1
|
Zhang J, Hao J, Wang J, Li H, Zhao D. Strategic manipulation of biofilm dispersion for controlling Listeria monocytogenes infections. Crit Rev Food Sci Nutr 2024:1-10. [PMID: 39367886 DOI: 10.1080/10408398.2024.2409340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Listeria monocytogenes (L. monocytogenes), a gram-positive foodborne pathogen that can easily cause listeriosis. It secretes extracellular polymers and forms biofilms that are highly resistant to disinfection methods, such as UV light and germicides, posing risks to food processing equipment and food quality. Dispersion of biofilm is the cycle of its formation in which the bacteria return to planktonic state and become susceptible to antimicrobials, the strategic manipulation of biofilm dispersion is thus heralded as a novel and promising approach for the effective control of biofilm-related infections. Compared to the traditional methods, it is more effective to start with the composition of biofilms, cut off the production of their constituent substances, and genetically reduce the probability of biofilm formation. Meanwhile, the dispersion of bacteria can be supplemented with exogenous substances, making long-term control possible. This paper provides a brief but comprehensive overview of the mechanisms of L. monocytogenes biofilms or cross-contamination and their resistance properties, and facilitates our understanding and control of the prevention and containment of L. monocytogenes biofilm contamination based on the biofilm's active and passive diffusion strategies. This work provides practical guidelines for the food industry to guard against the enduring threat to food safety due to L. monocytogenes biofilms.
Collapse
Affiliation(s)
- Junyi Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jingyi Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huiying Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Dandan Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
2
|
Feltham L, Moran J, Goldrick M, Lord E, Spiller DG, Cavet JS, Muldoon M, Roberts IS, Paszek P. Bacterial aggregation facilitates internalin-mediated invasion of Listeria monocytogenes. Front Cell Infect Microbiol 2024; 14:1411124. [PMID: 39045131 PMCID: PMC11263170 DOI: 10.3389/fcimb.2024.1411124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Dissemination of food-borne L. monocytogenes in the host relies on internalin-mediated invasion, but the underlying invasion strategies remain elusive. Here we use live-cell microscopy to follow single cell interactions between individual human cells and L. monocytogenes and elucidate mechanisms associated with internalin B (InlB)-mediated invasion. We demonstrate that whilst a replicative invasion of nonphagocytic cells is a rare event even at high multiplicities of invasion, L. monocytogenes overcomes this by utilising a strategy relaying on PrfA-mediated ActA-based aggregation. We show that L. monocytogenes forms aggregates in extracellular host cell environment, which promote approximately 5-fold more host cell adhesions than the non-aggregating actA-ΔC mutant (which lacks the C-terminus coding region), with the adhering bacteria inducing 3-fold more intracellular invasions. Aggregation is associated with robust MET tyrosine kinase receptor clustering in the host cells, a hallmark of InlB-mediated invasion, something not observed with the actA-ΔC mutant. Finally, we show via RNA-seq analyses that aggregation involves a global adaptive response to host cell environment (including iron depletion), resulting in metabolic changes in L. monocytogenes and upregulation of the PrfA virulence regulon. Overall, our analyses provide new mechanistic insights into internalin-mediated host-pathogen interactions of L. monocytogenes.
Collapse
Affiliation(s)
- Liam Feltham
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Josephine Moran
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marie Goldrick
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth Lord
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark Muldoon
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Ian. S. Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Burdová A, Véghová A, Minarovičová J, Drahovská H, Kaclíková E. The Relationship between Biofilm Phenotypes and Biofilm-Associated Genes in Food-Related Listeria monocytogenes Strains. Microorganisms 2024; 12:1297. [PMID: 39065070 PMCID: PMC11279107 DOI: 10.3390/microorganisms12071297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Listeria monocytogenes is an important pathogen responsible for listeriosis, a serious foodborne illness associated with high mortality rates. Therefore, L. monocytogenes is considered a challenge for the food industry due to the ability of some strains to persist in food-associated environments. Biofilm production is presumed to contribute to increased L. monocytogenes resistance and persistence. The aims of this study were to (1) assess the biofilm formation of L. monocytogenes isolates from a meat processing facility and sheep farm previously characterized and subjected to whole-genome sequencing and (2) perform a comparative genomic analysis to compare the biofilm formation and the presence of a known set of biofilm-associated genes and related resistance or persistence markers. Among the 37 L. monocytogenes isolates of 15 sequence types and four serogroups involved in this study, 14%, 62%, and 24% resulted in the formation of weak, moderate, and strong biofilm, respectively. Increased biofilm-forming ability was associated with the presence of the stress survival islet 1 (SSI-1), inlL, and the truncated inlA genes. Combining the phenotypic and genotypic data may contribute to understanding the relationships between biofilm-associated genes and L. monocytogenes biofilm-forming ability, enabling improvement in the control of this foodborne pathogen.
Collapse
Affiliation(s)
- Alexandra Burdová
- Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia; (A.B.); (H.D.)
| | - Adriana Véghová
- Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 82475 Bratislava, Slovakia; (A.V.); (J.M.)
| | - Jana Minarovičová
- Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 82475 Bratislava, Slovakia; (A.V.); (J.M.)
| | - Hana Drahovská
- Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia; (A.B.); (H.D.)
| | - Eva Kaclíková
- Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 82475 Bratislava, Slovakia; (A.V.); (J.M.)
| |
Collapse
|
4
|
Yao S, Tu R, Jin Y, Zhou R, Wu C, Qin J. Improvement of the viability of Tetragenococcus halophilus under acidic stress by forming the biofilm cell structure based on RNA-Seq and iTRAQ analyses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3559-3569. [PMID: 38147410 DOI: 10.1002/jsfa.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Tetragenococcus halophilus is a halophilic lactic acid bacterium (LAB) isolated from soya sauce moromi. During the production of these fermented foods, acid stress is an inevitable environmental stress. In our previous study, T. halophilus could form biofilms and the cells in the biofilms exhibited higher cell viability under multiple environmental stresses, including acid stress. RESULTS In this study, the effect of preformed T. halophilus biofilms on cell survival, cellular structure, intracellular environment, and the expression of genes and proteins under acid stress was investigated. The result showed that acid stress with pH 4.30 for 1.5 h reduced the live T. halophilus cell count and caused cellular structure damage. However, T. halophilus biofilm cells exhibited greater cell survival under acid stress than the planktonic cells, and biofilm formation reduced the damage of acid stress to the cell membrane and cell wall. The biofilm cells maintained a higher level of H+ -ATPase activity and intracellular ammonia concentration after acid stress. The RNA-Seq and iTRAQ technologies revealed that the genes and proteins associated with ATP production, the uptake of trehalose and N-acetylmuramic acid, the assembly of H+ -ATPase, amino acid biosynthesis and metabolism, ammonia production, fatty acid biosynthesis, CoA biosynthesis, thiamine production, and acetoin biosynthesis might be responsible for the stronger acid tolerance of T. halophilus biofilm cells together. CONCLUSION These findings further explained the mechanisms that allowed LAB biofilm cells to resist environmental stress. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongkun Tu
- Luzhou Lao Jiao Co., Ltd., Luzhou, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Erol Z, Taşçı F. Investigation of the seasonal prevalence, phenotypic, and genotypic characteristics of Listeria monocytogenes in slaughterhouses in Burdur. J Appl Microbiol 2024; 135:lxae056. [PMID: 38460954 DOI: 10.1093/jambio/lxae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
AIM This study examined Listeria monocytogenes isolates from two slaughterhouses in Burdur province, southern Turkey, over four seasons for antibiotic resistance, serogroups, virulence genes, in vitro biofilm forming capacity, and genetic relatedness. METHODS AND RESULTS Carcass (540) and environment-equipment surface (180) samples were collected from two slaughterhouses (S1, S2) for 1 year (4 samplings). Of the 89 (12.4%) positive isolates, 48 (53.9%) were from animal carcasses, and 41 (46.1%) from the environment-equipment surfaces. Autumn was the peak season for Listeria monocytogenes compared to summer and spring (P < 0.05). In addition, the most common serotype between seasons was 1/2c. Except for plcA and luxS genes, all isolates (100%) harbored inlA, inlC, inlJ, hlyA, actA, iap, flaA genes. Listeria monocytogenes isolates were identified as belonging to IIc (1/2c-3c; 68.5%), IVb (4b-4d-4e; 29.2%), and IIa (1/2a-3a; 2.2%) in the screening using multiplex polymerase chain reaction-based serogrouping test. A total of 65 pulsotypes and 13 clusters with at least 80% homology were determined by using pulsed field gel electrophoresis on samples that had been digested with ApaI. Thirty-four (38.2%) of the isolates were not resistant to any of the 14 antibiotics tested. The antibiotic to which the isolates showed the most resistance was rifampicin (44.9%). Serotype 1/2c was the most resistant serotype to antibiotics. Despite having biofilm-associated genes (inlA, inlB, actA, flaA, and luxS), a minority (11%) of isolates formed weak biofilm. CONCLUSION This study revealed seasonal changes prevalence of Listeria monocytogenes, particularly higher in autumn, posing a greater risk of meat contamination. Notably, Serotype 1/2c showed significant prevalence and antibiotic resistance. Indistinguishable isolates indicated cross-contamination, underscoring the importance of prioritized training for slaughterhouse personnel in sanitation and hygiene protocols.
