholipase activity of ExoU.
Collapse
|
29
|
Abstract
The versatile and ubiquitous
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections in predisposed human subjects. Here we review recent progress in understanding
P. aeruginosa population biology and virulence, its cyclic di-GMP-mediated switches of lifestyle, and its interaction with the mammalian host as well as the role of the type III and type VI secretion systems in
P. aeruginosa infection.
Collapse
Affiliation(s)
- Jens Klockgether
- Molecular Pathology of Cystic Fibrosis Clinical Research Group, Clinic for Paediatric Pneumology, Allergology, and Neonatology, OE 6710, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Molecular Pathology of Cystic Fibrosis Clinical Research Group, Clinic for Paediatric Pneumology, Allergology, and Neonatology, OE 6710, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hannover, Germany
| |
Collapse
|
30
|
Fischer AW, Anderson DM, Tessmer MH, Frank DW, Feix JB, Meiler J. Structure and Dynamics of Type III Secretion Effector Protein ExoU As determined by SDSL-EPR Spectroscopy in Conjunction with De Novo Protein Folding. ACS OMEGA 2017; 2:2977-2984. [PMID: 28691114 PMCID: PMC5494639 DOI: 10.1021/acsomega.7b00349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 05/24/2023]
Abstract
ExoU is a 74 kDa cytotoxin that undergoes substantial conformational changes as part of its function, that is, it has multiple thermodynamically stable conformations that interchange depending on its environment. Such flexible proteins pose unique challenges to structural biology: (1) not only is it often difficult to determine structures by X-ray crystallography for all biologically relevant conformations because of the flat energy landscape (2) but also experimental conditions can easily perturb the biologically relevant conformation. The first challenge can be overcome by applying orthogonal structural biology techniques that are capable of observing alternative, biologically relevant conformations. The second challenge can be addressed by determining the structure in the same biological state with two independent techniques under different experimental conditions. If both techniques converge to the same structural model, the confidence that an unperturbed biologically relevant conformation is observed increases. To this end, we determine the structure of the C-terminal domain of the effector protein, ExoU, from data obtained by electron paramagnetic resonance spectroscopy in conjunction with site-directed spin labeling and in silico de novo structure determination. Our protocol encompasses a multimodule approach, consisting of low-resolution topology sampling, clustering, and high-resolution refinement. The resulting model was compared with an ExoU model in complex with its chaperone SpcU obtained previously by X-ray crystallography. The two models converged to a minimal RMSD100 of 3.2 Å, providing evidence that the unbound structure of ExoU matches the fold observed in complex with SpcU.
Collapse
Affiliation(s)
- Axel W. Fischer
- Department
of Chemistry and Center for Structural Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - David M. Anderson
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Maxx H. Tessmer
- Department of Biophysics and Department of
Microbiology and Immunology, Medical College
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Dara W. Frank
- Department of Biophysics and Department of
Microbiology and Immunology, Medical College
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Jimmy B. Feix
- Department of Biophysics and Department of
Microbiology and Immunology, Medical College
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Jens Meiler
- Department
of Chemistry and Center for Structural Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| |
Collapse
|
31
|
Ekanayaka SA, McClellan SA, Barrett RP, Kharotia S, Hazlett LD. Glycyrrhizin Reduces HMGB1 and Bacterial Load in Pseudomonas aeruginosa Keratitis. Invest Ophthalmol Vis Sci 2017; 57:5799-5809. [PMID: 27792814 PMCID: PMC5089214 DOI: 10.1167/iovs.16-20103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose High mobility group box 1 (HMGB1) contributes to poor disease outcome in Pseudomonas aeruginosa keratitis. This study tests the prophylactic effect of treatment with HMGB1 inhibitors, glycyrrhizin (GLY) and its derivative, carbenoxolone (CBX), for Pseudomonas keratitis. Methods We treated C57BL/6 (B6) mice subconjunctivally with GLY or CBX, infected with a noncytotoxic clinical isolate (KEI 1025) or a cytotoxic strain (ATCC 19660) of P. aeruginosa, and injected intraperitoneally with either agent. Clinical score, photography with a slit lamp, real-time RT-PCR, ELISA, myeloperoxidase (MPO) assay, bacterial plate count, histopathology, and absorbance assays were used to assess treatment efficacy and bacteriostatic activity. Results After KEI 1025 infection, GLY treatment reduced HMGB1 (mRNA and protein levels) and improved disease outcome with significant reduction in mRNA levels of IL-1β, TLR4, CXCL2, and IL-12; protein expression (IL-1β, CXCL2); neutrophil infiltrate; and bacterial load. Treatment with GLY enhanced antimicrobial proteins, including CRAMP and mBD2, but not mBD3. Glycyrrhizin also reduced clinical scores and improved disease outcome in corneas infected with strain 19660. However, neither HMGB1 mRNA or protein levels were reduced, but rather, CXCL2 expression (mRNA and protein), neutrophil infiltrate, and bacterial load were reduced statistically. Treatment with GLY initiated 6 hours after infection reduced plate count; GLY also was bacteriostatic for KEI 1025 and ATCC 19660. Conclusions Glycyrrhizin reduces HMGB1 and is protective against P. aeruginosa-induced keratitis with a clinical isolate that is noncytotoxic. It was similar, but less effective when used after infection with a cytotoxic strain, which did not reduce HMGB1.
