1
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
2
|
Vesel N, Iseli C, Guex N, Lemopoulos A, Blokesch M. DNA modifications impact natural transformation of Acinetobacter baumannii. Nucleic Acids Res 2023; 51:5661-5677. [PMID: 37178001 PMCID: PMC10287943 DOI: 10.1093/nar/gkad377] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Acinetobacter baumannii is a dangerous nosocomial pathogen, especially due to its ability to rapidly acquire new genetic traits, including antibiotic resistance genes (ARG). In A. baumannii, natural competence for transformation, one of the primary modes of horizontal gene transfer (HGT), is thought to contribute to ARG acquisition and has therefore been intensively studied. However, knowledge regarding the potential role of epigenetic DNA modification(s) on this process remains lacking. Here, we demonstrate that the methylome pattern of diverse A. baumannii strains differs substantially and that these epigenetic marks influence the fate of transforming DNA. Specifically, we describe a methylome-dependent phenomenon that impacts intra- and inter-species DNA exchange by the competent A. baumannii strain A118. We go on to identify and characterize an A118-specific restriction-modification (RM) system that impairs transformation when the incoming DNA lacks a specific methylation signature. Collectively, our work contributes towards a more holistic understanding of HGT in this organism and may also aid future endeavors towards tackling the spread of novel ARGs. In particular, our results suggest that DNA exchanges between bacteria that share similar epigenomes are favored and could therefore guide future research into identifying the reservoir(s) of dangerous genetic traits for this multi-drug resistant pathogen.
Collapse
Affiliation(s)
- Nina Vesel
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Natural Recombination among Type I Restriction-Modification Systems Creates Diverse Genomic Methylation Patterns among Xylella fastidiosa Strains. Appl Environ Microbiol 2023; 89:e0187322. [PMID: 36598481 PMCID: PMC9888226 DOI: 10.1128/aem.01873-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Xylella fastidiosa is an important bacterial plant pathogen causing high-consequence diseases in agricultural crops around the world. Although as a species X. fastidiosa can infect many host plants, there is significant variability between strains regarding virulence on specific host plant species and other traits. Natural competence and horizontal gene transfer are believed to occur frequently in X. fastidiosa and likely influence the evolution of this pathogen. However, some X. fastidiosa strains are difficult to manipulate genetically using standard transformation techniques. Several type I restriction-modification (R-M) systems are encoded in the X. fastidiosa genome, which may influence horizontal gene transfer and recombination. Type I R-M systems themselves may undergo recombination, exchanging target recognition domains (TRDs) between specificity subunits (hsdS) to generate novel alleles with new target specificities. In this study, several conserved type I R-M systems were compared across 129 X. fastidiosa genome assemblies representing all known subspecies and 32 sequence types. Forty-four unique TRDs were identified among 50 hsdS alleles, which are arrayed in 31 allele profiles that are generally conserved within a monophyletic cluster of strains. Inactivating mutations were identified in type I R-M systems of specific strains, showing heterogeneity in the complements of functional type I R-M systems across X. fastidiosa. Genomic DNA methylation patterns were characterized in 20 X. fastidiosa strains and associated with type I R-M system allele profiles. Overall, these data suggest hsdS genes recombine among Xylella strains and/or unknown donors, and the resulting TRD reassortment establishes differential epigenetic modifications across Xylella lineages. IMPORTANCE Economic impacts on agricultural production due to X. fastidiosa have been severe in the Americas, Europe, and parts of Asia. Despite a long history of research on this pathogen, certain fundamental questions regarding the biology, pathogenicity, and evolution of X. fastidiosa have still not been answered. Wide-scale whole-genome sequencing has begun to provide more insight into X. fastidiosa genetic diversity and horizontal gene transfer, but the mechanics of genomic recombination in natural settings and the extent to which this directly influences bacterial phenotypes such as plant host range are not well understood. Genome methylation is an important factor in horizontal gene transfer and bacterial recombination that has not been comprehensively studied in X. fastidiosa. This study characterizes methylation associated with type I restriction-modification systems across a wide range of X. fastidiosa strains and lays the groundwork for a better understanding of X. fastidiosa biology and evolution through epigenetics.
Collapse
|
4
|
Huang M, Liu M, Huang L, Wang M, Jia R, Zhu D, Chen S, Zhao X, Zhang S, Gao Q, Zhang L, Cheng A. The activation and limitation of the bacterial natural transformation system: The function in genome evolution and stability. Microbiol Res 2021; 252:126856. [PMID: 34454311 DOI: 10.1016/j.micres.2021.126856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/26/2022]
Abstract
Bacteria can take up exogenous naked DNA and integrate it into their genomes, which has been regarded as a main contributor to bacterial evolution. The competent status of bacteria is influenced by environmental cues and by the immune systems of bacteria. Here, we review recent advances in understanding the working mechanisms underlying activation of the natural transformation system and limitations thereof. Environmental stresses including the presence of antimicrobials can activate the natural transformation system. However, bacterial enzymes (nucleases), non-coding RNAs, specific DNA sequences, the restriction-modification (R-M) systems, CRISPR-Cas systems and prokaryotic Argonaute proteins (Agos) are have been found to be involved in the limitation of the natural transformation system. Together, this review represents an opportunity to gain insight into bacterial genome stability and evolution.
Collapse
Affiliation(s)
- Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
5
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
6
|
Dimitriu T, Szczelkun MD, Westra ER. Evolutionary Ecology and Interplay of Prokaryotic Innate and Adaptive Immune Systems. Curr Biol 2021; 30:R1189-R1202. [PMID: 33022264 DOI: 10.1016/j.cub.2020.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Like many organisms, bacteria and archaea have both innate and adaptive immune systems to defend against infection by viruses and other parasites. Innate immunity most commonly relies on the endonuclease-mediated cleavage of any incoming DNA that lacks a specific epigenetic modification, through a system known as restriction-modification. CRISPR-Cas-mediated adaptive immunity relies on the insertion of short DNA sequences from parasite genomes into CRISPR arrays on the host genome to provide sequence-specific protection. The discovery of each of these systems has revolutionised our ability to carry out genetic manipulations, and, as a consequence, the enzymes involved have been characterised in exquisite detail. In comparison, much less is known about the importance of these two arms of the defence for the ecology and evolution of prokaryotes and their parasites. Here, we review our current ecological and evolutionary understanding of these systems in isolation, and discuss the need to study how innate and adaptive immune responses are integrated when they coexist in the same cell.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| |
Collapse
|
7
|
Harrow GL, Lees JA, Hanage WP, Lipsitch M, Corander J, Colijn C, Croucher NJ. Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures. THE ISME JOURNAL 2021; 15:1523-1538. [PMID: 33408365 PMCID: PMC8115253 DOI: 10.1038/s41396-020-00867-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Streptococcus pneumoniae can be divided into many strains, each a distinct set of isolates sharing similar core and accessory genomes, which co-circulate within the same hosts. Previous analyses suggested the short-term vaccine-associated dynamics of S. pneumoniae strains may be mediated through multi-locus negative frequency-dependent selection (NFDS), which maintains accessory loci at equilibrium frequencies. Long-term simulations demonstrated NFDS stabilised clonally-evolving multi-strain populations through preventing the loss of variation through drift, based on polymorphism frequencies, pairwise genetic distances and phylogenies. However, allowing symmetrical recombination between isolates evolving under multi-locus NFDS generated unstructured populations of diverse genotypes. Replication of the observed data improved when multi-locus NFDS was combined with recombination that was instead asymmetrical, favouring deletion of accessory loci over insertion. This combination separated populations into strains through outbreeding depression, resulting from recombinants with reduced accessory genomes having lower fitness than their parental genotypes. Although simplistic modelling of recombination likely limited these simulations' ability to maintain some properties of genomic data as accurately as those lacking recombination, the combination of asymmetrical recombination and multi-locus NFDS could restore multi-strain population structures from randomised initial populations. As many bacteria inhibit insertions into their chromosomes, this combination may commonly underlie the co-existence of strains within a niche.