Collapse
Affiliation(s)
- Zeki Erol
- Veterinary Faculty, Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
- Veterinary Faculty, Department of Food Hygiene and Technology, Necmettin Erbakan University, 42310 Ereğli/Konya, Turkey
| | - Fulya Taşçı
- Veterinary Faculty, Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| |
Collapse
|
6
|
Pracser N, Zaiser A, Ying HMK, Pietzka A, Wagner M, Rychli K. Diverse Listeria monocytogenes in-house clones are present in a dynamic frozen vegetable processing environment. Int J Food Microbiol 2024; 410:110479. [PMID: 37977080 DOI: 10.1016/j.ijfoodmicro.2023.110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Listeria (L.) monocytogenes is of global concern for food safety as the listeriosis-causing pathogen is widely distributed in the food processing environments, where it can survive for a long time. Frozen vegetables contaminated with L. monocytogenes were recently identified as the source of two large listeriosis outbreaks in the EU and US. So far, only a few studies have investigated the occurrence and behavior of Listeria in frozen vegetables and the associated processing environment. This study investigates the occurrence of L. monocytogenes and other Listeria spp. in a frozen vegetable processing environment and in frozen vegetable products. Using whole genome sequencing (WGS), the distribution of sequence types (MLST-STs) and core genome sequence types (cgMLST-CT) of L. monocytogenes were assessed, and in-house clones were identified. Comparative genomic analyses and phenotypical characterization of the different MLST-STs and isolates were performed, including growth ability under low temperatures, as well as survival of freeze-thaw cycles. Listeria were widely disseminated in the processing environment and five in-house clones namely ST451-CT4117, ST20-CT3737, ST8-CT1349, ST8-CT6243, ST224-CT5623 were identified among L. monocytogenes isolates present in environmental swab samples. Subsequently, the identified in-house clones were also detected in product samples. Conveyor belts were a major source of contamination in the processing environment. A wide repertoire of stress resistance markers supported the colonization and survival of L. monocytogenes in the frozen vegetable processing facility. The presence of ArgB was significantly associated with in-house clones. Significant differences were also observed in the growth rate between different MLST-STs at low temperatures (4 °C and 10 °C), but not between in-house and non-in-house isolates. All isolates harbored major virulence genes such as full length InlA and InlB and LIPI-1, yet there were differences between MLST-STs in the genomic content. The results of this study demonstrate that WGS is a strong tool for tracing contamination sources and transmission routes, and for identifying in-house clones. Further research targeting the co-occurring microbiota and the presence of biofilms is needed to fully understand the mechanism of colonization and persistence in a food processing environment.
Collapse
Affiliation(s)
- Nadja Pracser
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria.
| | - Andreas Zaiser
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Hui Min Katharina Ying
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ariane Pietzka
- Austrian National Reference Laboratory for Listeria monocytogenes, Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Beethovenstrasse 6, 8010 Graz, Austria.
| | - Martin Wagner
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Kathrin Rychli
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
7
|
Bongiovanni M, Cavallo C, Barda B, Strulak L, Bernasconi E, Cardia A. Clinical Findings of Listeria monocytogenes Infections with a Special Focus on Bone Localizations. Microorganisms 2024; 12:178. [PMID: 38258004 PMCID: PMC10821090 DOI: 10.3390/microorganisms12010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogenic bacterium which can be found in soil or water. Infection with the microorganism can occur after ingestion of contaminated food products. Small and large outbreaks of listeriosis have been described in the past. L. monocytogenes can cause a number of different clinical syndromes, most frequently sepsis, meningitis, and rhombencephalitis, particularly in immunocompromised hosts. L. monocytogenes systemic infections can develop following tissue penetration across the gastrointestinal tract or to hematogenous spread to sterile sites, possibly evolving towards bacteremia. L. monocytogenes only rarely causes bone or joint infections, usually in the context of prosthetic material that can provide a site for bacterial seeding. We describe here the clinical findings of invasive listeriosis, mainly focusing on the diagnosis, clinical management, and treatment of bone and vertebral infections occurring in the context of invasive listeriosis.
Collapse
Affiliation(s)
- Marco Bongiovanni
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (B.B.); (E.B.)
| | - Claudio Cavallo
- Division of Neurosurgery, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (C.C.); (L.S.)
| | - Beatrice Barda
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (B.B.); (E.B.)
| | - Lukasz Strulak
- Division of Neurosurgery, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (C.C.); (L.S.)
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (B.B.); (E.B.)
| | - Andrea Cardia
- Division of Neurosurgery, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; (C.C.); (L.S.)
| |
Collapse
|
8
|
Mejía L, Espinosa-Mata E, Freire AL, Zapata S, González-Candelas F. Listeria monocytogenes, a silent foodborne pathogen in Ecuador. Front Microbiol 2023; 14:1278860. [PMID: 38179446 PMCID: PMC10764610 DOI: 10.3389/fmicb.2023.1278860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can produce serious, even fatal, infections. Among other foods, it can be found in unpasteurized dairy and ready-to-eat products. Surveillance of L. monocytogenes is of great interest since sources of infection are difficult to determine due to the long incubation period, and because the symptoms of listeriosis are similar to other diseases. We performed a genomic study of L. monocytogenes isolated from fresh cheeses and clinical samples from Ecuador. Sixty-five isolates were evaluated and sequenced, 14 isolates from cheese samples and 20 from clinical listeriosis cases from the National Institute of National Institute of Public Health Research, and 31 isolates from artisanal cheese samples from 8 provinces. All isolates exhibited heterogeneous patterns of the presence of pathogenicity islands. All isolates exhibited at least 4 genes from LIPI-1, but all references (26 L. monocytogenes closed genomes available in the NCBI database) showed the complete island, which encompasses 5 genes but is present in only two Ecuadorian isolates. Most isolates lacked gene actA. Genes from LIPI-2 were absent in all isolates. LIPI-3 and LIPI-4 were present in only a few references and isolates. With respect to the stress survival islets, our samples either presented SSI-1 or SSI-F2365, except for one isolate that presented SSI-F2365 and also one gene from SSI-1. None of the samples presented SSI-2. The predominant ST (sequence type) was ST2 (84.62% 55/65), and the only ST found in food (93.33% 42/45) and clinical samples (65% 13/20). Isolates were not grouped according to their sampling origin, date, or place in a phylogenetic tree obtained from the core alignment. The presence of ST2 in food and clinical samples, with high genomic similarity, suggests a foodborne infection risk linked to the consumption of fresh cheeses in Ecuador.
Collapse
Affiliation(s)
- Lorena Mejía
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
| | - Estefanía Espinosa-Mata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ana Lucía Freire
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sonia Zapata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
- CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain
| |
Collapse
|
9
|
Monteith W, Pascoe B, Mourkas E, Clark J, Hakim M, Hitchings MD, McCarthy N, Yahara K, Asakura H, Sheppard SK. Contrasting genes conferring short- and long-term biofilm adaptation in Listeria. Microb Genom 2023; 9:001114. [PMID: 37850975 PMCID: PMC10634452 DOI: 10.1099/mgen.0.001114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Listeria monocytogenes is an opportunistic food-borne bacterium that is capable of infecting humans with high rates of hospitalization and mortality. Natural populations are genotypically and phenotypically variable, with some lineages being responsible for most human infections. The success of L. monocytogenes is linked to its capacity to persist on food and in the environment. Biofilms are an important feature that allow these bacteria to persist and infect humans, so understanding the genetic basis of biofilm formation is key to understanding transmission. We sought to investigate the biofilm-forming ability of L. monocytogenes by identifying genetic variation that underlies biofilm formation in natural populations using genome-wide association studies (GWAS). Changes in gene expression of specific strains during biofilm formation were then investigated using RNA sequencing (RNA-seq). Genetic variation associated with enhanced biofilm formation was identified in 273 genes by GWAS and differential expression in 220 genes by RNA-seq. Statistical analyses show that the number of overlapping genes flagged by either type of experiment is less than expected by random sampling. This novel finding is consistent with an evolutionary scenario where rapid adaptation is driven by variation in gene expression of pioneer genes, and this is followed by slower adaptation driven by nucleotide changes within the core genome.
Collapse
Affiliation(s)
- William Monteith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biology, University of Bath, Claverton Down, Bath, UK
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | | | - Jack Clark
- Department of Genetics, University of Leicester, University Road, Leicester, UK
| | - Maliha Hakim
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Matthew D. Hitchings
- Swasnsea University Medical School, Swansea University, Singleton Campus, Swansea, UK
| | - Noel McCarthy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | | |
Collapse
|
10
|
Finn L, Onyeaka H, O’Neill S. Listeria monocytogenes Biofilms in Food-Associated Environments: A Persistent Enigma. Foods 2023; 12:3339. [PMID: 37761048 PMCID: PMC10529182 DOI: 10.3390/foods12183339] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Listeria monocytogenes (LM) is a bacterial pathogen responsible for listeriosis, a foodborne illness associated with high rates of mortality (20-30%) and hospitalisation. It is particularly dangerous among vulnerable groups, such as newborns, pregnant women and the elderly. The persistence of this organism in food-associated environments for months to years has been linked to several devastating listeriosis outbreaks. It may also result in significant costs to food businesses and economies. Currently, the mechanisms that facilitate LM persistence are poorly understood. Unravelling the enigma of what drives listerial persistence will be critical for developing more targeted control and prevention strategies. One prevailing hypothesis is that persistent strains exhibit stronger biofilm production on abiotic surfaces in food-associated environments. This review aims to (i) provide a comprehensive overview of the research on the relationship between listerial persistence and biofilm formation from phenotypic and whole-genome sequencing (WGS) studies; (ii) to highlight the ongoing challenges in determining the role biofilm development plays in persistence, if any; and (iii) to propose future research directions for overcoming these challenges.
Collapse
Affiliation(s)
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
11
|
Avila-Novoa MG, González-Torres B, González-Gómez JP, Guerrero-Medina PJ, Martínez-Chávez L, Martínez-Gonzáles NE, Chaidez C, Gutiérrez-Lomelí M. Genomic Insights into Listeria monocytogenes: Organic Acid Interventions for Biofilm Prevention and Control. Int J Mol Sci 2023; 24:13108. [PMID: 37685913 PMCID: PMC10487766 DOI: 10.3390/ijms241713108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Listeria monocytogenes is an important pathogen that has been implicated in foodborne illness. The aim of the present study was to investigate the diversity of virulence factors associated with the mechanisms of pathogenicity, persistence, and formation of biofilm L. monocytogenes by tandem analysis of whole-genome sequencing. The lineages that presented L. monocytogenes (LmAV-2, LmAV-3, and LmAV-6) from Hass avocados were lineages I and II. Listeria pathogenicity island 1 (LIPI-1) and LIPI-2 were found in the isolates, while LIPI-3 and Listeria genomic island (LGI-2) only was in IIb. Stress survival island (SSI-1) was identified in lineage I and II. In the in silico analysis, resistance genes belonging to several groups of antibiotics were detected, but the bcrABC and transposon Tn6188 related to resistance to quaternary ammonium salts (QACs) were not detected in L. monocytogenes. Subsequently, the anti-L. monocytogenes planktonic cell effect showed for QACs (MIC = 6.25 ppm/MBC = 100 ppm), lactic acid (MBC = 1 mg/mL), citric acid (MBC = 0.5 mg/mL) and gallic acid (MBC = 2 mg/mL). The anti-biofilm effect with organic acids (22 °C) caused a reduction of 4-5 log10 cfu/cm2 after 10 min against control biofilm L. monocytogenes formed on PP than SS. This study is an important contribution to understanding the genomic diversity and epidemiology of L. monocytogenes to establish a control measure to reduce the impact on the environment and the consumer.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (P.J.G.-M.)
| | - Berenice González-Torres
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (B.G.-T.); (J.P.G.-G.); (C.C.)
| | - Jean Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (B.G.-T.); (J.P.G.-G.); (C.C.)
