1
|
Chen T, Zhou X, Feng R, Shi S, Chen X, Wei B, Hu Z, Peng T. Novel function of single-target regulator NorR involved in swarming motility and biofilm formation revealed in Vibrio alginolyticus. BMC Biol 2024; 22:253. [PMID: 39506750 PMCID: PMC11542441 DOI: 10.1186/s12915-024-02057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
NorR, as a single-target regulator, has been demonstrated to be involved in NO detoxification in bacteria under anaerobic conditions. Here, the norR gene was identified and deleted in the genome of Vibrio alginolyticus. The results showed that deletion of norR in Vibrio alginolyticus led to lower swarming motility and more biofilm formation on aerobic condition. Moreover, we proved that NorR from E. coli had a similar function in controlling motility. NorR overexpression led to increased resistance to oxidative stress and tetracycline. We also observed a reduced ability of the NorR-overexpressing strain to adapt to iron limitation condition. Transcriptome analysis showed that the genes responsible for bacterial motility and biofilm formation were affected by NorR. The expressions of several sigma factors (RpoS, RpoN, and RpoH) and response regulators (LuxR and MarR) were also controlled by NorR. Furthermore, Chip-qPCR showed that there is a direct binding between NorR and the promoter of rpoS. Based on these results, NorR appears to be a central regulator involved in biofilm formation and swarming motility in Vibrio alginolyticus.
Collapse
Affiliation(s)
- Tongxian Chen
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
- Dongguan Nancheng Business District North School, Dongguan, 523000, China
| | - Xiaoling Zhou
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Ruonan Feng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Shuhao Shi
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiyu Chen
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Bingqi Wei
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Tao Peng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China.
- Dongguan Nancheng Business District North School, Dongguan, 523000, China.
| |
Collapse
|
2
|
Banfi D, Bianchi T, Mastore M, Brivio MF. Optimization of Experimental Infection of the Animal Model Galleria mellonella Linnaeus 1758 (Lepidoptera: Pyralidae) with the Gram-Positive Bacterium Micrococcus luteus. INSECTS 2024; 15:618. [PMID: 39194822 DOI: 10.3390/insects15080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
The aim of this work was to develop an experimental protocol for the infection of Galleria mellonella with Gram-positive bacteria. Some physiological characteristics of these insects are comparable to those of vertebrates, therefore allowing the replacement of mammals in the preclinical phases of drug development. G. mellonella Linnaeus 1758 (Lepidoptera: Pyralidae) is accepted as an alternative model for the study of infectious diseases. Since data on infection procedures with different bacterial strains are scarce and sometimes conflicting, also due to different and non-uniform protocols, we developed an experimental protocol that would allow for controlled and repeatable infections, using the Gram-positive bacterium GRAS (Generally Regarded As Safe) Micrococcus luteus. After analyzing the morphology and defining the growth rate of M. luteus, doses of between 101 and 106 CFU/larvae were administered to late-stage larvae. The survival rate of the larvae was monitored up to 7 days and the LD50 determined. The bacterial clearance capacity of the larvae after injection with 103 and 105 CFU/larvae was assessed by hemolymph bacterial load analysis. The results made it possible to define the growth curve of M. luteus correlated with the CFU count; based on the LD50 (103.8 CFU/larvae) calculated on the survival of G. mellonella, infections were carried out to evaluate the immune efficiency of the larvae in bacterial clearance. This protocol, standardized on G. mellonella larvae, could provide a functional tool to study the course of bacterial infections.
Collapse
Affiliation(s)
- Davide Banfi
- Laboratory of Applied Entomology and Parasitology, Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Tommaso Bianchi
- Laboratory of Applied Entomology and Parasitology, Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Maristella Mastore
- Laboratory of Applied Entomology and Parasitology, Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Maurizio Francesco Brivio
- Laboratory of Applied Entomology and Parasitology, Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| |
Collapse
|
3
|
Zhu S, Cui Y, Zhang W, Ji Y, Li L, Luo S, Cui J, Li M. Inflammation Can Be a High-Risk Factor for Mucosal Nonunion of MRONJ by Regulating SIRT1 Signaling When Treated with an Oncologic Dose of Zoledronate. Drug Des Devel Ther 2024; 18:2793-2812. [PMID: 38979400 PMCID: PMC11229984 DOI: 10.2147/dddt.s456811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Zoledronate (ZA) stands as a highly effective antiresorptive agent known to trigger medication-related osteonecrosis of the jaw (MRONJ). Its clinical dosages primarily encompass those used for oncologic and osteoporosis treatments. While inflammation is recognized as a potential disruptor of mucosal healing processes associated with ZA, prior research has overlooked the influence of varying ZA dosages on tissue adaptability. Therefore, a deeper understanding of the specific mechanisms by which inflammation exacerbates ZA-induced MRONJ, particularly when inflammation acts as a risk factor, remains crucial. Methods Cell proliferation and migration of human oral keratinocytes (HOK) was analyzed after treatment with different doses of ZA and/or lipopolysaccharide (LPS) to assess their possible effect on mucosal healing of extraction wounds. Mouse periodontitis models were established using LPS, and histological changes in extraction wounds were observed after the administration of oncologic dose ZA. Hematoxylin and eosin (HE) staining and immunofluorescence were used to evaluate mucosal healing. Results In vitro, LPS did not exacerbate the effects of osteoporosis therapeutic dose of ZA on the proliferation and migration of HOK cells, while aggravated these with the oncologic dose of ZA treatment by inducing mitochondrial dysfunction and oxidative stress via regulating SIRT1 expression. Furthermore, SIRT1 overexpression can alleviate this process. In vivo, local injection of LPS increased the nonunion of mucous membranes in MRONJ and decreased the expression of SIRT1, PGC-1α, and MnSOD. Conclusion Inflammation aggravates oncologic dose of ZA-induced mitochondrial dysfunction and oxidative stress via a SIRT1-dependent pathway, enhancing the risk of impaired mucosal healing in MRONJ. Our study implies that inflammation becomes a critical risk factor for MRONJ development at higher ZA concentrations. Elucidating the mechanisms of inflammation as a risk factor for mucosal non-healing in MRONJ could inform the development of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Siqi Zhu
- School of Stomatology, Jinzhou Medical University, Jinzhou, People's Republic of China
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Yajun Cui
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Weidong Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Yu Ji
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Lingshuang Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Shenglei Luo
- Department of Oral and Maxillofacial Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jing Cui
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological Hospital, Jinan, People's Republic of China
- Central Laboratory, Jinan Key Laboratory of oral tissue regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, People's Republic of China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
4
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
5
|
Hallenbeck M, Chua M, Collins J. The role of the universal sugar transport system components PtsI (EI) and PtsH (HPr) in Enterococcus faecium. FEMS MICROBES 2024; 5:xtae018. [PMID: 38988831 PMCID: PMC11234649 DOI: 10.1093/femsmc/xtae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) pose a serious threat to public health because of their limited treatment options. Therefore, there is an increasing need to identify novel targets to develop new drugs. Here, we examined the roles of the universal PTS components, PtsI and PtsH, in Enterococcus faecium to determine their roles in carbon metabolism, biofilm formation, stress response, and the ability to compete in the gastrointestinal tract. Clean deletion of ptsHI resulted in a significant reduction in the ability to import and metabolize simple sugars, attenuated growth rate, reduced biofilm formation, and decreased competitive fitness both in vitro and in vivo. However, no significant difference in stress survival was observed when compared with the wild type. These results suggest that targeting universal or specific PTS may provide a novel treatment strategy by reducing the fitness of E. faecium.
Collapse
Affiliation(s)
- Michelle Hallenbeck
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, United States
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, United States
| | - Michelle Chua
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, United States
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, United States
| | - James Collins
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, United States
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, United States
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
6
|
Grunnvåg JS, Hegstad K, Lentz CS. Activity-based protein profiling of serine hydrolases and penicillin-binding proteins in Enterococcus faecium. FEMS MICROBES 2024; 5:xtae015. [PMID: 38813097 PMCID: PMC11134295 DOI: 10.1093/femsmc/xtae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is a gut commensal bacterium which is gaining increasing relevance as an opportunistic, nosocomial pathogen. Its high level of intrinsic and acquired antimicrobial resistance is causing a lack of treatment options, particularly for infections with vancomycin-resistant strains, and prioritizes the identification and functional validation of novel druggable targets. Here, we use activity-based protein profiling (ABPP), a chemoproteomics approach using functionalized covalent inhibitors, to detect active serine hydrolases across 11 E. faecium and Enterococcus lactis strains. Serine hydrolases are a big and diverse enzyme family, that includes known drug targets such as penicillin-binding proteins (PBPs), whereas other subfamilies are underexplored. Comparative gel-based ABPP using Bocillin-FL revealed strain- and growth condition-dependent variations in PBP activities. Profiling with the broadly serine hydrolase-reactive fluorescent probe fluorophosphonate-TMR showed a high similarity across E. faecium clade A1 strains, but higher variation across A2 and E. lactis strains. To identify these serine hydrolases, we used a biotinylated probe analog allowing for enrichment and identification via liquid chromatography-mass spectrometry. We identified 11 largely uncharacterized targets (α,β-hydrolases, SGNH-hydrolases, phospholipases, and amidases, peptidases) that are druggable and accessible in live vancomycin-resistant E. faecium E745 and may possess vital functions that are to be characterized in future studies.