Collapse
Affiliation(s)
- Gabrielle L Harrow
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Caroline Colijn
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
8
|
Abstract
Transformation is a widespread mechanism of horizontal gene transfer in bacteria. DNA uptake to the periplasmic compartment requires a DNA-uptake pilus and the DNA-binding protein ComEA. In the gram-negative bacteria, DNA is first pulled toward the outer membrane by retraction of the pilus and then taken up by binding to periplasmic ComEA, acting as a Brownian ratchet to prevent backward diffusion. A similar mechanism probably operates in the gram-positive bacteria as well, but these systems have been less well characterized. Transport, defined as movement of a single strand of transforming DNA to the cytosol, requires the channel protein ComEC. Although less is understood about this process, it may be driven by proton symport. In this review we also describe various phenomena that are coordinated with the expression of competence for transformation, such as fratricide, the kin-discriminatory killing of neighboring cells, and competence-mediated growth arrest.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Kwun MJ, Oggioni MR, Bentley SD, Fraser C, Croucher NJ. Synergistic Activity of Mobile Genetic Element Defences in Streptococcus pneumoniae. Genes (Basel) 2019; 10:genes10090707. [PMID: 31540216 PMCID: PMC6771155 DOI: 10.3390/genes10090707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 01/02/2023] Open
Abstract
A diverse set of mobile genetic elements (MGEs) transmit between Streptococcus pneumoniae cells, but many isolates remain uninfected. The best-characterised defences against horizontal transmission of MGEs are restriction-modification systems (RMSs), of which there are two phase-variable examples in S. pneumoniae. Additionally, the transformation machinery has been proposed to limit vertical transmission of chromosomally integrated MGEs. This work describes how these mechanisms can act in concert. Experimental data demonstrate RMS phase variation occurs at a sub-maximal rate. Simulations suggest this may be optimal if MGEs are sometimes vertically inherited, as it reduces the probability that an infected cell will switch between RMS variants while the MGE is invading the population, and thereby undermine the restriction barrier. Such vertically inherited MGEs can be deleted by transformation. The lack of between-strain transformation hotspots at known prophage att sites suggests transformation cannot remove an MGE from a strain in which it is fixed. However, simulations confirmed that transformation was nevertheless effective at preventing the spread of MGEs into a previously uninfected cell population, if a recombination barrier existed between co-colonising strains. Further simulations combining these effects of phase variable RMSs and transformation found they synergistically inhibited MGEs spreading, through limiting both vertical and horizontal transmission.
Collapse
Affiliation(s)
- Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London W2 1PG, UK.
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Stephen D Bentley
- Pathogens and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK.
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
10
|
Kwun MJ, Oggioni MR, De Ste Croix M, Bentley SD, Croucher NJ. Excision-reintegration at a pneumococcal phase-variable restriction-modification locus drives within- and between-strain epigenetic differentiation and inhibits gene acquisition. Nucleic Acids Res 2019; 46:11438-11453. [PMID: 30321375 PMCID: PMC6265443 DOI: 10.1093/nar/gky906] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
Phase-variation of Type I restriction-modification systems can rapidly alter the sequence motifs they target, diversifying both the epigenetic patterns and endonuclease activity within clonally descended populations. Here, we characterize the Streptococcus pneumoniae SpnIV phase-variable Type I RMS, encoded by the translocating variable restriction (tvr) locus, to identify its target motifs, mechanism and regulation of phase variation, and effects on exchange of sequence through transformation. The specificity-determining hsdS genes were shuffled through a recombinase-mediated excision-reintegration mechanism involving circular intermediate molecules, guided by two types of direct repeat. The rate of rearrangements was limited by an attenuator and toxin-antitoxin system homologs that inhibited recombinase gene transcription. Target motifs for both the SpnIV, and multiple Type II, MTases were identified through methylation-sensitive sequencing of a panel of recombinase-null mutants. This demonstrated the species-wide diversity observed at the tvr locus can likely specify nine different methylation patterns. This will reduce sequence exchange in this diverse species, as the native form of the SpnIV RMS was demonstrated to inhibit the acquisition of genomic islands by transformation. Hence the tvr locus can drive variation in genome methylation both within and between strains, and limits the genomic plasticity of S. pneumoniae.
Collapse
Affiliation(s)
- Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Marco R Oggioni
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| |
Collapse
|
11
|
Passera A, Compant S, Casati P, Maturo MG, Battelli G, Quaglino F, Antonielli L, Salerno D, Brasca M, Toffolatti SL, Mantegazza F, Delledonne M, Mitter B. Not Just a Pathogen? Description of a Plant-Beneficial Pseudomonas syringae Strain. Front Microbiol 2019; 10:1409. [PMID: 31293547 PMCID: PMC6598456 DOI: 10.3389/fmicb.2019.01409] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Plants develop in a microbe-rich environment and must interact with a plethora of microorganisms, both pathogenic and beneficial. Indeed, such is the case of Pseudomonas, and its model organisms P. fluorescens and P. syringae, a bacterial genus that has received particular attention because of its beneficial effect on plants and its pathogenic strains. The present study aims to compare plant-beneficial and pathogenic strains belonging to the P. syringae species to get new insights into the distinction between the two types of plant–microbe interactions. In assays carried out under greenhouse conditions, P. syringae pv. syringae strain 260-02 was shown to promote plant-growth and to exert biocontrol of P. syringae pv. tomato strain DC3000, against the Botrytis cinerea fungus and the Cymbidium Ringspot Virus. This P. syringae strain also had a distinct volatile emission profile, as well as a different plant-colonization pattern, visualized by confocal microscopy and gfp labeled strains, compared to strain DC3000. Despite the different behavior, the P. syringae strain 260-02 showed great similarity to pathogenic strains at a genomic level. However, genome analyses highlighted a few differences that form the basis for the following hypotheses regarding strain 260-02. P. syringae strain 260-02: (i) possesses non-functional virulence genes, like the mangotoxin-producing operon Mbo; (ii) has different regulation pathways, suggested by the difference in the autoinducer system and the lack of a virulence activator gene; (iii) has genes encoding DNA methylases different from those found in other P. syringae strains, suggested by the presence of horizontal-gene-transfer-obtained methylases that could affect gene expression.
Collapse
Affiliation(s)
- Alessandro Passera
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Stéphane Compant
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Paola Casati
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Maria Giovanna Maturo
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Giovanna Battelli
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Livio Antonielli
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Domenico Salerno
- Department Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Vedano al Lambro, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mantegazza
- Department Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Vedano al Lambro, Italy
| | - Massimo Delledonne
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Birgit Mitter
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
12
|
Salvadori G, Junges R, Morrison DA, Petersen FC. Competence in Streptococcus pneumoniae and Close Commensal Relatives: Mechanisms and Implications. Front Cell Infect Microbiol 2019; 9:94. [PMID: 31001492 PMCID: PMC6456647 DOI: 10.3389/fcimb.2019.00094] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
The mitis group of streptococci comprises species that are common colonizers of the naso-oral-pharyngeal tract of humans. Streptococcus pneumoniae and Streptococcus mitis are close relatives and share ~60–80% of orthologous genes, but still present striking differences in pathogenic potential toward the human host. S. mitis has long been recognized as a reservoir of antibiotic resistance genes for S. pneumoniae, as well as a source for capsule polysaccharide variation, leading to resistance and vaccine escape. Both species share the ability to become naturally competent, and in this context, competence-associated killing mechanisms such as fratricide are thought to play an important role in interspecies gene exchange. Here, we explore the general mechanism of natural genetic transformation in the two species and touch upon the fundamental clinical and evolutionary implications of sharing similar competence, fratricide mechanisms, and a large fraction of their genomic DNA.
Collapse
Affiliation(s)
- Gabriela Salvadori
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Roger Junges
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Donald A Morrison
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Fernanda C Petersen
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Salvadori G, Junges R, Åmdal HA, Chen T, Morrison DA, Petersen FC. High-resolution profiles of the Streptococcus mitis CSP signaling pathway reveal core and strain-specific regulated genes. BMC Genomics 2018; 19:453. [PMID: 29898666 PMCID: PMC6001120 DOI: 10.1186/s12864-018-4802-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In streptococci of the mitis group, competence for natural transformation is a transient physiological state triggered by competence stimulating peptides (CSPs). Although low transformation yields and the absence of a widespread functional competence system have been reported for Streptococcus mitis, recent studies revealed that, at least for some strains, high efficiencies can be achieved following optimization protocols. To gain a deeper insight into competence in this species, we used RNA-seq, to map the global CSP response of two transformable strains: the type strain NCTC12261T and SK321. RESULTS All known genes induced by ComE in Streptococcus pneumoniae, including sigX, were upregulated in the two strains. Likewise, all sets of streptococcal SigX core genes involved in extracellular DNA uptake, recombination, and fratricide were upregulated. No significant differences in the set of induced genes were observed when the type strain was grown in rich or semi-defined media. Five upregulated operons unique to S. mitis with a SigX-box in the promoter region were identified, including two specific to SK321, and one specific to NCTC12261T. Two of the strain-specific operons coded for different bacteriocins. Deletion of the unique S. mitis sigX regulated genes had no effect on transformation. CONCLUSIONS Overall, comparison of the global transcriptome in response to CSP shows the conservation of the ComE and SigX-core regulons in competent S. mitis isolates, as well as species and strain-specific genes. Although some S. mitis exhibit truncations in key competence genes, this study shows that in transformable strains, competence seems to depend on the same core genes previously identified in S. pneumoniae.