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (P.J.G.-M.)
| | - Liliana Martínez-Chávez
- Departamentos de Farmacobiología y Matemáticas, CUCEI, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Nanci Edid Martínez-Gonzáles
- Departamentos de Farmacobiología y Matemáticas, CUCEI, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (B.G.-T.); (J.P.G.-G.); (C.C.)
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (P.J.G.-M.)
| |
Collapse
|
12
|
Quendera AP, Pinto SN, Pobre V, Antunes W, Bonifácio VDB, Arraiano CM, Andrade JM. The ribonuclease PNPase is a key regulator of biofilm formation in Listeria monocytogenes and affects invasion of host cells. NPJ Biofilms Microbiomes 2023; 9:34. [PMID: 37286543 PMCID: PMC10247797 DOI: 10.1038/s41522-023-00397-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Biofilms provide an environment that protects microorganisms from external stresses such as nutrient deprivation, antibiotic treatments, and immune defences, thereby creating favorable conditions for bacterial survival and pathogenesis. Here we show that the RNA-binding protein and ribonuclease polynucleotide phosphorylase (PNPase) is a positive regulator of biofilm formation in the human pathogen Listeria monocytogenes, a major responsible for food contamination in food-processing environments. The PNPase mutant strain produces less biofilm biomass and exhibits an altered biofilm morphology that is more susceptible to antibiotic treatment. Through biochemical assays and microscopical analysis, we demonstrate that PNPase is a previously unrecognized regulator of the composition of the biofilm extracellular matrix, greatly affecting the levels of proteins, extracellular DNA, and sugars. Noteworthy, we have adapted the use of the fluorescent complex ruthenium red-phenanthroline for the detection of polysaccharides in Listeria biofilms. Transcriptomic analysis of wild-type and PNPase mutant biofilms reveals that PNPase impacts many regulatory pathways associated with biofilm formation, particularly by affecting the expression of genes involved in the metabolism of carbohydrates (e.g., lmo0096 and lmo0783, encoding PTS components), of amino acids (e.g., lmo1984 and lmo2006, encoding biosynthetic enzymes) and in the Agr quorum sensing-like system (lmo0048-49). Moreover, we show that PNPase affects mRNA levels of the master regulator of virulence PrfA and PrfA-regulated genes, and these results could help to explain the reduced bacterial internalization in human cells of the ΔpnpA mutant. Overall, this work demonstrates that PNPase is an important post-transcriptional regulator for virulence and adaptation to the biofilm lifestyle of Gram-positive bacteria and highlights the expanding role of ribonucleases as critical players in pathogenicity.
Collapse
Affiliation(s)
- Ana Patrícia Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - Sandra Nunes Pinto
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory-Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - Wilson Antunes
- Laboratório de Imagem, Nanomorfologia e Espectroscopia de Raios-X (Linx) da Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Instituto Universitário Militar, Centro de Investigação, Inovação e Desenvolvimento da Academia Militar, Av. Dr Alfredo Bensaúde, 1100-471, Lisboa, Portugal
| | - Vasco D B Bonifácio
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory-Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - José Marques Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal.
| |
Collapse
|
13
|
Ramadan H, Al-Ashmawy M, Soliman AM, Elbediwi M, Sabeq I, Yousef M, Algammal AM, Hiott LM, Berrang ME, Frye JG, Jackson CR. Whole-genome sequencing of Listeria innocua recovered from retail milk and dairy products in Egypt. Front Microbiol 2023; 14:1160244. [PMID: 37234542 PMCID: PMC10206011 DOI: 10.3389/fmicb.2023.1160244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
The similarity of the Listeria innocua genome with Listeria monocytogenes and their presence in the same niche may facilitate gene transfer between them. A better understanding of the mechanisms responsible for bacterial virulence requires an in-depth knowledge of the genetic characteristics of these bacteria. In this context, draft whole genome sequences were completed on five L. innocua isolated from milk and dairy products in Egypt. The assembled sequences were screened for antimicrobial resistance and virulence genes, plasmid replicons and multilocus sequence types (MLST); phylogenetic analysis of the sequenced isolates was also performed. The sequencing results revealed the presence of only one antimicrobial resistance gene, fosX, in the L. innocua isolates. However, the five isolates carried 13 virulence genes involved in adhesion, invasion, surface protein anchoring, peptidoglycan degradation, intracellular survival, and heat stress; all five lacked the Listeria Pathogenicity Island 1 (LIPI-1) genes. MLST assigned these five isolates into the same sequence type (ST), ST-1085; however, single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed 422-1,091 SNP differences between our isolates and global lineages of L. innocua. The five isolates possessed an ATP-dependent protease (clpL) gene, which mediates heat resistance, on a rep25 type plasmids. Blast analysis of clpL-carrying plasmid contigs showed approximately 99% sequence similarity to the corresponding parts of plasmids of L. monocytogenes strains 2015TE24968 and N1-011A previously isolated from Italy and the United States, respectively. Although this plasmid has been linked to L. monocytogenes that was responsible for a serious outbreak, this is the first report of L. innocua containing clpL-carrying plasmids. Various genetic mechanisms of virulence transfer among Listeria species and other genera could raise the possibility of the evolution of virulent strains of L. innocua. Such strains could challenge processing and preservation protocols and pose health risks from dairy products. Ongoing genomic research is necessary to identify these alarming genetic changes and develop preventive and control measures.
Collapse
Affiliation(s)
- Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Maha Al-Ashmawy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed M. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Animal Health Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Islam Sabeq
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Tukh, Qalyubia, Egypt
| | - Mona Yousef
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Mark E. Berrang
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| |
Collapse
|
14
|
Tholany J, Samra H, Kobayashi T, Prasidthrathsint K. Primary spontaneous listerial peritonitis. IDCases 2023; 32:e01748. [PMID: 36974133 PMCID: PMC10038783 DOI: 10.1016/j.idcr.2023.e01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
A male in his mid-60s with chronic kidney disease, ischemic cardiomyopathy, and nonalcoholic cirrhosis due to congestive hepatopathy presented with fever and abdominal pain for two weeks. He underwent diagnostic paracentesis, which noted an ascitic neutrophil count over 7000/mm3. Gram stain of the ascitic fluid showed Gram-positive cocci. He was diagnosed with spontaneous bacterial peritonitis (SBP) and was started on ceftriaxone. Ascites cultures grew Listeria monocytogenes and antibiotics were changed to ampicillin. He received one week of ampicillin while inpatient and seven weeks of oral amoxicillin, at which point his ascitic neutrophil count was less than 250/mm3. He was continued on suppressive amoxicillin for an additional 14 weeks with no recurrence in over a year after the discontinuation of amoxicillin. Though uncommon, L. monocytogenes should be considered a pathogen causing SBP. Focal listerial infections can be treated with penicillins alone while invasive disease may require the addition of aminoglycosides.
Collapse
|
15
|
Listeria monocytogenes-How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts. Pathogens 2022; 11:pathogens11121491. [PMID: 36558825 PMCID: PMC9783847 DOI: 10.3390/pathogens11121491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Listeriosis is a serious food-borne illness, especially in susceptible populations, including children, pregnant women, and elderlies. The disease can occur in two forms: non-invasive febrile gastroenteritis and severe invasive listeriosis with septicemia, meningoencephalitis, perinatal infections, and abortion. Expression of each symptom depends on various bacterial virulence factors, immunological status of the infected person, and the number of ingested bacteria. Internalins, mainly InlA and InlB, invasins (invasin A, LAP), and other surface adhesion proteins (InlP1, InlP4) are responsible for epithelial cell binding, whereas internalin C (InlC) and actin assembly-inducing protein (ActA) are involved in cell-to-cell bacterial spread. L. monocytogenes is able to disseminate through the blood and invade diverse host organs. In persons with impaired immunity, the elderly, and pregnant women, the pathogen can also cross the blood-brain and placental barriers, which results in the invasion of the central nervous system and fetus infection, respectively. The aim of this comprehensive review is to summarize the current knowledge on the epidemiology of listeriosis and L. monocytogenes virulence mechanisms that are involved in host infection, with a special focus on their molecular and cellular aspects. We believe that all this information is crucial for a better understanding of the pathogenesis of L. monocytogenes infection.
Collapse
|
16
|
Qiao Z, Zhang L, Wang X, Liu B, Shan Y, Yi Y, Zhou Y, Lü X. Antibiofilm Effects of Bacteriocin BMP32r on Listeria monocytogenes. Probiotics Antimicrob Proteins 2022; 14:1067-1076. [PMID: 34709598 DOI: 10.1007/s12602-021-09863-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/25/2022]
Abstract
Listeria monocytogenes is a well-known foodborne pathogen that usually lives as biofilm to cope with unfavorable surroundings. Bacteriocins have been reported as antimicrobial compounds, and their bactericidal actions have been extensively studied, but their antibiofilm actions have rarely been studied. Previous study indicated that bacteriocin BMP32r has a broad-spectrum antibacterial activity. In this study, the efficacy of BMP32r against the planktonic bacteria, inhibition of forming biofilm, destruction of mature biofilm, and kill persisters of L. monocytogenes ATCC 15,313 was determined. BMP32r exhibited the bactericidal effect on L. monocytogenes planktonic bacteria. Crystal violet staining showed that sub-minimum inhibitory concentrations (SICs) of BMP32r (1/32 × MIC and 1/16 × MIC) significantly (p < 0.001) inhibit the biofilm formation. In addition, the results of CCK-8, plate count, ruthenium red staining, scanning electron microscopy, and real-time quantitative PCR assay showed that SICs of BMP32r reduced cell adhesion, exopolysaccharide production, quorum sensing, and virulence genes expression in biofilm formation. Moreover, higher concentrations of BMP32r (2 × MIC and 4 × MIC) disrupt the mature biofilm by killing the bacteria in the biofilm and kill L. monocytogenes persisters bacteria effectively. Therefore, BMP32r has promising potential as an antibiofilm agent to combat L. monocytogenes.