Collapse
Affiliation(s)
- Sandamali A Ekanayaka
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Sharon A McClellan
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ronald P Barrett
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Shikhil Kharotia
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Linda D Hazlett
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
32
|
Tessmer MH, Anderson DM, Buchaklian A, Frank DW, Feix JB. Cooperative Substrate-Cofactor Interactions and Membrane Localization of the Bacterial Phospholipase A 2 (PLA 2) Enzyme, ExoU. J Biol Chem 2017; 292:3411-3419. [PMID: 28069812 DOI: 10.1074/jbc.m116.760074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/05/2017] [Indexed: 11/06/2022] Open
Abstract
The ExoU type III secretion enzyme is a potent phospholipase A2 secreted by the Gram-negative opportunistic pathogen, Pseudomonas aeruginosa Activation of phospholipase activity is induced by protein-protein interactions with ubiquitin in the cytosol of a targeted eukaryotic cell, leading to destruction of host cell membranes. Previous work in our laboratory suggested that conformational changes within a C-terminal domain of the toxin might be involved in the activation mechanism. In this study, we use site-directed spin-labeling electron paramagnetic resonance spectroscopy to investigate conformational changes in a C-terminal four-helical bundle region of ExoU as it interacts with lipid substrates and ubiquitin, and to examine the localization of this domain with respect to the lipid bilayer. In the absence of ubiquitin or substrate liposomes, the overall structure of the C-terminal domain is in good agreement with crystallographic models derived from ExoU in complex with its chaperone, SpcU. Significant conformational changes are observed throughout the domain in the presence of ubiquitin and liposomes combined that are not observed with either liposomes or ubiquitin alone. In the presence of ubiquitin, two interhelical loops of the C-terminal four-helix bundle appear to penetrate the membrane bilayer, stabilizing ExoU-membrane association. Thus, ubiquitin and the substrate lipid bilayer act synergistically to induce a conformational rearrangement in the C-terminal domain of ExoU.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Microbiology and Molecular Genetics; Center for Infectious Disease Research
| | - David M Anderson
- Department of Microbiology and Molecular Genetics; Center for Infectious Disease Research
| | | | - Dara W Frank
- Department of Microbiology and Molecular Genetics; Center for Infectious Disease Research
| | - Jimmy B Feix
- Center for Infectious Disease Research; Department of Biophysics; National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
33
|
Popa CM, Tabuchi M, Valls M. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells. Front Cell Infect Microbiol 2016; 6:73. [PMID: 27489796 PMCID: PMC4951486 DOI: 10.3389/fcimb.2016.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 12/16/2022] Open
Abstract
Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding.
Collapse
Affiliation(s)
- Crina M Popa
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University Kagawa, Japan
| | - Marc Valls
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
34
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
35
|
Structural Basis of Lipid Targeting and Destruction by the Type V Secretion System of Pseudomonas aeruginosa. J Mol Biol 2016; 428:1790-803. [DOI: 10.1016/j.jmb.2016.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/05/2016] [Accepted: 03/14/2016] [Indexed: 11/15/2022]
|
36
|
Domingues L, Ismail A, Charro N, Rodríguez-Escudero I, Holden DW, Molina M, Cid VJ, Mota LJ. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells. Cell Microbiol 2016; 18:949-69. [PMID: 26676327 DOI: 10.1111/cmi.12558] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/23/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells.