Collapse
Affiliation(s)
- G Salvadori
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Postboks 1052, Blindern, 0316, Oslo, Norway
| | - R Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Postboks 1052, Blindern, 0316, Oslo, Norway
| | - H A Åmdal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Postboks 1052, Blindern, 0316, Oslo, Norway
| | - T Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - D A Morrison
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - F C Petersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Postboks 1052, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
14
|
Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjærgaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol Rev 2018; 41:854-879. [PMID: 29029129 DOI: 10.1093/femsre/fux037] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
Being the principal causative agent of bacterial pneumonia, otitis media, meningitis and septicemia, the bacterium Streptococcus pneumoniae is a major global health problem. To highlight the molecular basis of this problem, we have portrayed essential biological processes of the pneumococcal life cycle in eight watercolor paintings. The paintings are done to a consistent nanometer scale based on currently available data from structural biology and proteomics. In this review article, the paintings are used to provide a visual review of protein synthesis, carbohydrate metabolism, cell wall synthesis, cell division, teichoic acid synthesis, virulence, transformation and pilus synthesis based on the available scientific literature within the field of pneumococcal biology. Visualization of the molecular details of these processes reveals several scientific questions about how molecular components of the pneumococcal cell are organized to allow biological function to take place. By the presentation of this visual review, we intend to stimulate scientific discussion, aid in the generation of scientific hypotheses and increase public awareness. A narrated video describing the biological processes in the context of a whole-cell illustration accompany this article.
Collapse
Affiliation(s)
- Ditte Høyer Engholm
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Rutgers, the State University of New Jersey, NJ 08901, USA
| | - Ebbe Sloth Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | | |
Collapse
|
15
|
Apagyi KJ, Fraser C, Croucher NJ. Transformation Asymmetry and the Evolution of the Bacterial Accessory Genome. Mol Biol Evol 2017; 35:575-581. [PMID: 29211859 PMCID: PMC5850275 DOI: 10.1093/molbev/msx309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial transformation can insert or delete genomic islands (GIs), depending on the donor and recipient genotypes, if an homologous recombination spans the GI’s integration site and includes sufficiently long flanking homologous arms. Combining mathematical models of recombination with experiments using pneumococci found GI insertion rates declined geometrically with the GI’s size. The decrease in acquisition frequency with length (1.08×10−3 bp−1) was higher than a previous estimate of the analogous rate at which core genome recombinations terminated. Although most efficient for shorter GIs, transformation-mediated deletion frequencies did not vary consistently with GI length, with removal of 10-kb GIs ∼50% as efficient as acquisition of base substitutions. Fragments of 2 kb, typical of transformation event sizes, could drive all these deletions independent of island length. The strong asymmetry of transformation, and its capacity to efficiently remove GIs, suggests nonmobile accessory loci will decline in frequency without preservation by selection.
Collapse
Affiliation(s)
- Katinka J Apagyi
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Ambur OH, Engelstädter J, Johnsen PJ, Miller EL, Rozen DE. Steady at the wheel: conservative sex and the benefits of bacterial transformation. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0528. [PMID: 27619692 PMCID: PMC5031613 DOI: 10.1098/rstb.2015.0528] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Abstract
Many bacteria are highly sexual, but the reasons for their promiscuity remain obscure. Did bacterial sex evolve to maximize diversity and facilitate adaptation in a changing world, or does it instead help to retain the bacterial functions that work right now? In other words, is bacterial sex innovative or conservative? Our aim in this review is to integrate experimental, bioinformatic and theoretical studies to critically evaluate these alternatives, with a main focus on natural genetic transformation, the bacterial equivalent of eukaryotic sexual reproduction. First, we provide a general overview of several hypotheses that have been put forward to explain the evolution of transformation. Next, we synthesize a large body of evidence highlighting the numerous passive and active barriers to transformation that have evolved to protect bacteria from foreign DNA, thereby increasing the likelihood that transformation takes place among clonemates. Our critical review of the existing literature provides support for the view that bacterial transformation is maintained as a means of genomic conservation that provides direct benefits to both individual bacterial cells and to transformable bacterial populations. We examine the generality of this view across bacteria and contrast this explanation with the different evolutionary roles proposed to maintain sex in eukaryotes. This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Ole Herman Ambur
- Department of Life Sciences and Health, Oslo and Akershus University College of Applied Sciences, 1478 Oslo, Norway
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pål J Johnsen
- Faculty of Health Sciences, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Eric L Miller
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Daniel E Rozen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
17
|
Woodcock CB, Yakubov AB, Reich NO. Caulobacter crescentus Cell Cycle-Regulated DNA Methyltransferase Uses a Novel Mechanism for Substrate Recognition. Biochemistry 2017; 56:3913-3922. [PMID: 28661661 DOI: 10.1021/acs.biochem.7b00378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caulobacter crescentus relies on DNA methylation by the cell cycle-regulated methyltransferase (CcrM) in addition to key transcription factors to control the cell cycle and direct cellular differentiation. CcrM is shown here to efficiently methylate its cognate recognition site 5'-GANTC-3' in single-stranded and hemimethylated double-stranded DNA. We report the Km, kcat, kmethylation, and Kd for single-stranded and hemimethylated substrates, revealing discrimination of 107-fold for noncognate sequences. The enzyme also shows a similar discrimination against single-stranded RNA. Two independent assays clearly show that CcrM is highly processive with single-stranded and hemimethylated DNA. Collectively, the data provide evidence that CcrM and other DNA-modifying enzymes may use a new mechanism to recognize DNA in a key epigenetic process.
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Aziz B Yakubov
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
Fomenkov A, Sun Z, Dila DK, Anton BP, Roberts RJ, Raleigh EA. EcoBLMcrX, a classical modification-dependent restriction enzyme in Escherichia coli B: Characterization in vivo and in vitro with a new approach to cleavage site determination. PLoS One 2017; 12:e0179853. [PMID: 28654677 PMCID: PMC5487053 DOI: 10.1371/journal.pone.0179853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/05/2017] [Indexed: 12/24/2022] Open
Abstract
Here we characterize the modification-dependent restriction enzyme (MDE) EcoBLMcrX in vivo, in vitro and in its genomic environment. MDE cleavage of modified DNAs protects prokaryote populations from lethal infection by bacteriophage with highly modified DNA, and also stabilizes lineages by reducing gene import when sparse modification occurs in the wrong context. The function and distribution of MDE families are thus important. Here we describe the properties of EcoBLMcrX, an enzyme of the E. coli B lineage, in vivo and in vitro. Restriction in vivo and the genome location of its gene, ecoBLmcrX, were determined during construction and sequencing of a B/K-12 hybrid, ER2566. In classical restriction literature, this B system was named r6 or rglAB. Like many genome defense functions, ecoBLmcrX is found within a genomic island, where gene content is variable among natural E. coli isolates. In vitro, EcoBLMcrX was compared with two related enzymes, BceYI and NhoI. All three degrade fully cytosine-modified phage DNA, as expected for EcoBLMcrX from classical T4 genetic data. A new method of characterizing MDE specificity was developed to better understand action on fully-modified targets such as the phage that provide major evolutionary pressure for MDE maintenance. These enzymes also cleave plasmids with m5C in particular motifs, consistent with a role in lineage-stabilization. The recognition sites were characterized using a site-ranking approach that allows visualization of preferred cleavage sites when fully-modified substrates are digested. A technical constraint on the method is that ligation of one-nucleotide 5' extensions favors G:C over A:T approximately five-fold. Taking this bias into account, we conclude that EcoBLMcrX can cleave 3' to the modified base in the motif Rm5C|. This is compatible with, but less specific than, the site reported by others. Highly-modified site contexts, such as those found in base-substituted virulent phages, are strongly preferred.