Collapse
Affiliation(s)
- Zhu Qiao
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.,School of Biological and Food Processing Engineering, Huanghuai University, Henan Province 463000, Zhumadian, China
| | - Leshan Zhang
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
17
|
Phenyllactic acid application to control Listeria monocytogenes biofilms and its growth in milk and spiced beef. Int J Food Microbiol 2022; 381:109910. [DOI: 10.1016/j.ijfoodmicro.2022.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
|
18
|
Formation of biofilm changed the responses of Tetragenococcus halophilus to ethanol stress revealed by transcriptomic and proteomic analyses. Food Res Int 2022; 161:111817. [DOI: 10.1016/j.foodres.2022.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
|
19
|
Antibiofilm, AntiAdhesive and Anti-Invasive Activities of Bacterial Lysates Extracted from Pediococcus acidilactici against Listeria monocytogenes. Foods 2022; 11:foods11192948. [PMID: 36230024 PMCID: PMC9562709 DOI: 10.3390/foods11192948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate whether bacterial lysates (BLs) extracted from Pediococcus acidilactici reduce Listeria monocytogenes biofilm formation, as well as adhesion to and invasion of human intestinal epithelial cells. Pretreatment with P. acidilactici BLs (20, 40, and 80 μg/mL) significantly inhibited L. monocytogenes biofilm formation on the surface of polystyrene (p < 0.05). Fluorescence and scanning-electron-microscopic analyses indicated that L. monocytogenes biofilm comprised a much less dense layer of more-dispersed cells in the presence of P. acidilactici BLs. Moreover, biofilm-associated genes, such as flaA, fliG, flgE, motB, degU, agrA, and prfA, were significantly downregulated in the presence of P. acidilactici BLs (p < 0.05), suggesting that P. acidilactici BLs prevent L. monocytogenes biofilm development by suppressing biofilm-associated genes. Although P. acidilactici BLs did not dose-dependently inhibit L. monocytogenes adhesion to and invasion of intestinal epithelial cells, the BLs effectively inhibited adhesion and invasion at 40 and 80 μg/mL (p < 0.05). Supporting these findings, P. acidilactici BLs significantly downregulated L. monocytogenes transcription of genes related to adhesion and invasion, specifically fbpA, ctaP, actA, lapB, ami, and inlA. Collectively, these results suggest that P. acidilactici BLs have the potential to reduce health risks from L. monocytogenes.
Collapse
|
20
|
Shen J, Zhang G, Yang J, Zhao L, Jiang Y, Guo D, Wang X, Zhi S, Xu X, Dong Q, Wang X. Prevalence, antibiotic resistance, and molecular epidemiology of Listeria monocytogenes isolated from imported foods in China during 2018 to 2020. Int J Food Microbiol 2022; 382:109916. [PMID: 36126498 DOI: 10.1016/j.ijfoodmicro.2022.109916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 04/19/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
A total of 1797 imported food samples collected during 2018 to 2020 were investigated for Listeria monocytogenes. Antibiotic susceptibility tests and whole genome sequencing analysis were performed for the obtained isolates. The overall prevalence of L. monocytogenes was 5.62 %; the highest prevalence was observed for pork (13.65 %), followed by fish (6.25 %), sheep casing (6.06 %), chicken (3.61 %), and beef (2.06 %). Geographical differences in prevalence were also observed for pork. Resistance to oxacillin (39.33 %) and clindamycin (16.85 %) was common, whereas resistance rates for other antibiotics were relatively low, ranging from 0 % to 6.74 %. Pork and fish isolates showed resistance to more antibiotics than beef isolates. Tetracycline and chloramphenicol resistance phenotypes strongly correlated with genotypes. The predominant serogroup was 1/2a, 3a, at 44.44 %, while the percentages of three other serogroups were similar and relatively lower, from 17.28 % to 19.75 %. Significant genetic differences were observed among lineage I and II isolates. LIPI-3 was carried by 19.75 % (16/81) of isolates and LIPI-4 by 6.17 % (5/81); all were lineage I. The stress survival island was present in 31.03 % (9/29) of lineage I and 83.02 % (44/53) of lineage II. Benzalkonium chloride tolerance genes were carried by 10.34 % (3/29) of lineage I and 23.08 % (12/52) of lineage II isolates. A total of 25 sequence types (STs) were identified, among which one was novel; ST9 and ST121 were the most prevalent. Disparate distribution of STs among food types was observed, and geographical and food related characteristics were also found for some STs. Hypervirulent STs, such as ST1, ST4 and ST6, belonged to 4b,4e,4e; carried LIPI-3 and/or LIPI-4; and some even were ECI or ECII; while only one carried SSI or BC tolerance genes. In contrast, hypo-virulent STs such as ST9 and ST121 carried SSI and BC tolerance genes, while none had LIPI-3/LIPI-4. Certain STs were detected frequently from a particular food of a particular country for a long time, indicating more attention should be given to these special persistent isolates. These findings are valuable for source tracking, prevention and control of L. monocytogenes in the global food chain.
Collapse
Affiliation(s)
- Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Jielin Yang
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Lina Zhao
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Yuan Jiang
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing 210095, China.
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Xuan Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xuebin Xu
- Shanghai Centers for Disease Prevention and Control, Shanghai 200336, China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
21
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes in foods-From culture identification to whole-genome characteristics. Food Sci Nutr 2022; 10:2825-2854. [PMID: 36171778 PMCID: PMC9469866 DOI: 10.1002/fsn3.2910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen, which is able to persist in the food production environments. The presence of these bacteria in different niches makes them a potential threat for public health. In the present review, the current information on the classical and alternative methods used for isolation and identification of L. monocytogenes in food have been described. Although these techniques are usually simple, standardized, inexpensive, and are routinely used in many food testing laboratories, several alternative molecular-based approaches for the bacteria detection in food and food production environments have been developed. They are characterized by the high sample throughput, a short time of analysis, and cost-effectiveness. However, these methods are important for the routine testing toward the presence and number of L. monocytogenes, but are not suitable for characteristics and typing of the bacterial isolates, which are crucial in the study of listeriosis infections. For these purposes, novel approaches, with a high discriminatory power to genetically distinguish the strains during epidemiological studies, have been developed, e.g., whole-genome sequence-based techniques such as NGS which provide an opportunity to perform comparison between strains of the same species. In the present review, we have shown a short description of the principles of microbiological, alternative, and modern methods of detection of L. monocytogenes in foods and characterization of the isolates for epidemiological purposes. According to our knowledge, similar comprehensive papers on such subject have not been recently published, and we hope that the current review may be interesting for research communities.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Beata Lachtara
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| |
Collapse
|
22
|
Cho HY, Lee JE, Lee JH, Ahn DU, Kim KT, Paik HD. Anti-biofilm effect of egg white ovotransferrin and its hydrolysates against Listeria monocytogenes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Sibanda T, Buys EM. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022; 10:microorganisms10081522. [PMID: 36013940 PMCID: PMC9416357 DOI: 10.3390/microorganisms10081522] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo P.O. Box AC939, Zimbabwe
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
24
|
Synergistic Effect of Lithocholic Acid with Gentamicin against Gram-Positive Bacteria but Not against Gram-Negative Bacteria. Molecules 2022; 27:molecules27072318. [PMID: 35408717 PMCID: PMC9000364 DOI: 10.3390/molecules27072318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is an important Gram-positive food-borne pathogen that severely threatens public health. A checkerboard microdilution method was performed to evaluate the synergistic effect of lithocholic acid (LCA) with Gentamicin (Genta) against L. monocytogenes. BacLight LIVE/DEAD staining, scanning electron microscopy and biofilm inhibition assays were further used to explore the bactericidal effect and antibiofilm effect of this combination on L. monocytogenes. Additionally, the synergistic effects of LCA derivatives with Genta were also evaluated against L. monocytogenes, S.aureus and S. suis. The results indicated that a synergistic bactericidal effect was observed for the combined therapy of LCA at the concentration without affecting bacteria viability, with Genta. Additionally, LCA in combination with Genta had a synergistic effect against Gram-positive bacteria (L. monocytogenes, S. aureus and S. suis) but not against Gram-negative bacteria (E. coli, A. baumannii and Salmonella). BacLight LIVE/DEAD staining and scanning electron microscopy analysis revealed that the combination of LCA with Genta caused L. monocytogenes membrane injury, leading to bacteria death. We found that 8 μg/mL LCA treatment effectively improved the ability of Genta to eradicate L. monocytogenes biofilms. In addition, we found that chenodeoxycholic acid, as a cholic acid derivative, also improved the bactericidal effect of Genta against Gram-positive bacteria. Our results indicate that LCA represents a broad-spectrum adjuvant with Genta for infection caused by L. monocytogenes and other Gram-positive pathogens.