Collapse
Affiliation(s)
- Lia Domingues
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Ahmad Ismail
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Nuno Charro
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), Caparica, Portugal
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Luís Jaime Mota
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| |
Collapse
|
37
|
Monlezun L, Liebl D, Fenel D, Grandjean T, Berry A, Schoehn G, Dessein R, Faudry E, Attree I. PscI is a type III secretion needle anchoring protein within vitropolymerization capacities. Mol Microbiol 2015; 96:419-36. [DOI: 10.1111/mmi.12947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Laura Monlezun
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - David Liebl
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Daphna Fenel
- Université Grenoble Alpes; Institut de Biologie Structurale (IBS); 71 avenue des Martyrs 38044 Grenoble France
- CNRS; IBS; F-38044 Grenoble France
- CEA; IBS; F-38044 Grenoble France
| | - Teddy Grandjean
- Groupe de Recherche Translationnelle de la Relation Hôte-Pathogène; Faculté de Médecine de l'Université de Lille; 59000 Lille France
| | - Alice Berry
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Guy Schoehn
- Université Grenoble Alpes; Institut de Biologie Structurale (IBS); 71 avenue des Martyrs 38044 Grenoble France
- CNRS; IBS; F-38044 Grenoble France
- CEA; IBS; F-38044 Grenoble France
- Unit for Virus Host Cell Interactions UMI 3265 (UJF-EMBL-CNRS); 38027 Grenoble France
| | - Rodrigue Dessein
- Groupe de Recherche Translationnelle de la Relation Hôte-Pathogène; Faculté de Médecine de l'Université de Lille; 59000 Lille France
| | - Eric Faudry
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Ina Attree
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| |
Collapse
|
38
|
Pharmacological activation of Rap1 antagonizes the endothelial barrier disruption induced by exotoxins ExoS and ExoT of Pseudomonas aeruginosa. Infect Immun 2015; 83:1820-9. [PMID: 25690098 DOI: 10.1128/iai.00010-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 11/20/2022] Open
Abstract
Most clinical strains of Pseudomonas aeruginosa, a leading agent of nosocomial infections, are multiresistant to antibiotherapy. Because of the paucity of new available antibiotics, the investigation of strategies aimed at limiting the action of its major virulence factors has gained much interest. The type 3 secretion system of P. aeruginosa and its effectors are known to be major determinants of toxicity and are required for bacterial dissemination in the host. Bacterial transmigration across the vascular wall is considered to be an important step in the infectious process. Using human endothelial primary cells, we demonstrate that forskolin (FSK), a drug inducing cyclic AMP (cAMP) elevation in eukaryotic cells, strikingly reduced the cell retraction provoked by two type 3 toxins, ExoS and ExoT, found in the majority of clinical strains. Conversely, cytotoxicity of a strain carrying the type 3 effector ExoU was unaffected by FSK. In addition, FSK altered the capacity of two ExoS/ExoT strains to transmigrate across cell monolayers. In agreement with these findings, other drugs and a cytokine inducing the increase of cAMP intracellular levels have also protected cells from retraction. cAMP is an activator of both protein kinase A and EPAC, a GTPase exchange factor of Rap1. Using activators or inhibitors of either pathway, we show that the beneficial effect of FSK is exerted by the activation of the EPAC/Rap1 axis, suggesting that its protective effect is mediated by reinforcing cell-cell and cell-substrate adhesion.
Collapse
|
39
|
Sawa T, Shimizu M, Moriyama K, Wiener-Kronish JP. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:668. [PMID: 25672496 PMCID: PMC4331484 DOI: 10.1186/s13054-014-0668-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional activator ExsA. Of the four toxins, ExoU is characterized as the major virulence factor responsible for alveolar epithelial injury in patients with P. aeruginosa pneumonia. Virulent strains of P. aeruginosa possess the exoU gene, whereas non-virulent strains lack this particular gene. The mechanism of virulence for the exoU+ genotype relies on the presence of a pathogenic gene cluster (PAPI-2) encoding exoU and its chaperone, spcU. The ExoU toxin has a patatin-like phospholipase domain in its N-terminal, exhibits phospholipase A2 activity, and requires a eukaryotic cell factor for activation. The C-terminal of ExoU has a ubiquitinylation mechanism of activation. This probably induces a structural change in enzymatic active sites required for phospholipase A2 activity. In P. aeruginosa clinical isolates, the exoU+ genotype correlates with a fluoroquinolone resistance phenotype. Additionally, poor clinical outcomes have been observed in patients with pneumonia caused by exoU+-fluoroquinolone-resistant isolates. Therefore, the potential exists to improve clinical outcomes in patients with P. aeruginosa pneumonia by identifying virulent and antimicrobial drug-resistant strains through exoU genotyping or ExoU protein phenotyping or both.