Collapse
Affiliation(s)
- Alexey Fomenkov
- Research Department, New England Biolabs, Ipswich, MA, United States of America
| | - Zhiyi Sun
- Research Department, New England Biolabs, Ipswich, MA, United States of America
| | - Deborah K. Dila
- Research Department, New England Biolabs, Ipswich, MA, United States of America
| | - Brian P. Anton
- Research Department, New England Biolabs, Ipswich, MA, United States of America
| | - Richard J. Roberts
- Research Department, New England Biolabs, Ipswich, MA, United States of America
| | | |
Collapse
|
19
|
Blokesch M. In and out-contribution of natural transformation to the shuffling of large genomic regions. Curr Opin Microbiol 2017; 38:22-29. [PMID: 28458094 DOI: 10.1016/j.mib.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 01/28/2023]
Abstract
Naturally competent bacteria can pull free DNA from their surroundings. This incoming DNA can serve various purposes, ranging from acting as a source of nutrients or DNA stretches for repair to the acquisition of novel genetic information. The latter process defines the natural competence for transformation as a mode of horizontal gene transfer (HGT) and led to its discovery almost a century ago. However, although it is widely accepted that natural competence can contribute to the spread of genetic material among prokaryotes, the question remains whether this mode of HGT can foster the transfer of larger DNA regions or only transfers shorter fragments, given that extracellular DNA is often heavily fragmented. Here, I outline examples of competence-mediated movement of large genomic segments. Moreover, I discuss a recent proposition that transformation is used to cure bacteria of selfish mobile genetic elements. Such a transformation-mediated genome maintenance mechanism could indeed be an important and underappreciated function of natural competence.
Collapse
Affiliation(s)
- Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
20
|
Patil PP, Mali S, Midha S, Gautam V, Dash L, Kumar S, Shastri J, Singhal L, Patil PB. Genomics Reveals a Unique Clone of Burkholderia cenocepacia Harboring an Actively Excising Novel Genomic Island. Front Microbiol 2017; 8:590. [PMID: 28428775 PMCID: PMC5382208 DOI: 10.3389/fmicb.2017.00590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/22/2017] [Indexed: 11/18/2022] Open
Abstract
Burkholderia cenocepacia is a clinically dominant form among the other virulent species of Burkholderia cepacia complex (Bcc). In the present study, we sequenced and analyzed the genomes of seven nosocomial Bcc isolates, five of which were isolated from the bloodstream infections and two isolates were recovered from the hospital setting during the surveillance. Genome-based species identification of the Bcc isolates using a type strain explicitly identified the species as B. cenocepacia. Moreover, single nucleotide polymorphism analysis revealed that the six isolates were clonal and phylogenetically distinct from the other B. cenocepacia. Comparative genomics distinctly revealed the larger genome size of six clonal isolates as well as the presence of a novel 107 kb genomic island named as BcenGI15, which encodes putative pathogenicity-associated genes. We have shown that the BcenGI15 has an ability to actively excise from the genome and forming an extrachromosomal circular form suggesting its mobile nature. Surprisingly, a homolog of BcenGI15 was also present in the genome of a clinical isolate named Burkholderia pseudomallei strain EY1. This novel genetic element is present only in the variants of B. cenocepacia and B. pseudomallei isolates suggesting its interspecies existence in the main pathogenic species of the genus Burkholderia. In conclusion, the whole genome analysis of the genomically distinct B. cenocepacia clinical isolates has advanced our understanding of the epidemiology and evolution of this important nosocomial pathogen as well as its relatives.
Collapse
Affiliation(s)
- Prashant P Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial TechnologyChandigarh, India
| | - Swapna Mali
- Department of Microbiology, Topiwala National Medical College & BYL Nair Charitable HospitalMumbai, India
| | - Samriti Midha
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial TechnologyChandigarh, India
| | - Vikas Gautam
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Lona Dash
- Department of Microbiology, Topiwala National Medical College & BYL Nair Charitable HospitalMumbai, India
| | - Sunil Kumar
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Jayanthi Shastri
- Department of Microbiology, Topiwala National Medical College & BYL Nair Charitable HospitalMumbai, India
| | - Lipika Singhal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial TechnologyChandigarh, India
| |
Collapse
|
21
|
Abstract
Almost all cellular life forms are hosts to diverse genetic parasites with various levels of autonomy including plasmids, transposons and viruses. Theoretical modeling of the evolution of primordial replicators indicates that parasites (cheaters) necessarily evolve in such systems and can be kept at bay primarily via compartmentalization. Given the (near) ubiquity, abundance and diversity of genetic parasites, the question becomes pertinent: are such parasites intrinsic to life? At least in prokaryotes, the persistence of parasites is linked to the rate of horizontal gene transfer (HGT). We mathematically derive the threshold value of the minimal transfer rate required for selfish element persistence, depending on the element duplication and loss rates as well as the cost to the host. Estimation of the characteristic gene duplication, loss and transfer rates for transposons, plasmids and virus-related elements in multiple groups of diverse bacteria and archaea indicates that most of these rates are compatible with the long term persistence of parasites. Notably, a small but non-zero rate of HGT is also required for the persistence of non-parasitic genes. We hypothesize that cells cannot tune their horizontal transfer rates to be below the threshold required for parasite persistence without experiencing highly detrimental side-effects. As a lower boundary to the minimum DNA transfer rate that a cell can withstand, we consider the process of genome degradation and mutational meltdown of populations through Muller's ratchet. A numerical assessment of this hypothesis suggests that microbial populations cannot purge parasites while escaping Muller's ratchet. Thus, genetic parasites appear to be virtually inevitable in cellular organisms.
Collapse
Affiliation(s)
- Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Pere Puigbò
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda Present address: Department of Biology, University of Turku, Finland
| | - Alexander E Lobkovsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| |
Collapse
|
22
|
Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016; 116:12655-12687. [PMID: 27319741 DOI: 10.1021/acs.chemrev.6b00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Collapse
Affiliation(s)
- Peter Weigele
- Chemical Biology, New England Biolabs , Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
23
|
Addiction of Hypertransformable Pneumococcal Isolates to Natural Transformation for In Vivo Fitness and Virulence. Infect Immun 2016; 84:1887-1901. [PMID: 27068094 DOI: 10.1128/iai.00097-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/06/2016] [Indexed: 12/25/2022] Open
Abstract
Natural genetic transformation of Streptococcus pneumoniae, an important human pathogen, mediates horizontal gene transfer for the development of drug resistance, modulation of carriage and virulence traits, and evasion of host immunity. Transformation frequency differs greatly among pneumococcal clinical isolates, but the molecular basis and biological importance of this interstrain variability remain unclear. In this study, we characterized the transformation frequency and other associated phenotypes of 208 S. pneumoniae clinical isolates representing at least 30 serotypes. While the vast majority of these isolates (94.7%) were transformable, the transformation frequency differed by up to 5 orders of magnitude between the least and most transformable isolates. The strain-to-strain differences in transformation frequency were observed among many isolates producing the same capsule types, indicating no general association between transformation frequency and serotype. However, a statistically significant association was observed between the levels of transformation and colonization fitness/virulence in the hypertransformable isolates. Although nontransformable mutants of all the selected hypertransformable isolates were significantly attenuated in colonization fitness and virulence in mouse infection models, such mutants of the strains with relatively low transformability had no or marginal fitness phenotypes under the same experimental settings. This finding strongly suggests that the pneumococci with high transformation capability are "addicted" to a "hypertransformable" state for optimal fitness in the human host. This work has thus provided an intriguing hint for further investigation into how the competence system impacts the fitness, virulence, and other transformation-associated traits of this important human pathogen.
Collapse
|
24
|
Comprehensive Transcriptome Profiles of Streptococcus mutans UA159 Map Core Streptococcal Competence Genes. mSystems 2016; 1:mSystems00038-15. [PMID: 27822519 PMCID: PMC5069739 DOI: 10.1128/msystems.00038-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022] Open
Abstract
In Streptococcus mutans, an oral colonizer associated with dental caries, development of competence for natural genetic transformation is triggered by either of two types of peptide pheromones, competence-stimulating peptides (CSPs) (18 amino acids [aa]) or SigX-inducing peptides (XIPs) (7 aa). Competence induced by CSP is a late response to the pheromone that requires the response regulator ComE and the XIP-encoding gene comS. XIP binds to ComR to allow expression of the alternative sigma factor SigX and the effector genes it controls. While these regulatory links are established, the precise set of effectors controlled by each regulator is poorly defined. To improve the definition of all three regulons, we used a high-resolution tiling array to map global changes in gene expression in the early and late phases of the CSP response. The early phase of the CSP response was limited to increased gene expression at four loci associated with bacteriocin production and immunity. In the late phase, upregulated regions expanded to a total of 29 loci, including comS and genes required for DNA uptake and recombination. The results indicate that the entire late response to CSP depends on the expression of comS and that the immediate transcriptional response to CSP, mediated by ComE, is restricted to just four bacteriocin-related loci. Comparison of the new data with published transcriptome data permitted the identification of all of the operons in each regulon: 4 for ComE, 2 for ComR, and 21 for SigX. Finally, a core set of 27 panstreptococcal competence genes was identified within the SigX regulon by comparison of transcriptome data from diverse streptococcal species. IMPORTANCES. mutans has the hard surfaces of the oral cavity as its natural habitat, where it depends on its ability to form biofilms in order to survive. The comprehensive identification of S. mutans regulons activated in response to peptide pheromones provides an important basis for understanding how S. mutans can transition from individual to social behavior. Our study placed 27 of the 29 transcripts activated during competence within three major regulons and revealed a core set of 27 panstreptococcal competence-activated genes within the SigX regulon.