Collapse
|
25
|
Melian C, Bentencourt E, Castellano P, Ploper D, Vignolo G, Mendoza LM. Biofilm genes expression of Listeria monocytogenes exposed to Latilactobacillus curvatus bacteriocins at 10 °C. Int J Food Microbiol 2022; 370:109648. [DOI: 10.1016/j.ijfoodmicro.2022.109648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
26
|
Liang S, Hu X, Wang R, Fang M, Yu Y, Xiao X. The combination of thymol and cinnamaldehyde reduces the survival and virulence of Listeria monocytogenes on autoclaved chicken breast. J Appl Microbiol 2022; 132:3937-3950. [PMID: 35178822 DOI: 10.1111/jam.15496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
AIMS To reveal the antibacterial mechanism of the combination of thymol and cinnamaldehyde to Listeria monocytogenes ATCC 19115 on autoclaved chicken breast. METHODS AND RESULTS In this study, Listeria monocytogenes ATCC 19115 on autoclaved chicken breast was exposed to the stress of 125 μg/mL thymol and 125 μg/mL cinnamaldehyde, and transcriptome analysis was used to reveal the crucial antibacterial mechanism. According to the results, 1303 significantly differentially expressed genes (DEGs) were identified. Treated by thymol and cinnamaldehyde in combination, pyrimidine and branched-chain amino acids biosynthesis of L. monocytogenes were thwarted which impairs its nucleic acid biosynthesis and intracellular metabolism. The up-regulated DEGs involved in membrane composition and function contributed to membrane repair. Besides, pyruvate catabolism and TCA cycle were restrained which brought about the disturbance of amino acid metabolism. ABC transporters were also perturbed, for instance, the uptake of cysteine, D-methionine and betaine was activated, while the uptake of vitamin, iron and carnitine was repressed. Thus, L. monocytogenes tended to activate PTS, glycolysis, glycerol catabolism, and pentose phosphate pathways to obtain energy to adapt to the hostile condition. Noticeably, DEGs involved in virulence factors were totally down-regulated, including genes devoted to encoding flagella, chemotaxis, biofilm formation, internalin as well as virulence gene clusters. CONCLUSIONS The combination of thymol and cinnamaldehyde is effective to reduce the survival and potential virulence of L. monocytogenes on autoclaved chicken breast. SIGNIFICANCE AND IMPACT OF STUDY This work contributes to providing theoretical information for the application and optimization of thymol and cinnamaldehyde in ready-to-eat meat products to inhibit L. monocytogenes.
Collapse
Affiliation(s)
- Siwei Liang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Xinyi Hu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Ruifei Wang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Meimei Fang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Xinglong Xiao
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| |
Collapse
|
27
|
A single exposure to a sublethal concentration of Origanum vulgare essential oil initiates response against food stressors and restoration of antibiotic susceptibility in Listeria monocytogenes. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Aqueous extracts of spices inhibit biofilm in Listeria monocytogenes by downregulating release of eDNA. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
30
|
Hafner L, Pichon M, Burucoa C, Nusser SHA, Moura A, Garcia-Garcera M, Lecuit M. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat Commun 2021; 12:6826. [PMID: 34819495 PMCID: PMC8613254 DOI: 10.1038/s41467-021-27069-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023] Open
Abstract
Listeria genus comprises two pathogenic species, L. monocytogenes (Lm) and L. ivanovii, and non-pathogenic species. All can thrive as saprophytes, whereas only pathogenic species cause systemic infections. Identifying Listeria species' respective biotopes is critical to understand the ecological contribution of Listeria virulence. In order to investigate the prevalence and abundance of Listeria species in various sources, we retrieved and analyzed 16S rRNA datasets from MG-RAST metagenomic database. 26% of datasets contain Listeria sensu stricto sequences, and Lm is the most prevalent species, most abundant in soil and host-associated environments, including 5% of human stools. Lm is also detected in 10% of human stool samples from an independent cohort of 900 healthy asymptomatic donors. A specific microbiota signature is associated with Lm faecal carriage, both in humans and experimentally inoculated mice, in which it precedes Lm faecal carriage. These results indicate that Lm faecal carriage is common and depends on the gut microbiota, and suggest that Lm faecal carriage is a crucial yet overlooked consequence of its virulence.
Collapse
Affiliation(s)
- Lukas Hafner
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Maxime Pichon
- University Hospital of Poitiers, Infectious Agents Department, Bacteriology and Infection Control Laboratory, 86021, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, EA 4331, 86022, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, Inserm U1070, 86022, Poitiers, France
| | - Christophe Burucoa
- University Hospital of Poitiers, Infectious Agents Department, Bacteriology and Infection Control Laboratory, 86021, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, EA 4331, 86022, Poitiers, France
- Université de Poitiers, Faculté de Médecine et de Pharmacie, Inserm U1070, 86022, Poitiers, France
| | - Sophie H A Nusser
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015, Paris, France
| | - Marc Garcia-Garcera
- University of Lausanne, Department of Fundamental Microbiology, 1015, Lausanne, Switzerland
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015, Paris, France.
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015, Paris, France.
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006, Paris, France.
| |
Collapse
|
31
|
Rhizobacteria Impact Colonization of Listeria monocytogenes on Arabidopsis thaliana Roots. Appl Environ Microbiol 2021; 87:e0141121. [PMID: 34550783 PMCID: PMC8579980 DOI: 10.1128/aem.01411-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In spite of its relevance as a foodborne pathogen, we have limited knowledge about Listeria monocytogenes in the environment. L. monocytogenes outbreaks have been linked to fruits and vegetables; thus, a better understanding of the factors influencing its ability to colonize plants is important. We tested how environmental factors and other soil- and plant-associated bacteria influenced L. monocytogenes' ability to colonize plant roots using Arabidopsis thaliana seedlings in a hydroponic growth system. We determined that the successful root colonization of L. monocytogenes 10403S was modestly but significantly enhanced by the bacterium being pregrown at higher temperatures, and this effect was independent of the biofilm and virulence regulator PrfA. We tested 14 rhizosphere-derived bacteria for their impact on L. monocytogenes 10403S, identifying one that enhanced and 10 that inhibited the association of 10403S with plant roots. We also characterized the outcomes of these interactions under both coinoculation and invasion conditions. We characterized the physical requirements of five of these rhizobacteria to impact the association of L. monocytogenes 10403S with roots, visualizing one of these interactions by microscopy. Furthermore, we determined that two rhizobacteria (one an inhibitor, the other an enhancer of 10403S root association) were able to similarly impact 10 different L. monocytogenes strains, indicating that the effects of these rhizobacteria on L. monocytogenes are not strain specific. Taken together, our results advance our understanding of the parameters that affect L. monocytogenes plant root colonization, knowledge that may enable us to deter its association with and, thus, downstream contamination of, food crops. IMPORTANCE Listeria monocytogenes is ubiquitous in the environment, being found in or on soil, water, plants, and wildlife. However, little is known about the requirements for L. monocytogenes' existence in these settings. Recent L. monocytogenes outbreaks have been associated with contaminated produce; thus, we used a plant colonization model to investigate factors that alter L. monocytogenes' ability to colonize plant roots. We show that L. monocytogenes colonization of roots was enhanced when grown at higher temperatures prior to inoculation but did not require a known regulator of virulence and biofilm formation. Additionally, we identified several rhizobacteria that altered the ability of 11 different strains of L. monocytogenes to colonize plant roots. Understanding the factors that impact L. monocytogenes physiology and growth will be crucial for finding mechanisms (whether chemical or microbial) that enable its removal from plant surfaces to reduce L. monocytogenes contamination of produce and eliminate foodborne illness.
Collapse
|
32
|
Shi D, Anwar TM, Pan H, Chai W, Xu S, Yue M. Genomic Determinants of Pathogenicity and Antimicrobial Resistance for 60 Global Listeria monocytogenes Isolates Responsible for Invasive Infections. Front Cell Infect Microbiol 2021; 11:718840. [PMID: 34778102 PMCID: PMC8579135 DOI: 10.3389/fcimb.2021.718840] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes remains a significant public health threat, causing invasive listeriosis manifested as septicemia, meningitis, and abortion, with up to 30% of cases having a fatal outcome. Tracking the spread of invasive listeriosis requires an updated knowledge for virulence factors (VFs) and antimicrobial resistance features, which is an essential step toward its clinical diagnosis and treatment. Taking advantage of high-throughput genomic sequencing, we proposed that the differential genes based on the pathogenomic composition could be used to evaluate clinical observations and therapeutic options for listeriosis. Here, we performed the comparative genomic analysis of 60 strains from five continents with a diverse range of sources, representing serotypes 1/2a, 1/2b, 1/2c, and 4b, comprising lineage I and lineage II and including 13 newly contributed Chinese isolates from clinical cases. These strains were associated with globally distributed clonal groups linked with confirmed foodborne listeriosis outbreak and sporadic cases. We found that L. monocytogenes strains from clonal complex (CC) CC8, CC7, CC9, and CC415 carried most of the adherence and invasive genes. Conversely, CC1, CC2, CC4, and CC6 have the least number of adherence and invasive genes. Additionally, Listeria pathogenicity island-1 (LIPI-1), LIPI-2, intracellular survival, surface anchoring, and bile salt resistance genes were detected in all isolates. Importantly, LIPI-3 genes were harbored in CC3, CC224, and ST619 of the Chinese isolates and in CC1, CC4, and CC6 of other worldwide isolates. Notably, Chinese isolates belonging to CC14 carried antibiotic resistance genes (ARGs) against β-lactams (blaTEM-101, blaTEM-105) and macrolide (ermC-15), whereas CC7 and CC8 isolates harbored ARGs against aminoglycoside (aadA10_2, aadA6_1), which may pose a threat to therapeutic efficacy. Phylogenomic analysis showed that CC8, CC7, and CC5 of Chinese isolates, CC8 (Swiss and Italian isolates), and CC5 and CC7 (Canadian isolates) are closely clustered together and belonged to the same CC. Additionally, CC381 and CC29 of Chinese isolates shared the same genomic pattern as CC26 of Swiss isolate and CC37 of Canadian isolate, respectively, indicating strong phylogenomic relation between these isolates. Collectively, this study highlights considerable clonal diversity with well-recognized virulence and antimicrobial-resistant determinants among Chinese and worldwide isolates that stress to design improved strategies for clinical therapies.