Collapse
Affiliation(s)
- Jeanette S Grunnvåg
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, P.O. Box 56, 9038 Tromsø, Norway
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| |
Collapse
|
7
|
Pereira-Silva M, Hadad H, de Jesus LK, de Freitas Santana Oliveira ME, de Almeida JM, Nímia HH, Magro Filho O, Okamoto R, Macedo SB, Palmieri Junior CF, Souza FÁ. Ozone therapy effect in medication-related osteonecrosis of the jaw as prevention or treatment: microtomographic, confocal laser microscopy and histomorphometric analysis. Clin Oral Investig 2024; 28:151. [PMID: 38360985 DOI: 10.1007/s00784-024-05547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy of ozone therapy in the preoperative (prevention) and/or postoperative (treatment) of MRONJ. MATERIAL AND METHODS Forty male Wistar rats were caudally treated with zoledronic acid (ZOL) and to ozone therapy before extraction (prevention, POG), after extraction (treatment, TOG), or both (prevention and treatment, TPOG), and treated with saline (SAL). The animals received intramuscular fluorochrome (calcein and alizarin), and 28 days postoperatively, they were euthanized, and the tissues were subjected to microtomographic computed tomography (microCT), LASER confocal, and histomorphometric analyses. RESULTS Micro-CT showed a higher bone volume fraction average in all groups than that in the ZOL group (P < 0.001), the ZOL group showed high porosity (P = 0.03), and trabecular separation was greater in the TOG group than in the POG group (P < 0.05). The mineral apposition rate of the POG group was high (20.46 ± 6.31) (P < 0.001), followed by the TOG group (20.32 ± 7.4). The TOG group presented the highest mean newly formed bone area (68.322 ± 25.296) compared with the ZOL group (P < 0.05), followed by the SAL group (66.039 ± 28.379) and ZOL groups (60.856 ± 28.425). CONCLUSIONS Ozone therapy modulated alveolar bone repair in animals treated with ZOL, mainly after surgery trauma, leading to bone formation as healing tissue. CLINICAL RELEVANCE Osteonecrosis has been a challenge in dentistry, and owing to the lack of a consensus regarding therapy, studies presenting new therapies are important, and ozone has been one of the therapies explored empirically.
Collapse
Affiliation(s)
- Maísa Pereira-Silva
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), José Bonifácio Street, 1193, Vila Mendonça, Araçatuba, São Paulo, 16015050, Brazil.
| | - Henrique Hadad
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), José Bonifácio Street, 1193, Vila Mendonça, Araçatuba, São Paulo, 16015050, Brazil
| | - Laís Kawamata de Jesus
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), José Bonifácio Street, 1193, Vila Mendonça, Araçatuba, São Paulo, 16015050, Brazil
| | - Maria Eduarda de Freitas Santana Oliveira
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), José Bonifácio Street, 1193, Vila Mendonça, Araçatuba, São Paulo, 16015050, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), José Bonifácio Street, 1193, Vila Mendonça, Araçatuba, São Paulo, 16015050, Brazil
| | - Heloisa Helena Nímia
- Department of Dental Materials and Prothesis, Araçatuba Dental School, São Paulo State University (UNESP), José Bonifácio Street, Araçatuba, São Paulo, 16015050, Brazil
| | - Osvaldo Magro Filho
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), José Bonifácio Street, 1193, Vila Mendonça, Araçatuba, São Paulo, 16015050, Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University (UNESP), Marechal Rondon Highway, Araçatuba, São Paulo, 16066840, Brazil
| | - Sérgio Bruzadelli Macedo
- Department of Dentistry, University of Brasília (UnB), Asa Norte, Brasília, Distrito Federal, 70297-400, Brazil
| | - Celso Fernando Palmieri Junior
- Department of Oral & Maxillofacial Surgery, Louisiana State University Health Sciences Center (LSU), Kings Highway, Shreveport, LA, 71103, USA
| | - Francisley Ávila Souza
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University (UNESP), José Bonifácio Street, 1193, Vila Mendonça, Araçatuba, São Paulo, 16015050, Brazil.
| |
Collapse
|
8
|
Leigh RJ, McKenna C, McWade R, Lynch B, Walsh F. Comparative genomics and pangenomics of vancomycin-resistant and susceptible Enterococcus faecium from Irish hospitals. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction.
Enterococcus faecium
has emerged as an important nosocomial pathogen, which is increasingly difficult to treat due to the genetic acquisition of vancomycin resistance. Ireland has a recalcitrant vancomycin-resistant bloodstream infection rate compared to other developed countries.
Hypothesis/Gap statement. Vancomycin resistance rates persist amongst
E. faecium
isolates from Irish hospitals. The evolutionary genomics governing these trends have not been fully elucidated.
Methodology. A set of 28 vancomycin-resistant isolates was sequenced to construct a dataset alongside 61 other publicly available Irish genomes. This dataset was extensively analysed using in silico methodologies (comparative genomics, pangenomics, phylogenetics, genotypics and comparative functional analyses) to uncover distinct evolutionary, coevolutionary and clinically relevant population trends.
Results. These results suggest that a stable (in terms of genome size, GC% and number of genes), yet genetically diverse population (in terms of gene content) of
E. faecium
persists in Ireland with acquired resistance arising via plasmid acquisition (vanA) or, to a lesser extent, chromosomal recombination (vanB). Population analysis revealed five clusters with one cluster partitioned into four clades which transcend isolation dates. Pangenomic and recombination analyses revealed an open (whole genome and chromosomal specific) pangenome illustrating a rampant evolutionary pattern. Comparative resistomics and virulomics uncovered distinct chromosomal and mobilomal propensity for multidrug resistance, widespread chromosomal point-mutation-mediated resistance and chromosomally harboured arsenals of virulence factors. Interestingly, a potential difference in biofilm formation strategies was highlighted by coevolutionary analysis, suggesting differential biofilm genotypes between vanA and vanB isolates.
Conclusions. These results highlight the evolutionary history of Irish
E. faecium
isolates and may provide insight into underlying infection dynamics in a clinical setting. Due to the apparent ease of vancomycin resistance acquisition over time, susceptible
E. faecium
should be concurrently reduced in Irish hospitals to mitigate potential resistant infections.
Collapse
Affiliation(s)
- Robert J. Leigh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Chloe McKenna
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Robert McWade
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Breda Lynch
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Priyamvada P, Debroy R, Anbarasu A, Ramaiah S. A comprehensive review on genomics, systems biology and structural biology approaches for combating antimicrobial resistance in ESKAPE pathogens: computational tools and recent advancements. World J Microbiol Biotechnol 2022; 38:153. [PMID: 35788443 DOI: 10.1007/s11274-022-03343-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022]
Abstract
In recent decades, antimicrobial resistance has been augmented as a global concern to public health owing to the global spread of multidrug-resistant strains from different ESKAPE pathogens. This alarming trend and the lack of new antibiotics with novel modes of action in the pipeline necessitate the development of non-antibiotic ways to treat illnesses caused by these isolates. In molecular biology, computational approaches have become crucial tools, particularly in one of the most challenging areas of multidrug resistance. The rapid advancements in bioinformatics have led to a plethora of computational approaches involving genomics, systems biology, and structural biology currently gaining momentum among molecular biologists since they can be useful and provide valuable information on the complex mechanisms of AMR research in ESKAPE pathogens. These computational approaches would be helpful in elucidating the AMR mechanisms, identifying important hub genes/proteins, and their promising targets together with their interactions with important drug targets, which is a crucial step in drug discovery. Therefore, the present review aims to provide holistic information on currently employed bioinformatic tools and their application in the discovery of multifunctional novel therapeutic drugs to combat the current problem of AMR in ESKAPE pathogens. The review also summarizes the recent advancement in the AMR research in ESKAPE pathogens utilizing the in silico approaches.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Bio-Sciences, SBST, VIT, 632014, Vellore, India
| | - Reetika Debroy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Bio-Medical Sciences, SBST, VIT, 632014, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India.,Department of Biotechnology, SBST, VIT, 632014, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), 632014, Vellore, India. .,Department of Bio-Sciences, SBST, VIT, 632014, Vellore, India. .,School of Biosciences and Technology VIT, 632014, Vellore, Tamil Nadu, India.
| |
Collapse
|
10
|
Xu W, Fang Y, Hu Q, Zhu K. Emerging Risks in Food: Probiotic Enterococci Pose a Threat to Public Health through the Food Chain. Foods 2021; 10:foods10112846. [PMID: 34829127 PMCID: PMC8623795 DOI: 10.3390/foods10112846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Probiotics have been associated with clinical infections, toxicity, and antimicrobial resistance transfer, raising public concerns. Probiotic enterococci are emerging food risks as opportunistic pathogens, yet little attention has been paid to them. Herein, we collected 88 enterococcal isolates from probiotic products used for humans, companion animals, livestock, and aquaculture. Results showed that all 88 probiotic enterococcal isolates harbored diverse virulence genes, multiple antimicrobial resistance genes, and mobile genetic elements. Notably, 77 isolates were highly resistant to gentamicin. Representative enterococcal isolates exerted toxic activities in both in vitro and in vivo models. Collectively, our findings suggest that probiotic enterococci may be harmful to hosts and pose a potential threat to public health.