Collapse
|
25
|
Johnston C, Hauser C, Hermans PWM, Martin B, Polard P, Bootsma HJ, Claverys JP. Fine-tuning of choline metabolism is important for pneumococcal colonization. Mol Microbiol 2016; 100:972-88. [PMID: 26919406 DOI: 10.1111/mmi.13360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2016] [Indexed: 01/10/2023]
Abstract
The human pathogen Streptococcus pneumoniae (the pneumococcus) is rare in having a strict requirement for the amino alcohol choline, which decorates pneumococcal teichoic acids. This process relies on the lic locus, containing the lic1 and lic2 operons. These operons produce eight proteins that import and metabolize choline, generate teichoic acid precursors and decorate these with choline. Three promoters control expression of lic operons, with Plic1P1 and Plic1P2 controlling lic1 and Plic2 controlling lic2. To investigate the importance of lic regulation for pneumococci, we assayed the activity of transcriptional fusions of the three lic promoters to the luciferase reporter gene. Plic1P1 , whose activity depends on the response regulator CiaR, responded to fluctuations in extracellular choline, with activity increasing greatly upon choline depletion. We uncovered a complex regulatory mechanism controlling Plic1P1 , involving activity driven by CiaR, repression by putative repressor LicR in the presence of choline, and derepression upon choline depletion mediated by LicC, a choline metabolism enzyme. Finally, the ability to regulate Plic1P1 in response to choline was important for pneumococcal colonization. We suggest that derepression of Plic1P1 upon choline depletion maximizing choline internalization constitutes an adaptive response mechanism allowing pneumococci to optimize growth and survival in environments where choline is scarce.
Collapse
Affiliation(s)
- Calum Johnston
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000, Toulouse, France.,Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000, Toulouse, France
| | - Christoph Hauser
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000, Toulouse, France.,Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000, Toulouse, France
| | - Peter W M Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Bernard Martin
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000, Toulouse, France.,Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000, Toulouse, France
| | - Patrice Polard
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000, Toulouse, France.,Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000, Toulouse, France
| | - Hester J Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000, Toulouse, France.,Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000, Toulouse, France
| |
Collapse
|
26
|
Abstract
The diversification of prokaryotes is accelerated by their ability to acquire DNA from other genomes. However, the underlying processes also facilitate genome infection by costly mobile genetic elements. The discovery that cells can uptake DNA by natural transformation was instrumental to the birth of molecular biology nearly a century ago. Surprisingly, a new study shows that this mechanism could efficiently cure the genome of mobile elements acquired through previous sexual exchanges. Natural transformation was thought to provide new genetic information to bacteria. Instead, a new study suggests it cures the genome of deleterious mobile elements.
Collapse
Affiliation(s)
- Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR3525, Paris, France
- * E-mail:
| |
Collapse
|
27
|
Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict. PLoS Biol 2016; 14:e1002394. [PMID: 26934590 PMCID: PMC4774983 DOI: 10.1371/journal.pbio.1002394] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/29/2016] [Indexed: 01/21/2023] Open
Abstract
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rafal Mostowy
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Christopher Wymant
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Goldberg GW, Marraffini LA. Resistance and tolerance to foreign elements by prokaryotic immune systems - curating the genome. Nat Rev Immunol 2016; 15:717-24. [PMID: 26494050 DOI: 10.1038/nri3910] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To engage in adaptive symbioses or genetic exchange, organisms must interact with foreign, non-self elements despite the risks of predation and parasitism. By surveying the interface between self and non-self, immune systems can help ensure the benevolence of these interactions without isolating their hosts altogether. In this Essay, we examine prokaryotic restriction-modification and CRISPR-Cas (clustered, regularly interspaced palindromic repeat-CRISPR-associated proteins) activities and discuss their analogy to mammalian immune pathways. We further explain how their capacities for resistance and tolerance are optimized to reduce parasitism and immunopathology during encounters with non-self.
Collapse
Affiliation(s)
- Gregory W Goldberg
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York City, New York 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York City, New York 10065, USA
| |
Collapse
|
29
|
Ershova A, Rusinov I, Vasiliev M, Spirin S, Karyagina A. Restriction-Modification systems interplay causes avoidance of GATC site in prokaryotic genomes. J Bioinform Comput Biol 2016; 14:1641003. [PMID: 26972562 DOI: 10.1142/s0219720016410031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Palindromes are frequently underrepresented in prokaryotic genomes. Palindromic 5[Formula: see text]-GATC-3[Formula: see text] site is a recognition site of different Restriction-Modification (R-M) systems, as well as solitary methyltransferase Dam. Classical GATC-specific R-M systems methylate GATC and cleave unmethylated GATC. On the contrary, methyl-directed Type II restriction endonucleases cleave methylated GATC. Methylation of GATC by Dam methyltransferase is involved in the regulation of different cellular processes. The diversity of functions of GATC-recognizing proteins makes GATC sequence a good model for studying the reasons of palindrome avoidance in prokaryotic genomes. In this work, the influence of R-M systems and solitary proteins on the GATC site avoidance is described by a mathematical model. GATC avoidance is strongly associated with the presence of alternate (methyl-directed or classical Type II R-M system) genes in different strains of the same species, as we have shown for Streptococcus pneumoniae, Neisseria meningitidis, Eubacterium rectale, and Moraxella catarrhalis. We hypothesize that GATC avoidance can result from a DNA exchange between strains with different methylation status of GATC site within the process of natural transformation. If this hypothesis is correct, the GATC avoidance is a sign of a DNA exchange between bacteria with different methylation status in a mixed population.
Collapse
Affiliation(s)
- Anna Ershova
- * Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.,† Gamaleya Center for Epidemiology and Microbiology, the Ministry of Health of the Russian Federation, Moscow 123098, Russia.,‡ Institute of Agricultural Biotechnology, the Russian Academy of Sciences, Moscow 127550, Russia
| | - Ivan Rusinov
- * Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.,§ Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow 119992, Russia
| | - Mikhail Vasiliev
- ¶ Moscow Institute of Physics and Technology, the Ministry of Education and Science of the Russian Federation, Dolgoprudny, Moscow Region, 141700, Russia
| | - Sergey Spirin
- * Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.,§ Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow 119992, Russia.,∥ Scientific Research Institute for System Studies, the Russian Academy of Science (NIISI RAS), Moscow 117218, Russia
| | - Anna Karyagina
- * Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.,† Gamaleya Center for Epidemiology and Microbiology, the Ministry of Health of the Russian Federation, Moscow 123098, Russia.,‡ Institute of Agricultural Biotechnology, the Russian Academy of Sciences, Moscow 127550, Russia
| |
Collapse
|
30
|
van Dijk B, Hogeweg P. In Silico Gene-Level Evolution Explains Microbial Population Diversity through Differential Gene Mobility. Genome Biol Evol 2015; 8:176-88. [PMID: 26710854 PMCID: PMC4758251 DOI: 10.1093/gbe/evv255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microbial communities can show astonishing ecological and phylogenetic diversity. What is the role of pervasive horizontal gene transfer (HGT) in shaping this diversity in the presence of clonally expanding “killer strains”? Does HGT of antibiotic production and resistance genes erase phylogenetic structure? To answer these questions, we study a spatial eco-evolutionary model of prokaryotes, inspired by recent findings on antagonistic interactions in Vibrionaceae populations. We find toxin genes evolve to be highly mobile, whereas resistance genes minimize mobility. This differential gene mobility is a requirement to maintain a diverse and dynamic ecosystem. The resistance gene repertoire acts as a core genome that corresponds to the phylogeny of cells, whereas toxin genes do not follow this phylogeny and have a patchy distribution. We also show that interstrain HGT makes the emergent phylogenetic structure robust to selective sweeps. Finally, in this evolved ecosystem we observe antagonistic interactions between, rather than within, spatially structure subpopulations, as has been previously observed for prokaryotes in soils and oceans. In contrast to ascribing the diversification and evolution of microbial communities to clonal dynamics, we show that multilevel evolution can elegantly explain the observed phylogenetic structure and ecosystem diversity.