Collapse
Affiliation(s)
- Dawei Shi
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Tanveer Muhammad Anwar
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Hang Pan
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Wenqin Chai
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Sihong Xu
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
33
|
Bland RN, Johnson JD, Waite-Cusic JG, Weisberg AJ, Riutta ER, Chang JH, Kovacevic J. Application of Whole Genome Sequencing to Understand Diversity and Presence of Genes Associated with Sanitizer Tolerance in Listeria monocytogenes from Produce Handling Sources. Foods 2021; 10:2454. [PMID: 34681501 PMCID: PMC8536156 DOI: 10.3390/foods10102454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Recent listeriosis outbreaks linked to fresh produce suggest the need to better understand and mitigate L. monocytogenes contamination in packing and processing environments. Using whole genome sequencing (WGS) and phenotype screening assays for sanitizer tolerance, we characterized 48 L. monocytogenes isolates previously recovered from environmental samples in five produce handling facilities. Within the studied population there were 10 sequence types (STs) and 16 cgMLST types (CTs). Pairwise single nucleotide polymorphisms (SNPs) ranged from 0 to 3047 SNPs within a CT, revealing closely and distantly related isolates indicative of both sporadic and continuous contamination events within the facility. Within Facility 1, we identified a closely related cluster (0-2 SNPs) of isolates belonging to clonal complex 37 (CC37; CT9492), with isolates recovered during sampling events 1-year apart and in various locations inside and outside the facility. The accessory genome of these CC37 isolates varied from 94 to 210 genes. Notable genetic elements and mutations amongst the isolates included the bcrABC cassette (2/48), associated with QAC tolerance; mutations in the actA gene on the Listeria pathogenicity island (LIPI) 1 (20/48); presence of LIPI-3 (21/48) and LIPI-4 (23/48). This work highlights the potential use of WGS in tracing the pathogen within a facility and understanding properties of L. monocytogenes in produce settings.
Collapse
Affiliation(s)
- Rebecca N. Bland
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| | - Jared D. Johnson
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA; (J.D.J.); (J.G.W.-C.)
| | - Joy G. Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA; (J.D.J.); (J.G.W.-C.)
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Elizabeth R. Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (A.J.W.); (E.R.R.); (J.H.C.)
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| |
Collapse
|
34
|
Bai X, Nakatsu CH, Bhunia AK. Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety. Foods 2021; 10:2117. [PMID: 34574227 PMCID: PMC8472614 DOI: 10.3390/foods10092117] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Biofilm formation is an integral part of the microbial life cycle in nature. In food processing environments, bacterial transmissions occur primarily through raw or undercooked foods and by cross-contamination during unsanitary food preparation practices. Foodborne pathogens form biofilms as a survival strategy in various unfavorable environments, which also become a frequent source of recurrent contamination and outbreaks of foodborne illness. Instead of focusing on bacterial biofilm formation and their pathogenicity individually, this review discusses on a molecular level how these two physiological processes are connected in several common foodborne pathogens such as Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli. In addition, biofilm formation by Pseudomonas aeruginosa is discussed because it aids the persistence of many foodborne pathogens forming polymicrobial biofilms on food contact surfaces, thus significantly elevating food safety and public health concerns. Furthermore, in-depth analyses of several bacterial molecules with dual functions in biofilm formation and pathogenicity are highlighted.
Collapse
Affiliation(s)
- Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Cindy H. Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
35
|
Polese P, Del Torre M, Stecchini ML. The COM-Poisson Process for Stochastic Modeling of Osmotic Inactivation Dynamics of Listeria monocytogenes. Front Microbiol 2021; 12:681468. [PMID: 34305844 PMCID: PMC8300431 DOI: 10.3389/fmicb.2021.681468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Controlling harmful microorganisms, such as Listeria monocytogenes, can require reliable inactivation steps, including those providing conditions (e.g., using high salt content) in which the pathogen could be progressively inactivated. Exposure to osmotic stress could result, however, in variation in the number of survivors, which needs to be carefully considered through appropriate dispersion measures for its impact on intervention practices. Variation in the experimental observations is due to uncertainty and biological variability in the microbial response. The Poisson distribution is suitable for modeling the variation of equi-dispersed count data when the naturally occurring randomness in bacterial numbers it is assumed. However, violation of equi-dispersion is quite often evident, leading to over-dispersion, i.e., non-randomness. This article proposes a statistical modeling approach for describing variation in osmotic inactivation of L. monocytogenes Scott A at different initial cell levels. The change of survivors over inactivation time was described as an exponential function in both the Poisson and in the Conway-Maxwell Poisson (COM-Poisson) processes, with the latter dealing with over-dispersion through a dispersion parameter. This parameter was modeled to describe the occurrence of non-randomness in the population distribution, even the one emerging with the osmotic treatment. The results revealed that the contribution of randomness to the total variance was dominant only on the lower-count survivors, while at higher counts the non-randomness contribution to the variance was shown to increase the total variance above the Poisson distribution. When the inactivation model was compared with random numbers generated in computer simulation, a good concordance between the experimental and the modeled data was obtained in the COM-Poisson process.
Collapse
Affiliation(s)
- Pierluigi Polese
- Polytechnic Department of Engineering and Architecture, University of Udine, Udine, Italy
| | - Manuela Del Torre
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Mara Lucia Stecchini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
36
|
Mafuna T, Matle I, Magwedere K, Pierneef RE, Reva ON. Whole Genome-Based Characterization of Listeria monocytogenes Isolates Recovered From the Food Chain in South Africa. Front Microbiol 2021; 12:669287. [PMID: 34276601 PMCID: PMC8283694 DOI: 10.3389/fmicb.2021.669287] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen which has the ability to adapt and survive in food and food processing facilities where it can persist for years. In this study, a total of 143 L. monocytogenes isolates in South Africa (SA) were characterized for their strain’s genetic relatedness, virulence profiles, stress tolerance and resistance genes associated with L. monocytogenes. The Core Genome Multilocus Sequence Typing (cgMLST) analysis revealed that the most frequent serogroups were IVb and IIa; Sequence Types (ST) were ST204, ST2, and ST1; and Clonal Complexes (CC) were CC204, CC1, and CC2. Examination of genes involved in adaptation and survival of L. monocytogenes in SA showed that ST1, ST2, ST121, ST204, and ST321 are well adapted in food processing environments due to the significant over-representation of Benzalkonium chloride (BC) resistance genes (bcrABC cassette, ermC, mdrL and Ide), stress tolerance genes (SSI-1 and SSI-2), Prophage (φ) profiles (LP_101, vB LmoS 188, vB_LmoS_293, and B054 phage), plasmids profiles (N1-011A, J1776, and pLM5578) and biofilm formation associated genes. Furthermore, the L. monocytogenes strains that showed hyper-virulent potential were ST1, ST2 and ST204, and hypo-virulent were ST121 and ST321 because of the presence and absence of major virulence factors such as LIPI-1, LIPI-3, LIPI-4 and the internalin gene family members including inlABCEFJ. The information provided in this study revealed that hyper-virulent strains ST1, ST2, and ST204 could present a major public health risk due to their association with meat products and food processing environments in SA.
Collapse
Affiliation(s)
- Thendo Mafuna
- Agricultural Research Council, Biotechnology Platform, Private Bag X05, Onderstepoort, South Africa.,Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council: Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Forestry and Fisheries, Private Bag X138, Pretoria, South Africa
| | - Rian E Pierneef
- Agricultural Research Council, Biotechnology Platform, Private Bag X05, Onderstepoort, South Africa
| | - Oleg N Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
37
|
Janež N, Škrlj B, Sterniša M, Klančnik A, Sabotič J. The role of the Listeria monocytogenes surfactome in biofilm formation. Microb Biotechnol 2021; 14:1269-1281. [PMID: 34106516 PMCID: PMC8313260 DOI: 10.1111/1751-7915.13847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes is a highly pathogenic foodborne bacterium that is ubiquitous in the natural environment and capable of forming persistent biofilms in food processing environments. This species has a rich repertoire of surface structures that enable it to survive, adapt and persist in various environments and promote biofilm formation. We review current understanding and advances on how L. monocytogenes organizes its surface for biofilm formation on surfaces associated with food processing settings, because they may be an important target for development of novel antibiofilm compounds. A synthesis of the current knowledge on the role of Listeria surfactome, comprising peptidoglycan, teichoic acids and cell wall proteins, during biofilm formation on abiotic surfaces is provided. We consider indications gained from genome-wide studies and discuss surfactome structures with established mechanistic aspects in biofilm formation. Additionally, we look at the analogies to the species L. innocua, which is closely related to L. monocytogenes and often used as its model (surrogate) organism.
Collapse
Affiliation(s)
- Nika Janež
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| | - Blaž Škrlj
- Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Meta Sterniša
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Anja Klančnik
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Jerica Sabotič
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| |
Collapse
|
38
|
Lopes-Luz L, Mendonça M, Bernardes Fogaça M, Kipnis A, Bhunia AK, Bührer-Sékula S. Listeria monocytogenes: review of pathogenesis and virulence determinants-targeted immunological assays. Crit Rev Microbiol 2021; 47:647-666. [PMID: 33896354 DOI: 10.1080/1040841x.2021.1911930] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is one of the most invasive foodborne pathogens and is responsible for numerous outbreaks worldwide. Most of the methods to detect this bacterium in food require selective enrichment using traditional bacterial culture techniques that can be time-consuming and labour-intensive. Moreover, molecular methods are expensive and need specific technical knowledge. In contrast, immunological approaches are faster, simpler, and user-friendly alternatives and have been developed for the detection of L. monocytogenes in food, environmental, and clinical samples. These techniques are dependent on the constitutive expression of L. monocytogenes antigens and the specificity of the antibodies used. Here, updated knowledge on pathogenesis and the key immunogenic virulence determinants of L. monocytogenes that are used for the generation of monoclonal and polyclonal antibodies for the serological assay development are summarised. In addition, immunological approaches based on enzyme-linked immunosorbent assay, immunofluorescence, lateral flow immunochromatographic assays, and immunosensors with relevant improvements are highlighted. Though the sensitivity and specificity of the assays were improved significantly, methods still face many challenges that require further validation before use.