Collapse
Affiliation(s)
| | | | | | - Kui Zhu
- Correspondence: ; Tel.: +86-10-62733695
| |
Collapse
|
11
|
Alves JA, Previato-Mello M, Barroso KCM, Koide T, da Silva Neto JF. The MarR family regulator OsbR controls oxidative stress response, anaerobic nitrate respiration, and biofilm formation in Chromobacterium violaceum. BMC Microbiol 2021; 21:304. [PMID: 34736409 PMCID: PMC8567585 DOI: 10.1186/s12866-021-02369-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background Chromobacterium violaceum is an environmental opportunistic pathogen that causes rare but deadly infections in humans. The transcriptional regulators that C. violaceum uses to sense and respond to environmental cues remain largely unknown. Results Here, we described a novel transcriptional regulator in C. violaceum belonging to the MarR family that we named OsbR (oxidative stress response and biofilm formation regulator). Transcriptome profiling by DNA microarray using strains with deletion or overexpression of osbR showed that OsbR exerts a global regulatory role in C. violaceum, regulating genes involved in oxidative stress response, nitrate reduction, biofilm formation, and several metabolic pathways. EMSA assays showed that OsbR binds to the promoter regions of several OsbR-regulated genes, and the in vitro DNA binding activity was inhibited by oxidants. We demonstrated that the overexpression of osbR caused activation of ohrA even in the presence of the repressor OhrR, which resulted in improved growth under organic hydroperoxide treatment, as seem by growth curve assays. We showed that the proper regulation of the nar genes by OsbR ensures optimal growth of C. violaceum under anaerobic conditions by tuning the reduction of nitrate to nitrite. Finally, the osbR overexpressing strain showed a reduction in biofilm formation, and this phenotype correlated with the OsbR-mediated repression of two gene clusters encoding putative adhesins. Conclusions Together, our data indicated that OsbR is a MarR-type regulator that controls the expression of a large number of genes in C. violaceum, thereby contributing to oxidative stress defense (ohrA/ohrR), anaerobic respiration (narK1K2 and narGHJI), and biofilm formation (putative RTX adhesins). Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02369-x.
Collapse
Affiliation(s)
- Júlia A Alves
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maristela Previato-Mello
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Kelly C M Barroso
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
12
|
Li M, Wang K, Tang A, Tang A, Chen A, Huang Z. Investigation of the Genes Involved in the Outbreaks of Escherichia coli and Salmonella spp. in the United States. Antibiotics (Basel) 2021; 10:1274. [PMID: 34680854 PMCID: PMC8532668 DOI: 10.3390/antibiotics10101274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp. and Escherichiacoli (E. coli) are two of the deadliest foodborne pathogens in the US. Genes involved in antimicrobial resistance, virulence, and stress response, enable these pathogens to increase their pathogenicity. This study aims to examine the genes detected in both outbreak and non-outbreak Salmonella spp. and E. coli by analyzing the data from the National Centre for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser database. A multivariate statistical analysis was conducted on the genes detected in isolates of outbreak Salmonella spp., non-outbreak Salmonella spp., outbreak E. coli, and non-outbreak E. coli. The genes from the data were projected onto a two-dimensional space through principal component analysis. Hierarchical clustering was then used to quantify the relationship between the genes in the dataset. Most of the outlier genes identified in E. coli isolates are virulence genes, while outlier genes identified in Salmonella spp. are mainly involved in stress response. Gene epeA, which encodes a high-molecular-weight serine protease autotransporter of Enterobacteriaceae (SPATE) protein, along with subA and subB that encode cytotoxic activity, may contribute to the pathogenesis of outbreak E. coli. The iro operon and ars operon may play a role in the ecological success of the epidemic clones of Salmonella spp. Concurrent relationships between esp and ter operons in E. coli and pco and sil operons in Salmonella spp. are found. Stress-response genes (asr, golT, golS), virulence gene (sinH), and antimicrobial resistance genes (mdsA and mdsB) in Salmonella spp. also show a concurrent relationship. All these findings provide helpful information for experiment design to combat outbreaks of E. coli and Salmonella spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (M.L.); (K.W.); (A.T.); (A.T.); (A.C.)
| |
Collapse
|
13
|
Top J, Baan J, Bisschop A, Arredondo-Alonso S, van Schaik W, Willems RJL. Functional characterization of a gene cluster responsible for inositol catabolism associated with hospital-adapted isolates of Enterococcus faecium. MICROBIOLOGY-SGM 2021; 167. [PMID: 34491894 DOI: 10.1099/mic.0.001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterococcus faecium is a nosocomial, multidrug-resistant pathogen. Whole genome sequence studies revealed that hospital-associated E. faecium isolates are clustered in a separate clade A1. Here, we investigated the distribution, integration site and function of a putative iol gene cluster that encodes for myo-inositol (MI) catabolism. This iol gene cluster was found as part of an ~20 kbp genetic element (iol element), integrated in ICEEfm1 close to its integrase gene in E. faecium isolate E1679. Among 1644 E. faecium isolates, ICEEfm1 was found in 789/1227 (64.3 %) clade A1 and 3/417 (0.7 %) non-clade A1 isolates. The iol element was present at a similar integration site in 180/792 (22.7 %) ICEEfm1-containing isolates. Examination of the phylogenetic tree revealed genetically closely related isolates that differed in presence/absence of ICEEfm1 and/or iol element, suggesting either independent acquisition or loss of both elements. E. faecium iol gene cluster containing isolates E1679 and E1504 were able to grow in minimal medium with only myo-inositol as carbon source, while the iolD-deficient mutant in E1504 (E1504∆iolD) lost this ability and an iol gene cluster negative recipient strain gained this ability after acquisition of ICEEfm1 by conjugation from donor strain E1679. Gene expression profiling revealed that the iol gene cluster is only expressed in the absence of other carbon sources. In an intestinal colonization mouse model the colonization ability of E1504∆iolD mutant was not affected relative to the wild-type E1504 strain. In conclusion, we describe and functionally characterise a gene cluster involved in MI catabolism that is associated with the ICEEfm1 island in hospital-associated E. faecium isolates. We were unable to show that this gene cluster provides a competitive advantage during gut colonisation in a mouse model. Therefore, to what extent this gene cluster contributes to the spread and ecological specialisation of ICEEfm1-carrying hospital-associated isolates remains to be investigated.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jery Baan
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adinda Bisschop
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Wasselin V, Staerck C, Rincé I, Léger L, Budin-Verneuil A, Hartke A, Benachour A, Riboulet-Bisson E. Characterisation of the manganese superoxide dismutase of Enterococcus faecium. Res Microbiol 2021; 172:103876. [PMID: 34474124 DOI: 10.1016/j.resmic.2021.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The manganese superoxide dismutase (SodA) of E. faecium strain AUS0004 has been characterised. It is most closely related to Enterococcus hirae, Enterococcus durans, Enterococcus villorium, and Enterococcus mundtii with 100%, 91,55%, 90,85%, and 90,58% homology, respectively, but more distant from SodA of E. faecalis (81.68%). A sodA deletion mutant has been constructed. Compared to the parental strain, the ΔsodA mutant was affected in aerobic growth and more sensitive to hydrogen peroxide (H2O2), cumene hydroperoxide (CuOOH), and the superoxide anion (O2•-) generator menadione. The E. faecium strain AUS0004 is part of those bacteria accumulating H2O2 to high concentrations (around 5 mM) starting from late exponential growth phase. Accumulation of the peroxide was around 25% less in the mutant suggesting that this part of H2O2 is due to the dismutation of O2•- by SodA. The sodA gene of E. faecium AUS0004 was induced by oxygen, peroxides and menadione but the corresponding regulator remains hitherto unknown. Finally, we showed that SodA activity is important for virulence in the Galleria mellonella model.
Collapse
Affiliation(s)
- Valentin Wasselin
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Cindy Staerck
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Isabelle Rincé
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Loïc Léger
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Aurélie Budin-Verneuil
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Axel Hartke
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Abdellah Benachour
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Eliette Riboulet-Bisson
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| |
Collapse
|
15
|
Khademi SMH, Gabrielaite M, Paulsson M, Knulst M, Touriki E, Marvig RL, Påhlman LI. Genomic and Phenotypic Evolution of Achromobacter xylosoxidans during Chronic Airway Infections of Patients with Cystic Fibrosis. mSystems 2021; 6:e0052321. [PMID: 34184916 PMCID: PMC8269239 DOI: 10.1128/msystems.00523-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Bacterial pathogens evolve during chronic colonization of the human host by selection for pathoadaptive mutations. One of the emerging and understudied bacterial species causing chronic airway infections in patients with cystic fibrosis (CF) is Achromobacter xylosoxidans. It can establish chronic infections in patients with CF, but the genetic and phenotypic changes associated with adaptation during these infections are not completely understood. In this study, we analyzed the whole-genome sequences of 55 clinical A. xylosoxidans isolates longitudinally collected from the sputum of 6 patients with CF. Four genes encoding regulatory proteins and two intergenic regions showed convergent evolution, likely driven by positive selection for pathoadaptive mutations, across the different clones of A. xylosoxidans. Most of the evolved isolates had lower swimming motility and were resistant to multiple classes of antibiotics, while fewer of the evolved isolates had slower growth or higher biofilm production than the first isolates. Using a genome-wide association study method, we identified several putative genetic determinants of biofilm formation, motility and β-lactam resistance in this pathogen. With respect to antibiotic resistance, we discovered that a combination of mutations in pathoadaptive genes (phoQ and bigR) and two other genes encoding regulatory proteins (spoT and cpxA) were associated with increased resistance to meropenem and ceftazidime. Altogether, our results suggest that genetic changes within regulatory loci facilitate within-host adaptation of A. xylosoxidans and the emergence of adaptive phenotypes, such as antibiotic resistance or biofilm formation. IMPORTANCE A thorough understanding of bacterial pathogen adaptation is essential for the treatment of chronic bacterial infections. One unique challenge in the analysis and interpretation of genomics data is identifying the functional impact of mutations accumulated in the bacterial genome during colonization in the human host. Here, we investigated the genomic and phenotypic evolution of A. xylosoxidans in chronic airway infections of patients with CF and identified several mutations associated with the phenotypic evolution of this pathogen using genome-wide associations. Identification of phenotypes under positive selection and the associated mutations can enlighten the adaptive processes of this emerging pathogen in human infections and pave the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- S. M. Hossein Khademi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Magnus Paulsson
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
| | - Mattis Knulst
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eleni Touriki
- Clinical Microbiology, Labmedicin Skåne, Lund, Sweden
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
16
|
On SW, Cho SW, Byun SH, Yang BE. Various Therapeutic Methods for the Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ) and Their Limitations: A Narrative Review on New Molecular and Cellular Therapeutic Approaches. Antioxidants (Basel) 2021; 10:antiox10050680. [PMID: 33925361 PMCID: PMC8145192 DOI: 10.3390/antiox10050680] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is one of the most interesting diseases in the field of maxillofacial surgery. In addition to bisphosphonates, the use of antiresorptive and antiangiogenic agents is known to be the leading cause. However, the exact pathogenesis of MRONJ has not been established, and various hypotheses have been proposed, such as oxidative stress-related theory. As a result, a definitive treatment protocol for MRONJ has not been identified, while various therapeutic approaches are applied to manage patients with MRONJ. Although the surgical approach to treat osteomyelitis of the jaw has been proven to be most effective, there are limitations, such as recurrence and delayed healing. Many studies and clinical trials are being conducted to develop another effective therapeutic modality. The use of some materials, including platelet concentrates and bone morphogenetic proteins, showed a positive effect on MRONJ. Among them, teriparatide is currently the most promising material, and it has shown encouraging results when applied to patients with MRONJ. Furthermore, cell therapy using mesenchymal stem cells showed promising results, and it can be the new therapeutic approach for the treatment of MRONJ. This review presents various treatment methods for MRONJ and their limitations while investigating newly developed and researched molecular and cellular therapeutic approaches along with a literature review.