Collapse
|
40
|
Tyson GH, Halavaty AS, Kim H, Geissler B, Agard M, Satchell KJ, Cho W, Anderson WF, Hauser AR. A novel phosphatidylinositol 4,5-bisphosphate binding domain mediates plasma membrane localization of ExoU and other patatin-like phospholipases. J Biol Chem 2014; 290:2919-37. [PMID: 25505182 DOI: 10.1074/jbc.m114.611251] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial toxins require localization to specific intracellular compartments following injection into host cells. In this study, we examined the membrane targeting of a broad family of bacterial proteins, the patatin-like phospholipases. The best characterized member of this family is ExoU, an effector of the Pseudomonas aeruginosa type III secretion system. Upon injection into host cells, ExoU localizes to the plasma membrane, where it uses its phospholipase A2 activity to lyse infected cells. The targeting mechanism of ExoU is poorly characterized, but it was recently found to bind to the phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a marker for the plasma membrane of eukaryotic cells. We confirmed that the membrane localization domain (MLD) of ExoU had a direct affinity for PI(4,5)P2, and we determined that this binding was required for ExoU localization. Previously uncharacterized ExoU homologs from Pseudomonas fluorescens and Photorhabdus asymbiotica also localized to the plasma membrane and required PI(4,5)P2 for this localization. A conserved arginine within the MLD was critical for interaction of each protein with PI(4,5)P2 and for localization. Furthermore, we determined the crystal structure of the full-length P. fluorescens ExoU and found that it was similar to that of P. aeruginosa ExoU. Each MLD contains a four-helical bundle, with the conserved arginine exposed at its cap to allow for interaction with the negatively charged PI(4,5)P2. Overall, these findings provide a structural explanation for the targeting of patatin-like phospholipases to the plasma membrane and define the MLD of ExoU as a member of a new class of PI(4,5)P2 binding domains.
Collapse
Affiliation(s)
| | - Andrei S Halavaty
- Biochemistry and Center for Structural Genomics of Infectious Diseases, Northwestern University, Chicago, Illinois 60611 and
| | - Hyunjin Kim
- the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | | | | | | | - Wonhwa Cho
- the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Wayne F Anderson
- Biochemistry and Center for Structural Genomics of Infectious Diseases, Northwestern University, Chicago, Illinois 60611 and
| | - Alan R Hauser
- From the Departments of Microbiology-Immunology, Medicine, and
| |
Collapse
|
41
|
Ubiquitin activates patatin-like phospholipases from multiple bacterial species. J Bacteriol 2014; 197:529-41. [PMID: 25404699 DOI: 10.1128/jb.02402-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phospholipase A2 enzymes are ubiquitously distributed throughout the prokaryotic and eukaryotic kingdoms and are utilized in a wide array of cellular processes and physiological and immunological responses. Several patatin-like phospholipase homologs of ExoU from Pseudomonas aeruginosa were selected on the premise that ubiquitin activation of this class of bacterial enzymes was a conserved process. We found that ubiquitin activated all phospholipases tested in both in vitro and in vivo assays via a conserved serine-aspartate catalytic dyad. Ubiquitin chains versus monomeric ubiquitin were superior in inducing catalysis, and ubiquitin-like proteins failed to activate phospholipase activity. Toxicity studies in a prokaryotic dual-expression system grouped the enzymes into high- and low-toxicity classes. Toxicity measured in eukaryotic cells also suggested a two-tiered classification but was not predictive of the severity of cellular damage, suggesting that each enzyme may correspond to unique properties perhaps based on its specific biological function. Additional studies on lipid binding preference suggest that some enzymes in this family may be differentially sensitive to phosphatidyl-4,5-bisphosphate in terms of catalytic activation enhancement and binding affinity. Further analysis of the function and amino acid sequences of this enzyme family may lead to a useful approach to formulating a unifying model of how these phospholipases behave after delivery into the cytoplasmic compartment.