Collapse
Affiliation(s)
- Leonardo Lopes-Luz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal do Agreste de Pernambuco, Garanhuns, Brasil
| | | | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Samira Bührer-Sékula
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
39
|
Anti-biofilm effect of the cell-free supernatant of probiotic Saccharomyces cerevisiae against Listeria monocytogenes. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Bai X, Liu D, Xu L, Tenguria S, Drolia R, Gallina NLF, Cox AD, Koo OK, Bhunia AK. Biofilm-isolated Listeria monocytogenes exhibits reduced systemic dissemination at the early (12-24 h) stage of infection in a mouse model. NPJ Biofilms Microbiomes 2021; 7:18. [PMID: 33558519 PMCID: PMC7870835 DOI: 10.1038/s41522-021-00189-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
Environmental cues promote microbial biofilm formation and physiological and genetic heterogeneity. In food production facilities, biofilms produced by pathogens are a major source for food contamination; however, the pathogenesis of biofilm-isolated sessile cells is not well understood. We investigated the pathogenesis of sessile Listeria monocytogenes (Lm) using cell culture and mouse models. Lm sessile cells express reduced levels of the lap, inlA, hly, prfA, and sigB and show reduced adhesion, invasion, translocation, and cytotoxicity in the cell culture model than the planktonic cells. Oral challenge of C57BL/6 mice with food, clinical, or murinized-InlA (InlAm) strains reveals that at 12 and 24 h post-infection (hpi), Lm burdens are lower in tissues of mice infected with sessile cells than those infected with planktonic cells. However, these differences are negligible at 48 hpi. Besides, the expressions of inlA and lap mRNA in sessile Lm from intestinal content are about 6.0- and 280-fold higher than the sessle inoculum, respectively, suggesting sessile Lm can still upregulate virulence genes shortly after ingestion (12 h). Similarly, exposure to simulated gastric fluid (SGF, pH 3) and intestinal fluid (SIF, pH 7) for 13 h shows equal reduction in sessile and planktonic cell counts, but induces LAP and InlA expression and pathogenic phenotypes. Our data show that the virulence of biofilm-isolated Lm is temporarily attenuated and can be upregulated in mice during the early stage (12-24 hpi) but fully restored at a later stage (48 hpi) of infection. Our study further demonstrates that in vitro cell culture assay is unreliable; therefore, an animal model is essential for studying the pathogenesis of biofilm-isolated bacteria.
Collapse
Affiliation(s)
- Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Ok-Kyung Koo
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
41
|
Bansal M, Dhowlaghar N, Nannapaneni R, Kode D, Chang S, Sharma CS, McDaniel C, Kiess A. Decreased biofilm formation by planktonic cells of Listeria monocytogenes in the presence of sodium hypochlorite. Food Microbiol 2020; 96:103714. [PMID: 33494900 DOI: 10.1016/j.fm.2020.103714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/30/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study was to determine if the adaptation at planktonic stage to subinhibitory concentrations (SIC) of sodium hypochlorite (NaOCl) could modulate the biofilm forming ability of five Listeria monocytogenes strains V7, Scott A, FSL-N1-227, FSL F6-154 and ATCC 19116 representing serotypes 1/2a, 4b and 4c. Biofilm formation by NaOCl nonadapted and adapted L. monocytogenes planktonic cells was measured in the presence or absence of SIC of NaOCl. The biofilm formation ability of NaOCl nonadapted and adapted L. monocyotgenes planktonic cells was reduced only in the presence of NaOCl (P < 0.05). Scanning electron microscopy revealed that the continuous exposure of NaOCl induced morphological changes in the L. monocytogenes biofilm structure and reduced its attachment to polystyrene surface. The qRT-PCR results also showed that the subinhibitory NaOCl reduced biofilm formation related gene expression such as motility and quorum sensing signals (P < 0.05). These findings indicate that subinhibitory NaOCl can reduce the ability of L. monocytogenes planktonic cells to form biofilms on polystyrene surface.
Collapse
Affiliation(s)
- Mohit Bansal
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| | - Nitin Dhowlaghar
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA
| | - Ramakrishna Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA.
| | - Divya Kode
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA
| | - Sam Chang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS, 39762, USA
| | - Chander S Sharma
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| | | | - Aaron Kiess
- Department of Poultry Science, Mississippi State University, MS, 39762, USA
| |
Collapse
|
42
|
Ramires T, Kleinubing NR, Iglesias MA, Vitola HRS, Núncio ASP, Kroning IS, Moreira GMSG, Fiorentini ÂM, da Silva WP. Genetic diversity, biofilm and virulence characteristics of Listeria monocytogenes in salmon sushi. Food Res Int 2020; 140:109871. [PMID: 33648189 DOI: 10.1016/j.foodres.2020.109871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022]
Abstract
Sushi is a ready-to-eat (RTE) food prepared from raw or cooked fish that is widely consumed worldwide. Listeria monocytogenes is the foodborne pathogen most commonly associated with RTE and fish products. The aim of the present study was to evaluate the presence of L. monocytogenes in salmon sushi commercialized in Pelotas city, Brazil, and to evaluate the genetic diversity, biofilm-forming ability in stainless steel, and virulence characteristics of the isolates. Four sampling events were carried out in seven specialized sushi establishments totaling 28 sushi pools. Listeria monocytogenes was detected in six samples (21.4%) from two establishments (28.6%). All isolates belonged to serotype 4b and carried the prfA, plcA, plcB, hlyA, mpl, actA, inlA, inlC, inlJ, and iap genes. The inlB gene was not detected in two isolates. The PFGE analysis grouped the isolates into four pulsotypes. All isolates had the ability to form biofilm on stainless steel and the average of biofilm formation counts varied between 6.4 and 7.2 log CFU.cm-2. The isolates harbored the biofilm-related genes agrA, agrB, agrC, agrD, and prfA, with the exception of two isolates that did not harbor the agrD gene. The presence of L. monocytogenes in RTE sushi is a concern, demonstrating that sushi consumption may be a risk of human listeriosis. Furthermore, it was possible to identify the persistence of this pathogen for at least one month (pulsotypes III and IV), in two establishments (A and G), highlighting the need for improving the cleaning and sanitation procedures in establishments that commercialize RTE sushi.
Collapse
Affiliation(s)
- Tassiana Ramires
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Natalie Rauber Kleinubing
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mariana Almeida Iglesias
- Center of Technological Development, Biotechnology Department, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Helena Reissig Soares Vitola
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Adriana Souto Pereira Núncio
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Isabela Schneid Kroning
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Department of Agroindustrial Science and Technology, Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil; Center of Technological Development, Biotechnology Department, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
43
|
Becattini S, Littmann ER, Seok R, Amoretti L, Fontana E, Wright R, Gjonbalaj M, Leiner IM, Plitas G, Hohl TM, Pamer EG. Enhancing mucosal immunity by transient microbiota depletion. Nat Commun 2020; 11:4475. [PMID: 32901029 PMCID: PMC7479140 DOI: 10.1038/s41467-020-18248-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/04/2020] [Indexed: 02/08/2023] Open
Abstract
Tissue resident memory CD8+ T cells (Trm) are poised for immediate reactivation at sites of pathogen entry and provide optimal protection of mucosal surfaces. The intestinal tract represents a portal of entry for many infectious agents; however, to date specific strategies to enhance Trm responses at this site are lacking. Here, we present TMDI (Transient Microbiota Depletion-boosted Immunization), an approach that leverages antibiotic treatment to temporarily restrain microbiota-mediated colonization resistance, and favor intestinal expansion to high densities of an orally-delivered Listeria monocytogenes strain carrying an antigen of choice. By augmenting the local chemotactic gradient as well as the antigenic load, this procedure generates a highly expanded pool of functional, antigen-specific intestinal Trm, ultimately enhancing protection against infectious re-challenge in mice. We propose that TMDI is a useful model to dissect the requirements for optimal Trm responses in the intestine, and also a potential platform to devise novel mucosal vaccination approaches.
Collapse
Affiliation(s)
- Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Eric R Littmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60606, USA
| | - Ruth Seok
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Luigi Amoretti
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Emily Fontana
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Roberta Wright
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mergim Gjonbalaj
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ingrid M Leiner
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60606, USA
| | - George Plitas
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tobias M Hohl
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60606, USA
| |
Collapse
|
44
|
Matereke LT, Okoh AI. Listeria monocytogenes Virulence, Antimicrobial Resistance and Environmental Persistence: A Review. Pathogens 2020; 9:E528. [PMID: 32629911 PMCID: PMC7400505 DOI: 10.3390/pathogens9070528] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/06/2020] [Accepted: 06/20/2020] [Indexed: 12/23/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic pathogen responsible for the well-known listeriosis disease. This bacterium has become a common contaminant of food, threatening the food processing industry. Once consumed, the pathogen is capable of traversing epithelial barriers, cellular invasion, and intracellular replication through the modulation of virulence factors such as internalins and haemolysins. Mobile genetic elements (plasmids and transposons) and other sophisticated mechanisms are thought to contribute to the increasing antimicrobial resistance of L. monocytogenes. The environmental persistence of the pathogen is aided by its ability to withstand environmental stresses such as acidity, cold stress, osmotic stress, and oxidative stress. This review seeks to give an insight into L. monocytogenes biology, with emphasis on its virulence factors, antimicrobial resistance, and adaptations to environmental stresses.