Collapse
Affiliation(s)
- Sung-Woon On
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong 18450, Korea;
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
| | - Seoung-Won Cho
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
| | - Soo-Hwan Byun
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
| | - Byoung-Eun Yang
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
- Correspondence: ; Tel.: +82-380-3870
| |
Collapse
|
17
|
The thiol oxidation-based sensing and regulation mechanism for the OasR-mediated organic peroxide and antibiotic resistance in C. glutamicum. Biochem J 2021; 477:3709-3727. [PMID: 32926092 DOI: 10.1042/bcj20200533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Corynebacterium glutamicum, an important industrial and model microorganism, inevitably encountered stress environment during fermentative process. Therefore, the ability of C. glutamicum to withstand stress and maintain the cellular redox balance was vital for cell survival and enhancing fermentation efficiency. To robustly survive, C. glutamicum has been equipped with many types of redox sensors. Although cysteine oxidation-based peroxide-sensing regulators have been well described in C. glutamicum, redox sensors involving in multiple environmental stress response remained elusive. Here, we reported an organic peroxide- and antibiotic-sensing MarR (multiple antibiotics resistance regulators)-type regulator, called OasR (organic peroxide- and antibiotic-sensing regulator). The OasR regulator used Cys95 oxidation to sense oxidative stress to form S-mycothiolated monomer or inter-molecular disulfide-containing dimer, resulting in its dissociation from the target DNA promoter. Transcriptomics uncovered the strong up-regulation of many multidrug efflux pump genes and organic peroxide stress-involving genes in oasR mutant, consistent with the phenomenon that oasR mutant showed a reduction in sensitivity to antibiotic and organic peroxide. Importantly, the addition of stress-associated ligands such as cumene hydroperoxide and streptomycin induced oasR and multidrug efflux pump protein NCgl1020 expression in vivo. We speculated that cell resistance to antibiotics and organic peroxide correlated with stress response-induced up-regulation of genes expression. Together, the results revealed that OasR was a key MarR-type redox stress-responsive transcriptional repressor, and sensed oxidative stress generated through hydroxyl radical formation to mediate antibiotic resistance in C. glutamicum.
Collapse
|
18
|
Michaux C, Hansen EE, Jenniches L, Gerovac M, Barquist L, Vogel J. Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium. Front Cell Infect Microbiol 2020; 10:600325. [PMID: 33324581 PMCID: PMC7724050 DOI: 10.3389/fcimb.2020.600325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Enterococcus faecalis and faecium are two major representative clinical strains of the Enterococcus genus and are sadly notorious to be part of the top agents responsible for nosocomial infections. Despite their critical implication in worldwide public healthcare, essential and available resources such as deep transcriptome annotations remain poor, which also limits our understanding of post-transcriptional control small regulatory RNA (sRNA) functions in these bacteria. Here, using the dRNA-seq technique in combination with ANNOgesic analysis, we successfully mapped and annotated transcription start sites (TSS) of both E. faecalis V583 and E. faecium AUS0004 at single nucleotide resolution. Analyzing bacteria in late exponential phase, we capture ~40% (E. faecalis) and 43% (E. faecium) of the annotated protein-coding genes, determine 5′ and 3′ UTR (untranslated region) length, and detect instances of leaderless mRNAs. The transcriptome maps revealed sRNA candidates in both bacteria, some found in previous studies and new ones. Expression of candidate sRNAs is being confirmed under biologically relevant environmental conditions. This comprehensive global TSS mapping atlas provides a valuable resource for RNA biology and gene expression analysis in the Enterococci. It can be accessed online at www.helmholtz-hiri.de/en/datasets/enterococcus through an instance of the genomic viewer JBrowse.
Collapse
Affiliation(s)
- Charlotte Michaux
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Elisabeth E Hansen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Laura Jenniches
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Milan Gerovac
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| |
Collapse
|
19
|
Unexpected Cell Wall Alteration-Mediated Bactericidal Activity of the Antifungal Caspofungin against Vancomycin-Resistant Enterococcus faecium. Antimicrob Agents Chemother 2020; 64:AAC.01261-20. [PMID: 32778553 DOI: 10.1128/aac.01261-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecium has become a major opportunistic pathogen with the emergence of vancomycin-resistant enterococci (VRE). As part of the gut microbiota, they have to cope with numerous stresses, including effects of antibiotics and other xenobiotics, especially in patients hospitalized in intensive care units (ICUs) who receive many medications. The aim of this study was to investigate the impact of the most frequently prescribed xenobiotics for ICU patients on fitness, pathogenicity, and antimicrobial resistance of the vanB-positive E. faecium Aus0004 reference strain. Several phenotypic analyses were carried out, and we observed that caspofungin, an antifungal agent belonging to the family of echinocandins, had an important effect on E. faecium growth in vitro We confirmed this effect by electron microscopy and peptidoglycan analysis and showed that, even at a subinhibitory concentration (1/4× MIC, 8 mg/liter), caspofungin had an impact on cell wall organization, especially with respect to the abundance of some muropeptide precursors. By transcriptome sequencing (RNA-seq), it was also shown that around 20% of the transcriptome was altered in the presence of caspofungin, with 321 and 259 significantly upregulated and downregulated genes, respectively. Since the fungal target of caspofungin (i.e., β-1,3-glucan synthase) was absent in bacteria, the mechanistic pathway of caspofungin activity was investigated. The repression of genes involved in the metabolism of pyruvate seemed to have a drastic impact on bacterial cell viability, while a decrease of glycerol metabolism could explain the conformational modifications of peptidoglycan. This is the first report of caspofungin antibacterial activity against E. faecium, highlighting the potential impact of nonantibiotic xenobiotics against bacterial pathogens.
Collapse
|
20
|
CarR, a MarR-family regulator from Corynebacterium glutamicum, modulated antibiotic and aromatic compound resistance. Biochem J 2020; 476:3141-3159. [PMID: 31689352 DOI: 10.1042/bcj20190320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/17/2022]
Abstract
MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)-uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882-ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR-uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.
Collapse
|
21
|
Zhai Z, Yang Y, Wang H, Wang G, Ren F, Li Z, Hao Y. Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress. Food Microbiol 2020; 87:103389. [DOI: 10.1016/j.fm.2019.103389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/27/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022]
|
22
|
Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci. Microbiol Mol Biol Rev 2019; 83:83/3/e00008-19. [PMID: 31315902 DOI: 10.1128/mmbr.00008-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enterococcus is a diverse and rugged genus colonizing the gastrointestinal tract of humans and numerous hosts across the animal kingdom. Enterococci are also a leading cause of multidrug-resistant hospital-acquired infections. In each of these settings, enterococci must contend with changing biophysical landscapes and innate immune responses in order to successfully colonize and transit between hosts. Therefore, it appears that the intrinsic durability that evolved to make enterococci optimally competitive in the host gastrointestinal tract also ideally positioned them to persist in hospitals, despite disinfection protocols, and acquire new antibiotic resistances from other microbes. Here, we discuss the molecular mechanisms and regulation employed by enterococci to tolerate diverse stressors and highlight the role of stress tolerance in the biology of this medically relevant genus.
Collapse
|
23
|
Hu Y, Hu Q, Wei R, Li R, Zhao D, Ge M, Yao Q, Yu X. The XRE Family Transcriptional Regulator SrtR in Streptococcus suis Is Involved in Oxidant Tolerance and Virulence. Front Cell Infect Microbiol 2019; 8:452. [PMID: 30687648 PMCID: PMC6335249 DOI: 10.3389/fcimb.2018.00452] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that harbors anti-oxidative stress genes, which have been reported to be associated with virulence. Serial passage has been widely used to obtain phenotypic variant strains to investigate the functions of important genes. In the present study, S. suis serotype 9 strain DN13 was serially passaged in mice 30 times. The virulence of a single colony from passage 10 (SS9-P10) was found to increase by at least 140-fold as indicated by LD50 values, and the increased virulence was stable for single colonies from passage 20 (SS0-P20) and 30 (SS0-P30). Compared to the parental strain, the mouse-adapted strains were more tolerant to oxidative and high temperature stress. Genome-wide analysis of nucleotide variations found that reverse mutations occurred in seven genes, as indicated by BLAST analysis. Three of the reverse mutation genes or their homologs in other bacteria were reported to be virulence-associated, including ideSsuis in S. suis, a homolog of malR of Streptococcus pneumoniae, and a homolog of the prepilin peptidase-encoding gene in Legionella pneumophila. However, these genes were not involved in the stress response. Another gene, srtR (stress response transcriptional regulator), encoding an XRE family transcriptional regulator, which had an internal stop in the parental strain, was functionally restored in the adapted strains. Further analysis of DN13 and SS9-P10-background srtR-knock-out and complementing strains supported the contribution of this gene to stress tolerance in vitro and virulence in mice. srtR and its homologs are widely distributed in Gram-positive bacteria including several important human pathogens such as Enterococcus faecium and Clostridioides difficile, indicating similar functions in these bacteria. Taken together, our study identified the first member of the XRE family of transcriptional regulators that is involved in stress tolerance and virulence. It also provides insight into the mechanism of enhanced virulence after serial passage in experimental animals.