Collapse
|
42
|
A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia. Cell Host Microbe 2014; 15:164-76. [PMID: 24528863 DOI: 10.1016/j.chom.2014.01.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/05/2013] [Accepted: 01/02/2014] [Indexed: 11/21/2022]
Abstract
Virulence of Pseudomonas aeruginosa is typically attributed to its type III secretion system (T3SS). A taxonomic outlier, the P. aeruginosa PA7 strain, lacks a T3SS locus, and no virulence phenotype is attributed to PA7. We characterized a PA7-related, T3SS-negative P. aeruginosa strain, CLJ1, isolated from a patient with fatal hemorrhagic pneumonia. CLJ1 is highly virulent in mice, leading to lung hemorrhage and septicemia. CLJ1-infected primary endothelial cells display characteristics of membrane damage and permeabilization. Proteomic analysis of CLJ1 culture supernatants identified a hemolysin/hemagglutinin family pore-forming toxin, Exolysin (ExlA), that is exported via ExlB, representing a putative two-partner secretion system. A recombinant P. aeruginosa PAO1ΔpscD::exlBA strain, deficient for T3SS but engineered to express ExlA, gained lytic capacity on endothelial cells and full virulence in mice, demonstrating that ExlA is necessary and sufficient for pathogenicity. This highlights clinically relevant T3SS-independent hypervirulence, isolates, and points to a broader P. aeruginosa pathogenic repertoire.
Collapse
|
43
|
Lucas M, Gaspar AH, Pallara C, Rojas AL, Fernández-Recio J, Machner MP, Hierro A. Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5. Proc Natl Acad Sci U S A 2014; 111:E3514-23. [PMID: 25114243 PMCID: PMC4151760 DOI: 10.1073/pnas.1405391111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A challenge for microbial pathogens is to assure that their translocated effector proteins target only the correct host cell compartment during infection. The Legionella pneumophila effector vacuolar protein sorting inhibitor protein D (VipD) localizes to early endosomal membranes and alters their lipid and protein composition, thereby protecting the pathogen from endosomal fusion. This process requires the phospholipase A1 (PLA1) activity of VipD that is triggered specifically on VipD binding to the host cell GTPase Rab5, a key regulator of endosomes. Here, we present the crystal structure of VipD in complex with constitutively active Rab5 and reveal the molecular mechanism underlying PLA1 activation. An active site-obstructing loop that originates from the C-terminal domain of VipD is repositioned on Rab5 binding, thereby exposing the catalytic pocket within the N-terminal PLA1 domain. Substitution of amino acid residues located within the VipD-Rab5 interface prevented Rab5 binding and PLA1 activation and caused a failure of VipD mutant proteins to target to Rab5-enriched endosomal structures within cells. Experimental and computational analyses confirmed an extended VipD-binding interface on Rab5, explaining why this L. pneumophila effector can compete with cellular ligands for Rab5 binding. Together, our data explain how the catalytic activity of a microbial effector can be precisely linked to its subcellular localization.
Collapse
Affiliation(s)
- María Lucas
- Structural Biology Unit, Center for Cooperative Research in Biosciences, 48160 Derio, Spain
| | - Andrew H Gaspar
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Chiara Pallara
- Joint Barcelona Supercomputing Center-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain; and
| | - Adriana Lucely Rojas
- Structural Biology Unit, Center for Cooperative Research in Biosciences, 48160 Derio, Spain
| | - Juan Fernández-Recio
- Joint Barcelona Supercomputing Center-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain; and
| | - Matthias P Machner
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892;
| | - Aitor Hierro
- Structural Biology Unit, Center for Cooperative Research in Biosciences, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
44
|
Sato H, Frank DW. Intoxication of host cells by the T3SS phospholipase ExoU: PI(4,5)P2-associated, cytoskeletal collapse and late phase membrane blebbing. PLoS One 2014; 9:e103127. [PMID: 25061861 PMCID: PMC4111512 DOI: 10.1371/journal.pone.0103127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is associated with hospital-acquired infections, ventilator-associated pneumonia, and morbidity of immunocompromised individuals. A subpopulation of P. aeruginosa encodes a protein, ExoU, which exhibits acute cytotoxicity. Toxicity is directly related to the phospholipase A2 activity of the protein after injection into the host cytoplasm via a type III secretion system. ExoU enzymatic activity requires eukaryotic cofactors, ubiquitin or ubiquitin-modified proteins. When administered extracellularly, ExoU is unable to intoxicate epithelial cells in culture, even in the presence of the cofactor. Injection or transfection of ExoU is necessary to observe the acute cytotoxic response. Biochemical approaches indicate that ExoU possesses high affinity to a multifunctional phosphoinositide, phosphatidylinositol 4,5-bisphosphate or PI(4,5)P2 and that it is capable of utilizing this phospholipid as a substrate. In eukaryotic cells, PI(4,5)P2 is mainly located in the cytoplasmic side of the plasma membrane and anchors adaptor proteins that are involved in cytoskeletal structures, focal adhesions, and plasma membranes. Time-lapse fluorescent microscopy analyses of infected live cells demonstrate that ExoU intoxication correlates with intracellular damage in the early phases of infection, such as disruption of focal adhesions, cytoskeletal collapse, actin depolymerization, and cell rounding. At later time points, a membrane blebbing phenotype was prominent prior to the loss of the plasma membrane integrity and barrier function. Membrane blebbing appears to accelerate membrane rupture and the release of intracellular markers. Our data suggest that in eukaryotic host cells, intracellular ExoU targets and hydrolyzes PI(4,5)P2 on the plasma membrane, causing a subsequent disruption of cellular structures and membrane integrity.