Collapse
Affiliation(s)
- Bram van Dijk
- Department of Theoretical Biology and Bioinformatics, Utrecht University, The Netherlands
| | - Paulien Hogeweg
- Department of Theoretical Biology and Bioinformatics, Utrecht University, The Netherlands
| |
Collapse
|
31
|
Rusinov I, Ershova A, Karyagina A, Spirin S, Alexeevski A. Lifespan of restriction-modification systems critically affects avoidance of their recognition sites in host genomes. BMC Genomics 2015; 16:1084. [PMID: 26689194 PMCID: PMC4687349 DOI: 10.1186/s12864-015-2288-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/11/2015] [Indexed: 01/10/2023] Open
Abstract
Background Avoidance of palindromic recognition sites of Type II restriction-modification (R-M) systems was shown for many R-M systems in dozens of prokaryotic genomes. However the phenomenon has not been investigated systematically for all presently available genomes and annotated R-M systems. We have studied all known recognition sites in thousands of prokaryotic genomes and found factors that influence their avoidance. Results Only Type II R-M systems consisting of independently acting endonuclease and methyltransferase (called ‘orthodox’ here) cause avoidance of their sites, both palindromic and asymmetric, in corresponding prokaryotic genomes; the avoidance takes place for ~ 50 % of 1774 studied cases. It is known that prokaryotes can acquire and lose R-M systems. Thus it is possible to talk about the lifespan of an R-M system in a genome. We have shown that the recognition site avoidance correlates with the lifespan of R-M systems. The sites of orthodox R-M systems that are encoded in host genomes for a long time are avoided more often (up to 100 % in certain cohorts) than the sites of recently acquired ones. We also found cases of site avoidance in absence of the corresponding R-M systems in the genome. An analysis of closely related bacteria shows that such avoidance can be a trace of lost R-M systems. Sites of Type I, IIС/G, IIM, III, and IV R-M systems are not avoided in vast majority of cases. Conclusions The avoidance of orthodox Type II R-M system recognition sites in prokaryotic genomes is a widespread phenomenon. Presence of an R-M system without an underrepresentation of its site may indicate that the R-M system was acquired recently. At the same time, a significant underrepresentation of a site may be a sign of presence of the corresponding R-M system in this organism or in its ancestors for a long time. The drastic difference between site avoidance for orthodox Type II R-M systems and R-M systems of other types can be explained by a higher rate of specificity changes or a less self-toxicity of the latter. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2288-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivan Rusinov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Anna Ershova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia. .,Institute of Agricultural Biotechnology, the Russian Academy of Sciences, Moscow, 127550, Russia.
| | - Anna Karyagina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Gamaleya Center of Epidemiology and Microbiology, Moscow, 123098, Russia. .,Institute of Agricultural Biotechnology, the Russian Academy of Sciences, Moscow, 127550, Russia.
| | - Sergey Spirin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Scientific Research Institute for System Studies, the Russian Academy of Science (NIISI RAS), Moscow, 117281, Russia.
| | - Andrei Alexeevski
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Scientific Research Institute for System Studies, the Russian Academy of Science (NIISI RAS), Moscow, 117281, Russia.
| |
Collapse
|
32
|
Iyer LM, Zhang D, Aravind L. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification. Bioessays 2015; 38:27-40. [PMID: 26660621 PMCID: PMC4738411 DOI: 10.1002/bies.201500104] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
While N6‐methyladenosine (m6A) is a well‐known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well‐studied 5‐methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction‐modification and counter‐restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m6A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m6A‐binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m6A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m6A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Co-Inactivation of GlnR and CodY Regulators Impacts Pneumococcal Cell Wall Physiology. PLoS One 2015; 10:e0123702. [PMID: 25901369 PMCID: PMC4406557 DOI: 10.1371/journal.pone.0123702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY- ami+ cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to iron and PG-targeting agents.
Collapse
|
34
|
Croucher NJ, Kagedan L, Thompson CM, Parkhill J, Bentley SD, Finkelstein JA, Lipsitch M, Hanage WP. Selective and genetic constraints on pneumococcal serotype switching. PLoS Genet 2015; 11:e1005095. [PMID: 25826208 PMCID: PMC4380333 DOI: 10.1371/journal.pgen.1005095] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae isolates typically express one of over 90 immunologically distinguishable polysaccharide capsules (serotypes), which can be classified into “serogroups” based on cross-reactivity with certain antibodies. Pneumococci can alter their serotype through recombinations affecting the capsule polysaccharide synthesis (cps) locus. Twenty such “serotype switching” events were fully characterised using a collection of 616 whole genome sequences from systematic surveys of pneumococcal carriage. Eleven of these were within-serogroup switches, representing a highly significant (p < 0.0001) enrichment based on the observed serotype distribution. Whereas the recombinations resulting in between-serogroup switches all spanned the entire cps locus, some of those that caused within-serogroup switches did not. However, higher rates of within-serogroup switching could not be fully explained by either more frequent, shorter recombinations, nor by genetic linkage to genes involved in β–lactam resistance. This suggested the observed pattern was a consequence of selection for preserving serogroup. Phenotyping of strains constructed to express different serotypes in common genetic backgrounds was used to test whether genotypes were physiologically adapted to particular serogroups. These data were consistent with epistatic interactions between the cps locus and the rest of the genome that were specific to serotype, but not serogroup, meaning they were unlikely to account for the observed distribution of capsule types. Exclusion of these genetic and physiological hypotheses suggested future work should focus on alternative mechanisms, such as host immunity spanning multiple serotypes within the same serogroup, which might explain the observed pattern. Streptococcus pneumoniae is a major respiratory pathogen responsible for a high burden of morbidity and mortality worldwide. Current anti-pneumococcal vaccines target the bacterium’s polysaccharide capsule, of which at least 95 different variants (‘serotypes’) are known, which are classified into ‘serogroups’. Bacteria can change their serotype through genetic recombination, termed ‘switching’, which can allow strains to evade vaccine-induced immunity. By combining epidemiological data with whole genome sequencing, this work finds a robust and unexpected pattern of serotype switching in a sample of bacteria collected following the introduction of routine anti-pneumococcal vaccination: switching was much more likely to exchange one serotype for another within the same serogroup than expected by chance. Several hypotheses are presented and tested to explain this pattern, including limitations of genetic recombination, interactions between the genes that determine serotype and the rest of the genome, and the constraints imposed by bacterial metabolism. This provides novel information on the evolution of S. pneumoniae, particularly regarding how the bacterium might diversify as newer vaccines are introduced.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Lisa Kagedan
- Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Claudette M. Thompson
- Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Julian Parkhill
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jonathan A. Finkelstein
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States of America
- Division of General Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
35
|
Kaspar J, Ahn SJ, Palmer SR, Choi SC, Stanhope MJ, Burne RA. A unique open reading frame within the comX gene of Streptococcus mutans regulates genetic competence and oxidative stress tolerance. Mol Microbiol 2015; 96:463-82. [PMID: 25620525 DOI: 10.1111/mmi.12948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 01/19/2023]
Abstract
Streptococcus mutans displays complex regulation of genetic competence, with ComX controlling late competence gene transcription. The rcrRPQ operon has been shown to link oxidative stress tolerance, (p)ppGpp metabolism and competence in S. mutans. Importantly, an rcrR polar (ΔrcrR-P) mutant is hyper-transformable, but an rcrR non-polar (ΔrcrR-NP) mutant cannot be transformed. Transcriptome comparisons of the rcrR mutants using RNA-Seq and quantitative real-time polymerase chain reaction revealed little expression in the 5' region of comX in ΔrcrR-NP, but high level expression in the 3' region. Northern blotting with comX probes revealed two distinct transcripts in the ΔrcrR-P and ΔrcrR-NP strains, and 5' Rapid Amplification of cDNA Ends mapped the 5' terminus of the shorter transcript to nt +140 of the comX structural gene, where a unique 69-aa open reading frame, termed XrpA, was encoded in a different reading frame than ComX. Two single-nucleotide substitution mutants (comX::T162C; comX::T210A) were introduced to disrupt XrpA without affecting the sequence of ComX. When the mutations were in the ΔrcrR-NP genetic background, ComX production and transformation were restored. Overexpression of xrpA led to impaired growth in aerobic conditions and decreased transformability. These results reveal an unprecedented mechanism for competence regulation and stress tolerance by a gene product encoded within the comX gene that appears unique to S. mutans.