Collapse
Affiliation(s)
- Yuli Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qian Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Rong Wei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Runcheng Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Dun Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Meng Ge
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qing Yao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xinglong Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
24
|
Ignasiak K, Maxwell A. Oxytetracycline reduces the diversity of tetracycline-resistance genes in the Galleria mellonella gut microbiome. BMC Microbiol 2018; 18:228. [PMID: 30594143 PMCID: PMC6310997 DOI: 10.1186/s12866-018-1377-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/18/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Clinically-relevant multidrug resistance is sometimes present in bacteria not exposed to human-made antibiotics, in environments without extreme selective pressures, such as the insect gut. The use of antibiotics on naïve microbiomes often leads to decreased microbe diversity and increased antibiotic resistance. RESULTS Here we investigate the impact of antibiotics on the insect gut microbiome by identifying tetracycline-resistance genes in the gut bacteria of greater wax moth (Galleria mellonella) larvae, feeding on artificial food containing oxytetracycline. We determined that G. mellonella can be raised on artificial food for over five generations and that the insects tolerate low doses of antibiotics in their diets, but doses of oxytetracycline higher than sub-inhibitory lead to early larval mortality. In our experiments, greater wax moth larvae had a sparse microbiome, which is consistent with previous findings. Additionally, we determined that the microbiome of G. mellonella larvae not exposed to antibiotics carries a number of tetracycline-resistance genes and some of that diversity is lost upon exposure to strong selective pressure. CONCLUSIONS We show that G. mellonella larvae can be raised on artificial food, including antibiotics, for several generations and that the microbiome can be sampled. We show that, in the absence of antibiotics, the insect gut microbiome can maintain a diverse pool of tetracycline-resistance genes. Selective pressure, from exposure to the antibiotic oxytetracycline, leads to microbiome changes and alteration in the tetracycline-resistance gene pool.
Collapse
Affiliation(s)
- Katarzyna Ignasiak
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.,Present address: School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
25
|
CosR is an oxidative stress sensing a MarR-type transcriptional repressor in Corynebacterium glutamicum. Biochem J 2018; 475:3979-3995. [PMID: 30478154 DOI: 10.1042/bcj20180677] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
The MarR family is unique to both bacteria and archaea. The members of this family, one of the most prevalent families of transcriptional regulators in bacteria, enable bacteria to adapt to changing environmental conditions, such as the presence of antibiotics, toxic chemicals, or reactive oxygen species (ROS), mainly by thiol-disulfide switches. Although the genome of Corynebacterium glutamicum encodes a large number of the putative MarR-type transcriptional regulators, their physiological and biochemical functions have so far been limited to only two proteins, regulator of oxidative stress response RosR and quinone oxidoreductase regulator QosR. Here, we report that the ncgl2617 gene (cosR) of C. glutamicum encoding an MarR-type transcriptional regulator plays an important role in oxidative stress resistance. The cosR null mutant is found to be more resistant to various oxidants and antibiotics, accompanied by a decrease in ROS production and protein carbonylation levels under various stresses. Protein biochemical function analysis shows that two Cys residues presenting at 49 and 62 sites in CosR are redox-active. They form intermolecular disulfide bonds in CosR under oxidative stress. This CosR oxidation leads to its dissociation from promoter DNA, depression of the target DNA, and increased oxidative stress resistance of C. glutamicum. Together, the results reveal that CosR is a redox-sensitive regulator that senses peroxide stress to mediate oxidative stress resistance in C. glutamicum.
Collapse
|
26
|
Tamaoka J, Takaoka K, Hattori H, Ueta M, Maeda H, Yamamura M, Yamanegi K, Noguchi K, Kishimoto H. Osteonecrosis of the jaws caused by bisphosphonate treatment and oxidative stress in mice. Exp Ther Med 2018; 17:1440-1448. [PMID: 30680026 DOI: 10.3892/etm.2018.7076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022] Open
Abstract
Aging is a significant risk factor for the development of bisphosphonate-related osteonecrosis of the jaws (BRONJ). Accumulating evidence suggests that bone aging is associated with oxidative stress (OS), and OS is associated with osteonecrosis. To elucidate the mechanisms of the onset of BRONJ, the present study focused on OS and the effects of treatment with the pro-oxidant DL-buthionine-(S,R)-sulfoximine (BSO), an oxidative stressor, on healing of a surgically induced penetrating injury of the palate. Six-week-old C57BL/6J mice were randomly divided into four groups (n=5 each) and treated with or without zoledronic acid (ZOL) and with or without BSO (experimental groups: ZOL, BSO, and ZOL+BSO; control group: saline solution). A penetrating injury of the midline palate was surgically created using a root elevator. ZOL (250 µg/kg/day) was injected intraperitoneally every day from 7 days prior to the surgical treatment to 4 days following the surgical treatment. BSO (500 µg/kg/day) was administered 7 days prior to the surgical treatment as a single intraperitoneal injection. The maxillae were harvested at 5 days following the surgical treatment for histological and histochemical studies. The presence of empty osteocyte lacunae in the palatal bone was increased by ZOL and BSO treatment. The highest number of empty osteocyte lacunae was observed in the ZOL+BSO group. The number of tartrate-resistant acid phosphatase-positive cells was decreased by ZOL treatment and increased by BSO treatment. The number of canaliculi per osteocyte lacuna was significantly decreased by BSO treatment. The mineral apposition rate was significantly lower in the treatment groups than the control group. Bisphosphonates and OS suppressed bone turnover. The present study has demonstrated that BSO treatment affects osteocytes, and OS in osteocytes exacerbates impairment of the osteocytic canalicular networks. As a result, bisphosphonates and OS may induce osteonecrosis following invasive dentoalveolar surgery. OS has been identified as an additional risk factor for the development of BRONJ.
Collapse
Affiliation(s)
- Joji Tamaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuki Takaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hirokazu Hattori
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Miho Ueta
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hanako Maeda
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Michiyo Yamamura
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Koji Yamanegi
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuma Noguchi
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiromitsu Kishimoto
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
27
|
Ch’ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by enterococci. Nat Rev Microbiol 2018; 17:82-94. [DOI: 10.1038/s41579-018-0107-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Cacaci M, Giraud C, Leger L, Torelli R, Martini C, Posteraro B, Palmieri V, Sanguinetti M, Bugli F, Hartke A. Expression profiling in a mammalian host reveals the strong induction of genes encoding LysM domain-containing proteins in Enterococcus faecium. Sci Rep 2018; 8:12412. [PMID: 30120332 PMCID: PMC6098018 DOI: 10.1038/s41598-018-30882-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Enterococcus faecium is an important health care-associated pathogen that is difficult to treat due to the high level of antibiotic resistance of clinical isolates. The identification of new potential therapeutic targets or vaccination strategies is therefore urgently needed. In this regard, we carried out a transcriptomic analysis of the E. faecium vancomycin-resistant strain AUS0004, comparing the gene expression of bacteria grown under laboratory conditions and bacteria isolated from an infection site. This analysis highlighted more than 360 genes potentially induced under infection conditions. Owing to their expression profiles, four LysM domain-containing proteins were characterized in more detail. The EFAU004_01059, 1150 and 494 proteins are highly homologous, whereas EFAU004_01209 has a unique domain-architecture and sequence. The analysis of corresponding mutants showed that all LysM proteins played relevant roles in the infection process of E. faecium in mice. The EFAU004_01209 mutant also displayed profound morphological modifications, suggesting it has a role in cell wall synthesis or cell division. Furthermore, the adhesion to kidney cells and growth of the mutant was affected in human urine. All these phenotypes and the surface exposure of EFAU004_01209 identify this protein as an interesting new drug target in E. faecium.
Collapse
Affiliation(s)
- Margherita Cacaci
- Normandie Univ, UNICAEN, U2RM-Stress and Virulence, 14000, Caen, France.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Caroline Giraud
- Normandie Univ, UNICAEN, U2RM-Stress and Virulence, 14000, Caen, France
| | - Loic Leger
- Normandie Univ, UNICAEN, U2RM-Stress and Virulence, 14000, Caen, France
| | - Riccardo Torelli
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Cecilia Martini
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Valentina Palmieri
- Physics Institute, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy.
| | - Francesca Bugli
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Axel Hartke
- Normandie Univ, UNICAEN, U2RM-Stress and Virulence, 14000, Caen, France.
| |
Collapse
|
29
|
Grunert A, Frohnert A, Selinka HC, Szewzyk R. A new approach to testing the efficacy of drinking water disinfectants. Int J Hyg Environ Health 2018; 221:1124-1132. [PMID: 30098909 DOI: 10.1016/j.ijheh.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/29/2022]
Abstract
New disinfection procedures are being developed and proposed for use in drinking-water production. Authorising their use requires an effective test strategy that can simulate conditions in practice. For this purpose, we developed a test rig working in a flow-through mode similar to the disinfection procedures in waterworks, but under tightly defined conditions, including very short contact times. To quantify the influence of DOC, temperature and pH on the efficacy of two standard disinfectants, chlorine and chlorine dioxide, simulated use tests were systematically performed. This test rig enabled quantitative comparison of the reduction of four test organisms, two viruses and two bacteria, in response to disinfection. Chlorine was substantially more effective against Enterococcus faecium than chlorine dioxide whereas the latter was more effective against the bacteriophage MS2, especially at pH values of >7.5 at which chlorine efficacies already decline. Contrary to expectation, bacteria were not generally reduced more quickly than viruses. Overall, the results confirm a high efficacy of chlorine and chlorine dioxide, validating them as standard disinfectants for assessing the efficacy of new disinfectants. Furthermore, these data demonstrate that the test rig is an appropriate tool for testing new disinfectants as well as disinfection procedures.