Collapse
Affiliation(s)
- Lavious Tapiwa Matereke
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
45
|
Dong Y, Li S, Zhao D, Liu J, Ma S, Geng J, Lu C, Liu Y. IolR, a negative regulator of the myo-inositol metabolic pathway, inhibits cell autoaggregation and biofilm formation by downregulating RpmA in Aeromonas hydrophila. NPJ Biofilms Microbiomes 2020; 6:22. [PMID: 32433466 PMCID: PMC7239862 DOI: 10.1038/s41522-020-0132-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Aeromonas hydrophila is the causative agent of motile Aeromonad septicemia in fish. Previous studies have shown that the myo-inositol metabolism is essential for the virulence of this bacterium. IolR is a transcription inhibitor that negatively regulates myo-inositol metabolic activity. While in the process of studying the inositol catabolism in A. hydrophila Chinese epidemic strain NJ-35, we incidentally found that ΔiolR mutant exhibited obvious autoaggregation and increased biofilm formation compared to the wild type. The role of surface proteins in A. hydrophila autoaggregation was confirmed by different degradation treatments. Furthermore, calcium promotes the formation of aggregates, which disappear in the presence of the calcium chelator EGTA. Transcriptome analysis, followed by targeted gene deletion, demonstrated that biofilm formation and autoaggregation caused by the inactivation of iolR was due to the increased transcription of a RTX-family adhesion gene, rmpA. Further, IolR was determined to directly regulate the transcription of rmpA. These results indicated that iolR is negatively involved in autoaggregation and biofilm formation in A. hydrophila, and this involvement was associated with its inhibition on the expression of rmpA.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shougang Li
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Zhao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuiyan Ma
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinzhu Geng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
46
|
Genomic Differences between Listeria monocytogenes EGDe Isolates Reveal Crucial Roles for SigB and Wall Rhamnosylation in Biofilm Formation. J Bacteriol 2020; 202:JB.00692-19. [PMID: 31964697 PMCID: PMC7167478 DOI: 10.1128/jb.00692-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Biofilms are an important mode of growth in many settings. Here, we looked at small differences in the genomes of the bacterium Listeria monocytogenes isolate EGDe and used them to find out how biofilms form. This important fundamental information may help new treatments to be developed and also highlights the fact that isolates of the same identity often diverge. Listeria monocytogenes is a Gram-positive firmicute that causes foodborne infections, in part due to its ability to use multiple strategies, including biofilm formation, to survive adverse growth conditions. As a potential way to screen for genes required for biofilm formation, we harnessed the ability of bacteria to accumulate mutations in the genome over time, diverging the properties of seemingly identical strains. By sequencing the genomes of four laboratory reference strains of the commonly used L. monocytogenes EGDe, we showed that each isolate contains single nucleotide polymorphisms (SNPs) compared with the reference genome. We discovered that two SNPs, contained in two independent genes within one of the isolates, impacted biofilm formation. Using bacterial genetics and phenotypic assays, we confirmed that rsbU and rmlA influence biofilm formation. RsbU is the upstream regulator of the alternative sigma factor SigB, and mutation of either rsbU or sigB increased biofilm formation. In contrast, deletion of rmlA, which encodes the first enzyme for TDP-l-rhamnose biosynthesis, resulted in a reduction in the amount of biofilm formed. Further analysis of biofilm formation in a strain that still produces TDP-l-rhamnose but which cannot decorate the wall teichoic acid with rhamnose (rmlT mutant) showed that it is the decorated wall teichoic acid that is required for adhesion of the cells to surfaces. Together, these data uncover novel routes by which biofilm formation by L. monocytogenes can be impacted. IMPORTANCE Biofilms are an important mode of growth in many settings. Here, we looked at small differences in the genomes of the bacterium Listeria monocytogenes isolate EGDe and used them to find out how biofilms form. This important fundamental information may help new treatments to be developed and also highlights the fact that isolates of the same identity often diverge.
Collapse
|
47
|
Murphy TF, Brauer AL, Pettigrew MM, LaFontaine ER, Tettelin H. Persistence of Moraxella catarrhalis in Chronic Obstructive Pulmonary Disease and Regulation of the Hag/MID Adhesin. J Infect Dis 2020; 219:1448-1455. [PMID: 30496439 DOI: 10.1093/infdis/jiy680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Persistence of bacterial pathogens in the airways has profound consequences on the course and pathogenesis of chronic obstructive pulmonary disease (COPD). Patients with COPD continuously acquire and clear strains of Moraxella catarrhalis, a major pathogen in COPD. Some strains are cleared quickly and some persist for months to years. The mechanism of the variability in duration of persistence is unknown. METHODS Guided by genome sequences of selected strains, we studied the expression of Hag/MID, hag/mid gene sequences, adherence to human cells, and autoaggregation in longitudinally collected strains of M. catarrhalis from adults with COPD. RESULTS Twenty-eight of 30 cleared strains of M. catarrhalis expressed Hag/MID whereas 17 of 30 persistent strains expressed Hag/MID upon acquisition by patients. All persistent strains ceased expression of Hag/MID during persistence. Expression of Hag/MID in human airways was regulated by slipped-strand mispairing. Virulence-associated phenotypes (adherence to human respiratory epithelial cells and autoaggregation) paralleled Hag/MID expression in airway isolates. CONCLUSIONS Most strains of M. catarrhalis express Hag/MID upon acquisition by adults with COPD and all persistent strains shut off expression during persistence. These observations suggest that Hag/MID is important for initial colonization by M. catarrhalis and that cessation of expression facilitates persistence in COPD airways.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, The State University of New York, Buffalo.,Department of Microbiology and Immunology, The State University of New York, Buffalo.,Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo
| | - Aimee L Brauer
- Division of Infectious Diseases, Department of Medicine, The State University of New York, Buffalo.,Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo
| | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Eric R LaFontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
48
|
Louie A, Zhang T, Becattini S, Waldor MK, Portnoy DA. A Multiorgan Trafficking Circuit Provides Purifying Selection of Listeria monocytogenes Virulence Genes. mBio 2019; 10:e02948-19. [PMID: 31848289 PMCID: PMC6918090 DOI: 10.1128/mbio.02948-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes can cause a life-threatening illness when the foodborne pathogen spreads beyond the intestinal tract to distant organs. Many aspects of the intestinal phase of L. monocytogenes pathogenesis remain unknown. Here, we present a foodborne infection model using C57BL/6 mice that have been pretreated with streptomycin. In this model, as few as 100 L. monocytogenes CFU were required to cause self-limiting enterocolitis, and systemic dissemination followed previously reported routes. Using this model, we report that listeriolysin O (LLO) and actin assembly-inducing protein (ActA), two critical virulence determinants, were necessary for intestinal pathology and systemic spread but were dispensable for intestinal growth. Sequence tag-based analysis of microbial populations (STAMP) was used to investigate the within-host population dynamics of wild-type and LLO-deficient strains. The wild-type bacterial population experienced severe bottlenecks over the course of infection, and by 5 days, the intestinal population was highly enriched for bacteria originating from the gallbladder. In contrast, LLO-deficient strains did not efficiently disseminate and gain access to the gallbladder, and the intestinal population remained diverse. These findings suggest that systemic spread and establishment of a bacterial reservoir in the gallbladder imparts an intraspecies advantage in intestinal occupancy. Since intestinal L. monocytogenes is ultimately released into the environment, within-host population bottlenecks may provide purifying selection of virulence genes.IMPORTANCEListeria monocytogenes maintains capabilities for free-living growth in the environment and for intracellular replication in a wide range of hosts, including livestock and humans. Here, we characterized an enterocolitis model of foodborne L. monocytogenes infection. This work highlights a multiorgan trafficking circuit and reveals a fitness advantage for bacteria that successfully complete this cycle. Because virulence factors play critical roles in systemic dissemination and multiple bottlenecks occur as the bacterial population colonizes different tissue sites, this multiorgan trafficking circuit likely provides purifying selection of virulence genes. This study also serves as a foundation for future work using the L. monocytogenes-induced enterocolitis model to investigate the biology of L. monocytogenes in the intestinal environment.
Collapse
Affiliation(s)
- Alexander Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
49
|
Patange A, O’Byrne C, Boehm D, Cullen PJ, Keener K, Bourke P. The Effect of Atmospheric Cold Plasma on Bacterial Stress Responses and Virulence Using Listeria monocytogenes Knockout Mutants. Front Microbiol 2019; 10:2841. [PMID: 31921026 PMCID: PMC6918802 DOI: 10.3389/fmicb.2019.02841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes is an opportunistic intracellular pathogen commonly associated with serious infections and multiple food-borne outbreaks. In this study, we investigated the influence of atmospheric cold plasma (80 kV, 50 Hz) on L. monocytogenes (EGD-e) and its knockout mutants of sigB, rsbR, prfA, gadD, and lmo0799 genes at different treatment time intervals. Further, to ascertain if sub-lethal environmental stress conditions could influence L. monocytogenes survival and growth responses, atmospheric cold plasma (ACP) resistance was evaluated for the cultures exposed to cold (4°C) or acid (pH 4) stress for 1 h. The results demonstrate that both wild-type and knockout mutants were similarly affected after 1 min exposure to ACP (p > 0.05), with a difference in response noted only after 3 min of treatment. While all L. monocytogenes strains exposed to acid/cold stress were hypersensitive to ACP treatment and were significantly reduced or inactivated within 1 min of treatment (p < 0.05). The results indicate sigB and prfA are important for general stress resistance and biofilm, respectively, loss of these two genes significantly reduced bacterial resistance to ACP treatment. In addition, exposure to sub-lethal 1min ACP increased the gene expression of stress associated genes. SigB showed the highest gene expression, increasing by 15.60 fold, followed by gadD2 (7.19) and lmo0799 (8.6) after 1 min exposure. Overall, an increase in gene expression was seen in all stress associated genes analyzed both at 1 min treatment; while long treatment time reduced the gene expression and some cases down-regulated prfA and gadD3 gene expression. By comparing the response of mutants under ACP exposure to key processing parameters, the experimental results presented here provide a baseline for understanding the bacterial genetic response and resistance to cold plasma stress and offers promising insights for optimizing ACP applications.
Collapse
Affiliation(s)
- Apurva Patange
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Conor O’Byrne
- Bacterial Stress Response Group, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Daniela Boehm
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - P. J. Cullen
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Kevin Keener
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Paula Bourke
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- School of Biological Sciences, IGFS, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
50
|
Desai SK, Kenney LJ. Switching Lifestyles Is an in vivo Adaptive Strategy of Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:421. [PMID: 31921700 PMCID: PMC6917575 DOI: 10.3389/fcimb.2019.00421] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
Gram-positive and Gram-negative pathogens exist as planktonic cells only at limited times during their life cycle. In response to environmental signals such as temperature, pH, osmolality, and nutrient availability, pathogenic bacteria can adopt varied cellular fates, which involves the activation of virulence gene programs and/or the induction of a sessile lifestyle to form multicellular surface-attached communities. In Salmonella, SsrB is the response regulator which governs the lifestyle switch from an intracellular virulent state to form dormant biofilms in chronically infected hosts. Using the Salmonella lifestyle switch as a paradigm, we herein compare how other pathogens alter their lifestyles to enable survival, colonization and persistence in response to different environmental cues. It is evident that lifestyle switching often involves transcriptional regulators and their modification as highlighted here. Phenotypic heterogeneity resulting from stochastic cellular processes can also drive lifestyle variation among members of a population, although this subject is not considered in the present review.
Collapse
Affiliation(s)
- Stuti K. Desai
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Linda J. Kenney
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|