Collapse
Affiliation(s)
- Justin Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
| | | | | | | | | | | |
Collapse
|
36
|
Muschiol S, Balaban M, Normark S, Henriques-Normark B. Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae. Bioessays 2015; 37:426-35. [PMID: 25640084 PMCID: PMC4405041 DOI: 10.1002/bies.201400125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram-positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram-negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram-positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram-positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus-like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus-related opening in the cell wall, may mediate DNA uptake in S. pneumoniae.
Collapse
Affiliation(s)
- Sandra Muschiol
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
37
|
Ramirez M. Streptococcus pneumoniae. MOLECULAR MEDICAL MICROBIOLOGY 2015:1529-1546. [DOI: 10.1016/b978-0-12-397169-2.00086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
38
|
Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun 2014; 5:5471. [PMID: 25407023 PMCID: PMC4263131 DOI: 10.1038/ncomms6471] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/03/2014] [Indexed: 12/16/2022] Open
Abstract
Bacterial populations often consist of multiple co-circulating lineages. Determining how such population structures arise requires understanding what drives bacterial diversification. Using 616 systematically sampled genomes, we show that Streptococcus pneumoniae lineages are typically characterized by combinations of infrequently transferred stable genomic islands: those moving primarily through transformation, along with integrative and conjugative elements and phage-related chromosomal islands. The only lineage containing extensive unique sequence corresponds to a set of atypical unencapsulated isolates that may represent a distinct species. However, prophage content is highly variable even within lineages, suggesting frequent horizontal transmission that would necessitate rapidly diversifying anti-phage mechanisms to prevent these viruses sweeping through populations. Correspondingly, two loci encoding Type I restriction-modification systems able to change their specificity over short timescales through intragenomic recombination are ubiquitous across the collection. Hence short-term pneumococcal variation is characterized by movement of phage and intragenomic rearrangements, with the slower transfer of stable loci distinguishing lineages. Populations of the pathogenic bacterium Streptococcus pneumoniae consist of distinct co-circulating lineages. Here, the authors show lineages are characterized by particular combinations of stable genomic islands, whereas prophage and restriction-modification systems vary over short timescales.
Collapse
Affiliation(s)
- Nicholas J Croucher
- 1] Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA [2] Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College, London W2 1PG, UK
| | - Paul G Coupland
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Abbie E Stevenson
- Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Alanna Callendrello
- Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Stephen D Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - William P Hanage
- Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
39
|
Manso AS, Chai MH, Atack JM, Furi L, De Ste Croix M, Haigh R, Trappetti C, Ogunniyi AD, Shewell LK, Boitano M, Clark TA, Korlach J, Blades M, Mirkes E, Gorban AN, Paton JC, Jennings MP, Oggioni MR. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat Commun 2014; 5:5055. [PMID: 25268848 PMCID: PMC4190663 DOI: 10.1038/ncomms6055] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/21/2014] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the world’s foremost bacterial pathogen in both morbidity and mortality. Switching between phenotypic forms (or ‘phases’) that favour asymptomatic carriage or invasive disease was first reported in 1933. Here, we show that the underlying mechanism for such phase variation consists of genetic rearrangements in a Type I restriction-modification system (SpnD39III). The rearrangements generate six alternative specificities with distinct methylation patterns, as defined by single-molecule, real-time (SMRT) methylomics. The SpnD39III variants have distinct gene expression profiles. We demonstrate distinct virulence in experimental infection and in vivo selection for switching between SpnD39III variants. SpnD39III is ubiquitous in pneumococci, indicating an essential role in its biology. Future studies must recognize the potential for switching between these heretofore undetectable, differentiated pneumococcal subpopulations in vitro and in vivo. Similar systems exist in other bacterial genera, indicating the potential for broad exploitation of epigenetic gene regulation. Pneumococci can alternate between harmless and highly virulent forms. Here the authors show that such variation may be due to random rearrangements in a genetic locus encoding a restriction-modification system, resulting in epigenetic changes that affect expression of many genes.
Collapse
Affiliation(s)
- Ana Sousa Manso
- 1] Department of Genetics, University of Leicester, Leicester LE1 7RH, UK [2] Dipartimento di Biotechnologie Mediche, Università di Siena, 53100 Siena, Italy
| | - Melissa H Chai
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Southport, Queensland 4215, Australia
| | - Leonardo Furi
- 1] Department of Genetics, University of Leicester, Leicester LE1 7RH, UK [2] Dipartimento di Biotechnologie Mediche, Università di Siena, 53100 Siena, Italy
| | | | - Richard Haigh
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Abiodun D Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Lucy K Shewell
- Institute for Glycomics, Griffith University, Southport, Queensland 4215, Australia
| | | | - Tyson A Clark
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Jonas Korlach
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Matthew Blades
- Bioinformatics and Biostatistics Analysis Support Hub, University of Leicester, Leicester LE1 7RH, UK
| | - Evgeny Mirkes
- Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
| | - Alexander N Gorban
- Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
| | - James C Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Michael P Jennings
- 1] Institute for Glycomics, Griffith University, Southport, Queensland 4215, Australia [2]
| | - Marco R Oggioni
- 1] Department of Genetics, University of Leicester, Leicester LE1 7RH, UK [2] Dipartimento di Biotechnologie Mediche, Università di Siena, 53100 Siena, Italy [3]
| |
Collapse
|
40
|
Kilian M, Riley DR, Jensen A, Brüggemann H, Tettelin H. Parallel evolution of Streptococcus pneumoniae and Streptococcus mitis to pathogenic and mutualistic lifestyles. mBio 2014; 5:e01490-14. [PMID: 25053789 PMCID: PMC4120201 DOI: 10.1128/mbio.01490-14] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 11/20/2022] Open
Abstract
The bacterium Streptococcus pneumoniae is one of the leading causes of fatal infections affecting humans. Intriguingly, phylogenetic analysis shows that the species constitutes one evolutionary lineage in a cluster of the otherwise commensal Streptococcus mitis strains, with which humans live in harmony. In a comparative analysis of 35 genomes, including phylogenetic analyses of all predicted genes, we have shown that the pathogenic pneumococcus has evolved into a master of genomic flexibility while lineages that evolved into the nonpathogenic S. mitis secured harmonious coexistence with their host by stabilizing an approximately 15%-reduced genome devoid of many virulence genes. Our data further provide evidence that interspecies gene transfer between S. pneumoniae and S. mitis occurs in a unidirectional manner, i.e., from S. mitis to S. pneumoniae. Import of genes from S. mitis and other mitis, anginosus, and salivarius group streptococci ensured allelic replacements and antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae. Our study explains how the unique structural diversity of the pneumococcal capsule emerged and conceivably will continue to increase and reveals a striking example of the fragile border between the commensal and pathogenic lifestyles. While genomic plasticity enabling quick adaptation to environmental stress is a necessity for the pathogenic streptococci, the commensal lifestyle benefits from stability. Importance: One of the leading causes of fatal infections affecting humans, Streptococcus pneumoniae, and the commensal Streptococcus mitis are closely related obligate symbionts associated with hominids. Faced with a shortage of accessible hosts, the two opposing lifestyles evolved in parallel. We have shown that the nonpathogenic S. mitis secured harmonious coexistence with its host by stabilizing a reduced genome devoid of many virulence genes. Meanwhile, the pathogenic pneumococcus evolved into a master of genomic flexibility and imports genes from S. mitis and other related streptococci. This process ensured antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae, which conceivably will continue to increase and present a challenge to disease prevention.
Collapse
Affiliation(s)
- Mogens Kilian
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - David R Riley
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anders Jensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Horizontal gene transfer can rescue prokaryotes from Muller's ratchet: benefit of DNA from dead cells and population subdivision. G3-GENES GENOMES GENETICS 2014; 4:325-39. [PMID: 24347631 PMCID: PMC3931566 DOI: 10.1534/g3.113.009845] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Horizontal gene transfer (HGT) is a major factor in the evolution of prokaryotes. An intriguing question is whether HGT is maintained during evolution of prokaryotes owing to its adaptive value or is a byproduct of selection driven by other factors such as consumption of extracellular DNA (eDNA) as a nutrient. One hypothesis posits that HGT can restore genes inactivated by mutations and thereby prevent stochastic, irreversible deterioration of genomes in finite populations known as Muller’s ratchet. To examine this hypothesis, we developed a population genetic model of prokaryotes undergoing HGT via homologous recombination. Analysis of this model indicates that HGT can prevent the operation of Muller’s ratchet even when the source of transferred genes is eDNA that comes from dead cells and on average carries more deleterious mutations than the DNA of recipient live cells. Moreover, if HGT is sufficiently frequent and eDNA diffusion sufficiently rapid, a subdivided population is shown to be more resistant to Muller’s ratchet than an undivided population of an equal overall size. Thus, to maintain genomic information in the face of Muller’s ratchet, it is more advantageous to partition individuals into multiple subpopulations and let them “cross-reference” each other’s genetic information through HGT than to collect all individuals in one population and thereby maximize the efficacy of natural selection. Taken together, the results suggest that HGT could be an important condition for the long-term maintenance of genomic information in prokaryotes through the prevention of Muller’s ratchet.