Collapse
Affiliation(s)
- Andreas Grunert
- Federal Environment Agency, Section Drinking Water Treatment, Schichauweg 58, D-12307, Berlin, Germany.
| | - Anne Frohnert
- Federal Environment Agency, Section Microbiological Risks, Corrensplatz 1, D-14197, Berlin, Germany
| | - Hans-Christoph Selinka
- Federal Environment Agency, Section Microbiological Risks, Corrensplatz 1, D-14197, Berlin, Germany
| | - Regine Szewzyk
- Federal Environment Agency, Section Microbiological Risks, Corrensplatz 1, D-14197, Berlin, Germany
| |
Collapse
|
30
|
Kinetics of Targeted Phage Rescue in a Mouse Model of Systemic Escherichia coli K1. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7569645. [PMID: 30105246 PMCID: PMC6076946 DOI: 10.1155/2018/7569645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/03/2018] [Indexed: 11/18/2022]
Abstract
Escherichia (E.) coli K1 strains remain common causative agents of neonatal sepsis and meningitis. We have isolated a lytic bacteriophage (ΦIK1) against E. coli strain IHE3034 and tested its specificity in vitro, as well as distribution and protective efficacy in vivo. The phage was shown to be specific to the K1 capsular polysaccharide. In the lethal murine model, a high level of protection was afforded by the phage with strict kinetics. A single dose of 1 x 108 phage particles administered 10 and 60 minutes following the bacterial challenge elicited 100 % and 95 % survival, respectively. No mice could be rescued if phage administration occurred 3 hours postinfection. Tissue distribution surveys in the surviving mice revealed that the spleen was the primary organ in which accumulation of active ΦIK1 phages could be detected two weeks after phage administration. These results suggest that bacteriophages have potential as therapeutic agents in the control of systemic infections.
Collapse
|
31
|
Zhang Y, Gu AZ, Cen T, Li X, He M, Li D, Chen J. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:74-82. [PMID: 29477117 DOI: 10.1016/j.envpol.2018.01.032] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 05/19/2023]
Abstract
Although widespread antibiotic resistance has been mostly attributed to the selective pressure generated by overuse and misuse of antibiotics, recent growing evidence suggests that chemicals other than antibiotics, such as certain metals, can also select and stimulate antibiotic resistance via both co-resistance and cross-resistance mechanisms. For instance, tetL, merE, and oprD genes are resistant to both antibiotics and metals. However, the potential de novo resistance induced by heavy metals at environmentally-relevant low concentrations (much below theminimum inhibitory concentrations [MICs], also referred as sub-inhibitory) has hardly been explored. This study investigated and revealed that heavy metals, namely Cu(II), Ag(I), Cr(VI), and Zn(II), at environmentally-relevant and sub-inhibitory concentrations, promoted conjugative transfer of antibiotic resistance genes (ARGs) between E. coli strains. The mechanisms of this phenomenon were further explored, which involved intracellular reactive oxygen species (ROS) formation, SOS response, increased cell membrane permeability, and altered expression of conjugation-relevant genes. These findings suggest that sub-inhibitory levels of heavy metals that widely present in various environments contribute to the resistance phenomena via facilitating horizontal transfer of ARGs. This study provides evidence from multiple aspects implicating the ecological effect of low levels of heavy metals on antibiotic resistance dissemination and highlights the urgency of strengthening efficacious policy and technology to control metal pollutants in the environments.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Tianyu Cen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiangyang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Miao He
- Environmental Simulation and Pollution Control (ESPC) State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
32
|
Goh HMS, Yong MHA, Chong KKL, Kline KA. Model systems for the study of Enterococcal colonization and infection. Virulence 2017; 8:1525-1562. [PMID: 28102784 PMCID: PMC5810481 DOI: 10.1080/21505594.2017.1279766] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are common inhabitants of the human gastrointestinal tract, as well as frequent opportunistic pathogens. Enterococci cause a range of infections including, most frequently, infections of the urinary tract, catheterized urinary tract, bloodstream, wounds and surgical sites, and heart valves in endocarditis. Enterococcal infections are often biofilm-associated, polymicrobial in nature, and resistant to antibiotics of last resort. Understanding Enterococcal mechanisms of colonization and pathogenesis are important for identifying new ways to manage and intervene with these infections. We review vertebrate and invertebrate model systems applied to study the most common E. faecalis and E. faecium infections, with emphasis on recent findings examining Enterococcal-host interactions using these models. We discuss strengths and shortcomings of each model, propose future animal models not yet applied to study mono- and polymicrobial infections involving E. faecalis and E. faecium, and comment on the significance of anti-virulence strategies derived from a fundamental understanding of host-pathogen interactions in model systems.
Collapse
Affiliation(s)
- H. M. Sharon Goh
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - M. H. Adeline Yong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
33
|
Sinel C, Augagneur Y, Sassi M, Bronsard J, Cacaci M, Guérin F, Sanguinetti M, Meignen P, Cattoir V, Felden B. Small RNAs in vancomycin-resistant Enterococcus faecium involved in daptomycin response and resistance. Sci Rep 2017; 7:11067. [PMID: 28894187 PMCID: PMC5593968 DOI: 10.1038/s41598-017-11265-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Vancomycin-resistant Enterococcus faecium is a leading cause of hospital-acquired infections and outbreaks. Regulatory RNAs (sRNAs) are major players in adaptive responses, including antibiotic resistance. They were extensively studied in gram-negative bacteria, but less information is available for gram-positive pathogens. No sRNAs are described in E. faecium. We sought to identify a set of sRNAs expressed in vancomycin-resistant E. faecium Aus0004 strain to assess their roles in daptomycin response and resistance. Genomic and transcriptomic analyses revealed a set of 61 sRNA candidates, including 10 that were further tested and validated by Northern and qPCR. RNA-seq was performed with and without subinhibitory concentrations (SICs) of daptomycin, an antibiotic used to treat enterococcal infections. After daptomycin SIC exposure, the expression of 260 coding and srna genes was altered, with 80 upregulated and 180 downregulated, including 51% involved in carbohydrate and transport metabolisms. Daptomycin SIC exposure significantly affected the expression of seven sRNAs, including one experimentally confirmed, sRNA_0160. We studied sRNA expression in isogenic mutants with increasing levels of daptomycin resistance and observed that expression of several sRNAs, including sRNA_0160, was modified in the stepwise mutants. This first genome-wide sRNA identification in E. faecium suggests that some sRNAs are linked to antibiotic stress response and resistance.
Collapse
Affiliation(s)
- Clara Sinel
- University of Caen Normandie, EA4655, Caen, France
| | - Yoann Augagneur
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Mohamed Sassi
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Julie Bronsard
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Margherita Cacaci
- Catholic University of Sacred Heart, Institute of Microbiology, Rome, Italy
| | - François Guérin
- University of Caen Normandie, EA4655, Caen, France.,Caen University Hospital, Department of Clinical Microbiology, Caen, France
| | | | - Pierrick Meignen
- University of Caen Normandie, IUT (department "STID"), Caen, France
| | - Vincent Cattoir
- University of Caen Normandie, EA4655, Caen, France. .,Caen University Hospital, Department of Clinical Microbiology, Caen, France. .,National Reference Center for Antimicrobial Resistance (lab Enterococci), Caen, France. .,Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France.
| | - Brice Felden
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France.
| |
Collapse
|
34
|
Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiol Spectr 2017; 4. [PMID: 27227294 DOI: 10.1128/microbiolspec.uti-0012-2012] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gram-positive bacteria are a common cause of urinary-tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI.
Collapse
|
35
|
Subinhibitory Concentrations of Ciprofloxacin Enhance Antimicrobial Resistance and Pathogenicity of Enterococcus faecium. Antimicrob Agents Chemother 2017; 61:AAC.02763-16. [PMID: 28193670 DOI: 10.1128/aac.02763-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium has emerged as a major opportunistic pathogen for 2 decades with the spread of hospital-adapted multidrug-resistant clones. As members of the intestinal microbiota, they are subjected to numerous bacterial stresses, including antibiotics at subinhibitory concentrations (SICs). Since fluoroquinolones are extensively prescribed, SICs are very likely to occur in vivo, with potential effects on bacterial metabolism with subsequent modulation of opportunistic traits. The aim of this study was to evaluate globally the impact of SICs of ciprofloxacin on antimicrobial resistance and pathogenicity of E. faecium Transcriptomic analysis was performed by RNA sequencing (RNA-seq) (HiSeq 2500; Illumina) using the vanB-positive reference strain E. faecium Aus0004 in the absence or presence of ciprofloxacin SIC (0.38 mg/liter, i.e., 1/8 of the MIC). Several genetic and phenotypic tests were used for validation. In the presence of ciprofloxacin SIC, 196 genes were significantly induced, whereas 286 genes were significantly repressed, meaning that 16.8% of the E. faecium genome was altered. Among upregulated genes, EFAU004_02294 (fold change, 14.3) encoded a protein (Qnr of E. faecium [EfmQnr]) homologue of Qnr proteins involved in quinolone resistance in Gram-negative bacilli. Its implication in intrinsic and adaptive fluoroquinolone (FQ) resistance in E. faecium was experimentally ascertained. Moreover, EFAU004_02292, coding for the collagen adhesin Acm, was also induced by the SIC of ciprofloxacin (fold change, 8.2), and higher adhesion capabilities were demonstrated phenotypically. Both EfmQnr and Acm determinants may play an important role in the transition from a commensal to a pathogenic state of E. faecium that resides in the gut of patients receiving fluoroquinolone therapy.