Collapse
Affiliation(s)
- Hiromi Sato
- Center for Infectious Disease Research, Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Dara W. Frank
- Center for Infectious Disease Research, Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
45
|
Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides. Nat Commun 2014; 4:2973. [PMID: 24346350 DOI: 10.1038/ncomms3973] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/18/2013] [Indexed: 12/30/2022] Open
Abstract
Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells.
Collapse
|
46
|
Lavenir R, Petit SMC, Alliot N, Ribun S, Loiseau L, Marjolet L, Briolay J, Nazaret S, Cournoyer B. Structure and fate of a Pseudomonas aeruginosa population originating from a combined sewer and colonizing a wastewater treatment lagoon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5402-5418. [PMID: 24407782 DOI: 10.1007/s11356-013-2454-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
The efficacy of a wastewater treatment lagoon (WWTL) at preventing the spread of Pseudomonas aeruginosa into natural aquatic habitats was investigated. A WWTL and its connected combined sewer and brook were exhaustively sampled. Physico-chemical analyses showed a stratification of the first pond according to pH, temperature and oxygen content. The P. aeruginosa counts partially matched this stratification with higher values among the bottom anaerobic waters of the first half of this pond. Genotyping of 494 WWTL P. aeruginosa strains was performed and led to the definition of 85 lineages. Dominant lineages were observed, with some being found all over the WWTL including the connected brook. IS5 was used as an indicator of genomic changes, and 1 to 12 elements were detected among 16 % of the strains. IS-driven lasR (genetic regulator) disruptions were detected among nine strains that were not part of the dominant lineages. These insertional mutants did not show significant elastase activities but showed better growth than the PAO1 reference strain in WWTL waters. Differences in growth patterns were related to a better survival of these mutants at an alkaline pH and a better ability at using some C-sources such as alanine. The opportunistic colonization of a WWTL by P. aeruginosa can involve several metabolic strategies which appeared lineage specific. Some clones appeared more successful than others at disseminating from a combined sewer toward the overflow of a WWTL.