Collapse
|
42
|
Johnston C, Martin B, Fichant G, Polard P, Claverys JP. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 2014; 12:181-96. [DOI: 10.1038/nrmicro3199] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Johnston C, Campo N, Bergé MJ, Polard P, Claverys JP. Streptococcus pneumoniae, le transformiste. Trends Microbiol 2014; 22:113-9. [PMID: 24508048 DOI: 10.1016/j.tim.2014.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is an important human pathogen. Natural genetic transformation, which was discovered in this species, involves internalization of exogenous single-stranded DNA and its incorporation into the chromosome. It allows acquisition of pathogenicity islands and antibiotic resistance and promotes vaccine escape via capsule switching. This opinion article discusses how recent advances regarding several facets of pneumococcal transformation support the view that the process has evolved to maximize plasticity potential in this species, making the pneumococcus le transformiste of the bacterial kingdom and providing an advantage in the constant struggle between this pathogen and its host.
Collapse
Affiliation(s)
- Calum Johnston
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France; Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France
| | - Nathalie Campo
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France; Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France
| | - Matthieu J Bergé
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France; Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France
| | - Patrice Polard
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France; Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France; Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France.
| |
Collapse
|
44
|
Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 2014; 38:90-118. [PMID: 23909933 PMCID: PMC4298764 DOI: 10.1111/1574-6976.12035] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
A central challenge in microbial community ecology is the delineation of appropriate units of biodiversity, which can be taxonomic, phylogenetic, or functional in nature. The term 'community' is applied ambiguously; in some cases, the term refers simply to a set of observed entities, while in other cases, it requires that these entities interact with one another. Microorganisms can rapidly gain and lose genes, potentially decoupling community roles from taxonomic and phylogenetic groupings. Trait-based approaches offer a useful alternative, but many traits can be defined based on gene functions, metabolic modules, and genomic properties, and the optimal set of traits to choose is often not obvious. An analysis that considers taxon assignment and traits in concert may be ideal, with the strengths of each approach offsetting the weaknesses of the other. Individual genes also merit consideration as entities in an ecological analysis, with characteristics such as diversity, turnover, and interactions modeled using genes rather than organisms as entities. We identify some promising avenues of research that are likely to yield a deeper understanding of microbial communities that shift from observation-based questions of 'Who is there?' and 'What are they doing?' to the mechanistically driven question of 'How will they respond?'
Collapse
Affiliation(s)
- Eva Boon
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Ah-Seng Y, Rech J, Lane D, Bouet JY. Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids. PLoS Genet 2013; 9:e1003956. [PMID: 24367270 PMCID: PMC3868542 DOI: 10.1371/journal.pgen.1003956] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/30/2013] [Indexed: 11/21/2022] Open
Abstract
Hydrolysis of ATP by partition ATPases, although considered a key step in the segregation mechanism that assures stable inheritance of plasmids, is intrinsically very weak. The cognate centromere-binding protein (CBP), together with DNA, stimulates the ATPase to hydrolyse ATP and to undertake the relocation that incites plasmid movement, apparently confirming the need for hydrolysis in partition. However, ATP-binding alone changes ATPase conformation and properties, making it difficult to rigorously distinguish the substrate and cofactor roles of ATP in vivo. We had shown that mutation of arginines R36 and R42 in the F plasmid CBP, SopB, reduces stimulation of SopA-catalyzed ATP hydrolysis without changing SopA-SopB affinity, suggesting the role of hydrolysis could be analyzed using SopA with normal conformational responses to ATP. Here, we report that strongly reducing SopB-mediated stimulation of ATP hydrolysis results in only slight destabilization of mini-F, although the instability, as well as an increase in mini-F clustering, is proportional to the ATPase deficit. Unexpectedly, the reduced stimulation also increased the frequency of SopA relocation over the nucleoid. The increase was due to drastic shortening of the period spent by SopA at nucleoid ends; average speed of migration per se was unchanged. Reduced ATP hydrolysis was also associated with pronounced deviations in positioning of mini-F, though time-averaged positions changed only modestly. Thus, by specifically targeting SopB-stimulated ATP hydrolysis our study reveals that even at levels of ATPase which reduce the efficiency of splitting clusters and the constancy of plasmid positioning, SopB still activates SopA mobility and plasmid positioning, and sustains near wild type levels of plasmid stability. Genes enabling bacteria to survive and thrive in challenging environments are very often found on small, non-essential DNA molecules called plasmids. Many plasmids are naturally present in the cell in very few copies and so risk being lost from one of the daughter cells upon division. These plasmids elaborate a partition system, functionally similar to mitosis, which assures their faithful inheritance. Chromosomes also generally possess such systems. We know that partition systems involve two proteins, that one (B) stimulates the other (A) to hydrolyse ATP, and that upon binding to A protein ATP confers properties needed for partition. ATP's double action, as hydrolysis substrate and cofactor, complicates definition of its role in the mechanism. The novelty of our approach lies in use of B protein mutants that do not stimulate hydrolysis. Our results reveal that the major function of ATP hydrolysis is not to displace plasmid molecules to their positions in each cell half, as generally thought, but to split initial sibling plasmid pairs and prevent their reforming. This study is the first to dissect ATPase activity in vivo using normal A-protein ATPase, and so opens a new avenue to exploration of the mechanisms that ensure plasmid and chromosome inheritance.
Collapse
Affiliation(s)
- Yoan Ah-Seng
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique et l'Université Paul Sabatier, Toulouse, France
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique et l'Université Paul Sabatier, Toulouse, France
| | - David Lane
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique et l'Université Paul Sabatier, Toulouse, France
- * E-mail:
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique et l'Université Paul Sabatier, Toulouse, France
| |
Collapse
|
46
|
Postreplication targeting of transformants by bacterial immune systems? Trends Microbiol 2013; 21:516-21. [PMID: 24021553 DOI: 10.1016/j.tim.2013.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/26/2022]
Abstract
Bacteria are constantly challenged by foreign genetic elements such as bacteriophages and plasmids. Several defense systems provide immunity against such attackers, including restriction-modification (R-M) systems and clustered, regularly interspaced short palindromic repeats (CRISPRs). These systems target attacking DNA and thus antagonize natural transformation, which relies on uptake of exogenous DNA to promote acquisition of new genetic traits. It is unclear how this antagonization occurs, because transforming DNA is single stranded, and thus resistant to these immune systems. Here, we propose a simple model whereby these systems limit transformation by attack of transformed chromosomes once double strandedness is restored by chromosomal replication.
Collapse
|
47
|
Johnston C, Polard P, Claverys JP. The DpnI/DpnII pneumococcal system, defense against foreign attack without compromising genetic exchange. Mob Genet Elements 2013; 3:e25582. [PMID: 24195011 PMCID: PMC3812788 DOI: 10.4161/mge.25582] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 01/13/2023] Open
Abstract
Natural genetic transformation and restriction-modification (R–M) systems play potentially antagonistic roles in bacteria. R–M systems, degrading foreign DNA to protect the cell from bacteriophage, can interfere with transformation, which relies on foreign DNA to promote genetic diversity. Here we describe how the human pathogen Streptococcus pneumoniae, which is naturally transformable, yet possesses either of two R–M systems, DpnI or DpnII, accommodates these conflicting processes. In addition to the classic restrictase and double-stranded DNA methylase, the DpnII system possesses an unusual single-stranded (ss) DNA methylase, DpnA, which is specifically induced during competence for genetic transformation. We provide further insight into our recent discovery that DpnA, which protects transforming foreign ssDNA from restriction, is crucial for acquisition of pathogenicity islands.
Collapse
Affiliation(s)
- Calum Johnston
- Centre National de la Recherche Scientifique; LMGM-UMR5100; Toulouse, France ; Laboratoire de Microbiologie et Génétique Moléculaires; Université de Toulouse; UPS; Toulouse, France
| | | | | |
Collapse
|