Collapse
|
36
|
Liu G, Liu X, Xu H, Liu X, Zhou H, Huang Z, Gan J, Chen H, Lan L, Yang CG. Structural Insights into the Redox-Sensing Mechanism of MarR-Type Regulator AbfR. J Am Chem Soc 2017; 139:1598-1608. [PMID: 28086264 DOI: 10.1021/jacs.6b11438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a master redox-sensing MarR-family transcriptional regulator, AbfR participates in oxidative stress responses and virulence regulations in Staphylococcus epidermidis. Here, we present structural insights into the DNA-binding mechanism of AbfR in different oxidation states by determining the X-ray crystal structures of a reduced-AbfR/DNA complex, an overoxidized (Cys13-SO2H and Cys13-SO3H) AbfR/DNA, and 2-disulfide cross-linked AbfR dimer. Together with biochemical analyses, our results suggest that the redox regulation of AbfR-sensing displays two novel features: (i) the reversible disulfide modification, but not the irreversible overoxidation, significantly abolishes the DNA-binding ability of the AbfR repressor; (ii) either 1-disulfide cross-linked or 2-disulfide cross-linked AbfR dimer is biologically significant. The overoxidized species of AbfR, resembling the reduced AbfR in conformation and retaining the DNA-binding ability, does not exist in biologically significant concentrations, however. The 1-disulfide cross-linked modification endows AbfR with significantly weakened capability for DNA-binding. The 2-disulfide cross-linked AbfR adopts a very "open" conformation that is incompatible with DNA-binding. Overall, the concise oxidation chemistry of the redox-active cysteine allows AbfR to sense and respond to oxidative stress correctly and efficiently.
Collapse
Affiliation(s)
- Guijie Liu
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xing Liu
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China.,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Hongjiao Xu
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xichun Liu
- Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Zhen Huang
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | - Jianhua Gan
- School of Life Sciences, Fudan University , Shanghai 200433, China
| | - Hao Chen
- Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Lefu Lan
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Cai-Guang Yang
- Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| |
Collapse
|
37
|
Liu L, Fang H, Yang H, Zhang Y, Han Y, Zhou D, Yang R. Reciprocal regulation of Yersinia pestis biofilm formation and virulence by RovM and RovA. Open Biol 2016; 6:rsob.150198. [PMID: 26984293 PMCID: PMC4821237 DOI: 10.1098/rsob.150198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RovA is known to enhance Yersinia pestis virulence by directly upregulating the psa loci. This work presents a complex gene regulatory paradigm involving the reciprocal regulatory action of RovM and RovA on the expression of biofilm and virulence genes as well as on their own genes. RovM and RovA enhance and inhibit Y. pestis biofilm production, respectively, whereas RovM represses virulence in mice. RovM directly stimulates the transcription of hmsT, hmsCDE and rovM, while indirectly enhancing hmsHFRS transcription. It also indirectly represses hmsP transcription. By contrast, RovA directly represses hmsT transcription and indirectly inhibits waaAE-coaD transcription, while RovM inhibits psaABC and psaEF transcription by directly repressing rovA transcription. rovM expression is significantly upregulated at 26°C (the temperature of the flea gut) relative to 37°C (the warm-blooded host temperature). We speculate that upregulation of rovM together with downregulation of rovA in the flea gut would promote Y. pestis biofilm formation while inhibiting virulence gene expression, leading to a more transmissible infection of this pathogen in fleas. Once the bacterium shifts to a lifestyle in the warm-blooded hosts, inhibited RovM production accompanied by recovered RovA synthesis would encourage virulence factor production and inhibit biofilm gene expression.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| |
Collapse
|
38
|
Stroot PG. Blood oxidative stress (BLOS) is a secondary host defense system responding normally to anaerobic wound infection and inadvertently to dietary ultra-exogenous sulfide formation (USF). Med Hypotheses 2016; 98:28-34. [PMID: 28012599 DOI: 10.1016/j.mehy.2016.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/21/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Blood oxidative stress (BLOS) is the presence of white blood cells and platelets that are generating high levels of reactive oxygen species (ROS). A mathematical model links the level of BLOS or BLOS# and plasma sulfide concentration. An increase in the BLOS# reduces the plasma sulfide concentration. The reported maximum plasma sulfide concentration for defined health conditions were used to calculate the minimum BLOS#. Elevated BLOS generates high plasma concentration of ROS, which triggers multiple responses in the body that protect the host. First, insulin production by the pancreas is inhibited, which results in elevated blood glucose levels. This results in advanced glycation end products (AGE), which thicken the blood vessel wall. Elevated blood glucose levels also increases urination, which reduces the availability of substrates for infectious bacteria. Second, one or more signaling molecules are stimulated to produce vascular hypertrophy resulting in hypertension. Third, the initial stage of atherosclerosis thickens the blood vessel wall while also protecting the inner surface of the blood vessels from localized infection. The first three mechanisms provide added protection against pathogen migration through the blood vessel wall and reduce the cross-sectional area of blood vessels, which increases the retention time (RT) for improved ROS inactivation of pathogens. Fourth, genes expressed in the liver, which are associated with drug oxidation and uptake transport, are inhibited. This inhibition protects the host from any toxins produced by an anaerobic infection. Elevated BLOS also reduces plasma sulfide concentration, which inhibits wound healing and extends aerobic conditions of the wound. The normal induction of BLOS offers a short-term, cascade of several primary mechanisms for secondary defense against anaerobic infection of a wound. Normal induction of BLOS is due to ultra-exogenous sulfide formation (USF) generated by a local anaerobic infection of a wound in the natural environment. The presence of BLOS without infection is indicative of inadvertent dietary induction. Long-term dietary BLOS results in many severe inflammatory diseases and cancers that are common in an ageing population. Glands were identified as more susceptible to cancers caused by long-term dietary BLOS. Variable BLOS levels in patients of clinical trials may also be reducing effectiveness of experimental drugs and causing drug toxicity. If BLOS is confirmed as a secondary defense against infection that is inadvertently triggered by diet, then a large number of common health problems may be treated and managed by apheresis and dietary changes.
Collapse
|
39
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
40
|
Grinnage-Pulley T, Mu Y, Dai L, Zhang Q. Dual Repression of the Multidrug Efflux Pump CmeABC by CosR and CmeR in Campylobacter jejuni. Front Microbiol 2016; 7:1097. [PMID: 27468281 PMCID: PMC4943160 DOI: 10.3389/fmicb.2016.01097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022] Open
Abstract
During transmission and intestinal colonization, Campylobacter jejuni, a major foodborne human pathogen, experiences oxidative stress. CosR, a response regulator in C. jejuni, modulates the oxidative stress response and represses expression of the CmeABC multidrug efflux pump. CmeABC, a key component in resistance to toxic compounds including antimicrobials and bile salts, is also under negative regulation by CmeR, a TetR family transcriptional regulator. How CosR and CmeR interact in binding to the cmeABC promoter and how CosR senses oxidative stress are still unknown. To answer these questions, we conducted various experiments utilizing electrophoretic mobility shift assays and transcriptional fusion assays. CosR and CmeR bound independently to two separate sites of the cmeABC promoter, simultaneously repressing cmeABC expression. This dual binding of CosR and CmeR is optimal with a 17 base pair space between the two binding sites as mutations that shortened the distance between the binding sites decreased binding by CmeR and enhanced cmeABC expression. Additionally, the single cysteine residue (C218) of CosR was sensitive to oxidation, which altered the DNA-binding activity of CosR and dissociated CosR from the cmeABC promoter as determined by electrophoretic mobility shift assay. Replacement of C218 with serine rendered CosR insensitive to oxidation, suggesting a potential role of C218 in sensing oxidative stress and providing a possible mechanism for CosR-mediated response to oxidative stress. These findings reveal a dual regulatory role of CosR and CmeR in modulating cmeABC expression and suggest a potential mechanism that may explain overexpression of cmeABC in response to oxidative stress. Differential expression of cmeABC mediated by CmeR and CosR in response to different signals may facilitate adaptation of Campylobacter to various environmental conditions.
Collapse
Affiliation(s)
- Tara Grinnage-Pulley
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| | - Yang Mu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| | - Lei Dai
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| |
Collapse
|
41
|
Tsai CJY, Loh JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 2016; 7:214-29. [PMID: 26730990 PMCID: PMC4871635 DOI: 10.1080/21505594.2015.1135289] [Citation(s) in RCA: 488] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galleria mellonella (greater wax moth or honeycomb moth) has been introduced as an alternative model to study microbial infections. G. mellonella larvae can be easily and inexpensively obtained in large numbers and are simple to use as they don't require special lab equipment. There are no ethical constraints and their short life cycle makes them ideal for large-scale studies. Although insects lack an adaptive immune response, their innate immune response shows remarkable similarities with the immune response in vertebrates. This review gives a current update of what is known about the immune system of G. mellonella and provides an extensive overview of how G. mellonella is used to study the virulence of Gram-positive and Gram-negative bacteria. In addition, the use of G. mellonella to evaluate the efficacy of antimicrobial agents and experimental phage therapy are also discussed. The review concludes with a critical assessment of the current limitatons of G. mellonella infection models.