Collapse
|
47
|
Burkinshaw BJ, Strynadka NCJ. Assembly and structure of the T3SS. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1649-63. [PMID: 24512838 DOI: 10.1016/j.bbamcr.2014.01.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
The Type III Secretion System (T3SS) is a multi-mega Dalton apparatus assembled from more than twenty components and is found in many species of animal and plant bacterial pathogens. The T3SS creates a contiguous channel through the bacterial and host membranes, allowing injection of specialized bacterial effector proteins directly to the host cell. In this review, we discuss our current understanding of T3SS assembly and structure, as well as highlight structurally characterized Salmonella effectors. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Brianne J Burkinshaw
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
48
|
Dey S, Datta S. Interfacial residues of SpcS chaperone affects binding of effector toxin ExoT in Pseudomonas aeruginosa: novel insights from structural and computational studies. FEBS J 2014; 281:1267-80. [PMID: 24387107 DOI: 10.1111/febs.12704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/06/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
Abstract
ExoT belongs to the family of type 3 secretion system (T3SS) effector toxins in Pseudomonas aeruginosa, known to be one of the major virulence determinant toxins that cause chronic and acute infections in immuno-compromised individuals, burn victims and cystic fibrosis patients. Here, we report the X-ray crystal structure of the amino terminal fragment of effector toxin ExoT, in complex with full-length homodimeric chaperone SpcS at 2.1 Å resolution. The full-length dimeric chaperone SpcS has the conserved α-β-β-β-α-β-β-α fold of class I chaperones, the characteristic hydrophobic patches for binding effector proteins and a conserved polar cavity at the dimeric interface. The stable crystallized amino terminal fragment of ExoT consists of a chaperone binding domain and a membrane localization domain that wraps around the dimeric chaperone. Site-directed mutagenesis experiments and a molecular dynamics study complement each other in revealing Asn65, Phe67 and Trp88 as critical dimeric interfacial residues that can strongly influence the effector-chaperone interactions.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
49
|
Guttman C, Davidov G, Yahalom A, Shaked H, Kolusheva S, Bitton R, Barber-Zucker S, Chill JH, Zarivach R. BtcA, A class IA type III chaperone, interacts with the BteA N-terminal domain through a globular/non-globular mechanism. PLoS One 2013; 8:e81557. [PMID: 24312558 PMCID: PMC3846842 DOI: 10.1371/journal.pone.0081557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/23/2013] [Indexed: 12/03/2022] Open
Abstract
Bordetella pertussis, the etiological agent of "whooping cough" disease, utilizes the type III secretion system (T3SS) to deliver a 69 kDa cytotoxic effector protein, BteA, directly into the host cells. As with other T3SS effectors, prior to its secretion BteA binds BtcA, a 13.9 kDa protein predicted to act as a T3SS class IA chaperone. While this interaction had been characterized for such effector-chaperone pairs in other pathogens, it has yet to be fully investigated in Bordetella. Here we provide the first biochemical proof that BtcA is indeed a class IA chaperone, responsible for the binding of BteA's N-terminal domain. We bring forth extensive evidence that BtcA binds its substrate effector through a dual-interface binding mechanism comprising of non-globular and bi-globular interactions at a moderate micromolar level binding affinity. We demonstrate that the non-globular interactions involve the first 31 N-terminal residues of BteA287 and their removal leads to destabilization of the effector-chaperone complex and lower binding affinities to BtcA. These findings represent an important first step towards a molecular understanding of BteA secretion and cell entry.
Collapse
Affiliation(s)
- Chen Guttman
- Departments of Life Sciences and the National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Geula Davidov
- Departments of Life Sciences and the National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Adi Yahalom
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Hadassa Shaked
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ronit Bitton
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Chemical Engineering, Ben Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Shiran Barber-Zucker
- Departments of Life Sciences and the National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Jordan H. Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Raz Zarivach
- Departments of Life Sciences and the National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
50
|
Anderson DM, Feix JB, Monroe AL, Peterson FC, Volkman BF, Haas AL, Frank DW. Identification of the major ubiquitin-binding domain of the Pseudomonas aeruginosa ExoU A2 phospholipase. J Biol Chem 2013; 288:26741-52. [PMID: 23908356 DOI: 10.1074/jbc.m113.478529] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Numerous Gram-negative bacterial pathogens use type III secretion systems to deliver effector molecules into the cytoplasm of a host cell. Many of these effectors have evolved to manipulate the host ubiquitin system to alter host cell physiology or the location, stability, or function of the effector itself. ExoU is a potent A2 phospholipase used by Pseudomonas aeruginosa to destroy membranes of infected cells. The enzyme is held in an inactive state inside of the bacterium due to the absence of a required eukaryotic activator, which was recently identified as ubiquitin. This study sought to identify the region of ExoU required to mediate this interaction and determine the properties of ubiquitin important for binding, ExoU activation, or both. Biochemical and biophysical approaches were used to map the ubiquitin-binding domain to a C-terminal four-helix bundle of ExoU. The hydrophobic patch of ubiquitin is required for full binding affinity and activation. Binding and activation were uncoupled by introducing an L8R substitution in ubiquitin. Purified L8R demonstrated a parental binding phenotype to ExoU but did not activate the phospholipase in vitro. Utilizing these new biochemical data and intermolecular distance measurements by double electron-electron resonance, we propose a model for an ExoU-monoubiquitin complex.
Collapse
Affiliation(s)
- David M Anderson
- From the Department of Microbiology and Molecular Genetics and the Center for Infectious Disease Research and
| | | | | | | | | | | | | |
Collapse
|