Collapse
Affiliation(s)
- Catherine Jia-Yun Tsai
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| | - Jacelyn Mei San Loh
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| | - Thomas Proft
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| |
Collapse
|
42
|
Omer H, Alpha-Bazin B, Brunet JL, Armengaud J, Duport C. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors. Front Microbiol 2015; 6:1004. [PMID: 26500610 PMCID: PMC4595770 DOI: 10.3389/fmicb.2015.01004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Bacillus cereus is a Gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late, and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility, and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility, and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group.
Collapse
Affiliation(s)
- Hélène Omer
- Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | - Béatrice Alpha-Bazin
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | | | - Jean Armengaud
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | - Catherine Duport
- Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| |
Collapse
|
43
|
Shields RC, Burne RA. Conserved and divergent functions of RcrRPQ in Streptococcus gordonii and S. mutans. FEMS Microbiol Lett 2015; 362:fnv119. [PMID: 26229070 DOI: 10.1093/femsle/fnv119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
In the dental caries pathogen Streptococcus mutans, an MarR-like transcriptional regulator (RcrR), two ABC efflux pumps (RcrPQ) and two effector peptides encoded in the rcrRPQ operon provide molecular connections between stress tolerance, (p)ppGpp metabolism and genetic competence. Here, we examined the role of RcrRPQ in the oral commensal S. gordonii. Unlike in S. mutans, introduction of polar or non-polar rcrR mutations into S. gordonii elicited no significant changes in transformation efficiency. However, S. gordonii rcrR mutants were markedly impaired in their ability to grow in the presence of hydrogen peroxide, paraquat, low pH or elevated temperature. Sensitivity to paraquat could also be conferred by mutation of cysteine residues that are present in the RcrR protein of S. gordonii, but not in S. mutans RcrR. Thus, stress tolerance is a conserved function of RcrRPQ in a commensal and pathogenic streptococcus, but the study reveals additional differences in regulation of genetic competence development between S. mutans and S. gordonii.
Collapse
Affiliation(s)
- Robert C Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
44
|
Jolivet-Gougeon A, Bonnaure-Mallet M. Biofilms as a mechanism of bacterial resistance. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 11:49-56. [PMID: 24847653 DOI: 10.1016/j.ddtec.2014.02.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inside the biofilm, antimicrobial agents must overcome high cell density, an increased number of resistant mutants, substance delivery, molecular exchanges, such as high levels of beta-lactamases or inducers of efflux pump expression, and specific adaptive cells, so-called persisters. The environment within the biofilm modulates the response to antibiotics, especially when the SOS response or DNA repair systems are involved. Exposure to subinhibitory concentrations of antibiotics can enhance biofilm formation and mutagenesis. Thus, a global response to cell stress seems to be responsible for antibiotic-induced biofilm formation.
Collapse
|
45
|
Cattoir V, Isnard C, Cosquer T, Odhiambo A, Bucquet F, Guérin F, Giard JC. Genomic analysis of reduced susceptibility to tigecycline in Enterococcus faecium. Antimicrob Agents Chemother 2015; 59:239-44. [PMID: 25348531 PMCID: PMC4291356 DOI: 10.1128/aac.04174-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/17/2014] [Indexed: 12/24/2022] Open
Abstract
Tigecycline (TIG) is approved for use for the treatment of complicated intra-abdominal infections, skin and skin structure infections, as well as pneumonia. Acquired resistance or reduced susceptibility to TIG has been observed in Gram-negative rods, has seldom been reported in Gram-positive organisms, and has not yet been reported in Enterococcus faecium. Using the serial passage method, in vitro mutant AusTig and in vitro mutants HMtig1 and HMtig2 with decreased TIG susceptibility (MICs, 0.25 μg/ml) were obtained from strains E. faecium Aus0004 and HM1070 (MICs, 0.03 μg/ml), respectively. In addition, two vancomycin-resistant E. faecium clinical isolates (EF16 and EF22) with reduced susceptibility to TIG (MICs, 0.5 and 0.25 μg/ml, respectively) were studied. Compared to the wild-type strains, the in vitro mutants also showed an increase in the MICs of other tetracyclines. An efflux mechanism did not seem to be involved in the reduced TIG susceptibility, since the presence of efflux pump inhibitors (reserpine or pantoprazole) did not affect the MICs of TIG. Whole-genome sequencing of AusTig was carried out, and genomic comparison with the Aus0004 genome was performed. Four modifications leading to an amino acid substitution were found. These mutations affected the rpsJ gene (efau004_00094, coding for the S10 protein of the 30S ribosomal subunit), efau004_01228 (encoding a cation transporter), efau004_01636 (coding for a hypothetical protein), and efau004_02455 (encoding the l-lactate oxidase). The four other strains exhibiting reduced TIG susceptibility were screened for the candidate mutations. This analysis revealed that three of them showed an amino acid substitution in the same region of the RpsJ protein. In this study, we characterized for the first time genetic determinants linked to reduced TIG susceptibility in enterococci.
Collapse
Affiliation(s)
- Vincent Cattoir
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France CHU de Caen, Service de Microbiologie, Caen, France CNR de la Résistance aux Antibiotiques, Laboratoire Associé Entérocoques, Caen, France
| | - Christophe Isnard
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France CHU de Caen, Service de Microbiologie, Caen, France
| | - Thibaud Cosquer
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France
| | - Arlène Odhiambo
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France
| | - Fiona Bucquet
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France
| | - François Guérin
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France CHU de Caen, Service de Microbiologie, Caen, France CNR de la Résistance aux Antibiotiques, Laboratoire Associé Entérocoques, Caen, France
| | - Jean-Christophe Giard
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France
| |
Collapse
|
46
|
Yuen GJ, Ausubel FM. Enterococcus infection biology: lessons from invertebrate host models. J Microbiol 2014; 52:200-10. [PMID: 24585051 PMCID: PMC4556283 DOI: 10.1007/s12275-014-4011-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/21/2014] [Indexed: 12/29/2022]
Abstract
The enterococci are commensals of the gastrointestinal tract of many metazoans, from insects to humans. While they normally do not cause disease in the intestine, they can become pathogenic when they infect sites outside of the gut. Recently, the enterococci have become important nosocomial pathogens, with the majority of human enterococcal infections caused by two species, Enterococcus faecalis and Enterococcus faecium. Studies using invertebrate infection models have revealed insights into the biology of enterococcal infections, as well as general principles underlying host innate immune defense. This review highlights recent findings on Enterococcus infection biology from two invertebrate infection models, the greater wax moth Galleria mellonella and the free-living bacteriovorous nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Grace J. Yuen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
|
48
|
Bagan J, Sáez GT, Tormos MC, Gavalda-Esteve C, Bagan L, Leopoldo-Rodado M, Calvo J, Camps C. Oxidative stress in bisphosphonate-related osteonecrosis of the jaws. J Oral Pathol Med 2014; 43:371-7. [PMID: 24450511 DOI: 10.1111/jop.12151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To analyze whether oxidative stress (OS) changes are present in patients with bisphosphonate-related osteonecrosis of the jaw (BRONJ) versus controls. MATERIALS AND METHODS Oxidative stress was analyzed in serum and unstimulated saliva of three groups: Group 1 consisted of 24 patients who had been treated with intravenous bisphosphonates (ivBPs) and developed BRONJ, group 2 consisted of 20 patients who had received ivBPs and did not develop BRONJ, and group 3 comprised 17 control subjects. Reduced glutathione (GSH), malondialdehyde (MDA), oxidized glutathione (GSSG), and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxo-dG) levels, as well as the GSSG/GSH ratio, were measured. RESULTS Mean serum and saliva levels of MDA, GSSG, and 8-oxo-dG and the GSSG/GSH ratio were significantly higher in patients with BRONJ than in controls. We found no significant difference in OS according to BRONJ stage, sex, or location in the jaws. Logistic regression analysis revealed that the GSSG/GSH ratio was a significant factor predicting the development of BRONJ (P = 0.01). CONCLUSIONS Oxidative stress was detected in patients with BRONJ, and the GSSG/GSH ratio was the most significant OS variable found; it was a significant factor predicting the development of BRONJ.
Collapse
Affiliation(s)
- Jose Bagan
- Department of Oral Medicine, Valencia University, Valencia, Spain; Service of Stomatology and Maxillofacial Surgery, University General Hospital, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Nonclinical and clinical Enterococcus faecium strains, but not Enterococcus faecalis strains, have distinct structural and functional genomic features. Appl Environ Microbiol 2013; 80:154-65. [PMID: 24141120 DOI: 10.1128/aem.03108-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Certain strains of Enterococcus faecium and Enterococcus faecalis contribute beneficially to animal health and food production, while others are associated with nosocomial infections. To determine whether there are structural and functional genomic features that are distinct between nonclinical (NC) and clinical (CL) strains of those species, we analyzed the genomes of 31 E. faecium and 38 E. faecalis strains. Hierarchical clustering of 7,017 orthologs found in the E. faecium pangenome revealed that NC strains clustered into two clades and are distinct from CL strains. NC E. faecium genomes are significantly smaller than CL genomes, and this difference was partly explained by significantly fewer mobile genetic elements (ME), virulence factors (VF), and antibiotic resistance (AR) genes. E. faecium ortholog comparisons identified 68 and 153 genes that are enriched for NC and CL strains, respectively. Proximity analysis showed that CL-enriched loci, and not NC-enriched loci, are more frequently colocalized on the genome with ME. In CL genomes, AR genes are also colocalized with ME, and VF are more frequently associated with CL-enriched loci. Genes in 23 functional groups are also differentially enriched between NC and CL E. faecium genomes. In contrast, differences were not observed between NC and CL E. faecalis genomes despite their having larger genomes than E. faecium. Our findings show that unlike E. faecalis, NC and CL E. faecium strains are equipped with distinct structural and functional genomic features indicative of adaptation to different environments.
Collapse
|