1
|
Yang Y, Mei L, Chen J, Chen X, Wang Z, Liu L, Yang A. Legionella pneumophila-mediated host posttranslational modifications. J Mol Cell Biol 2023; 15:mjad032. [PMID: 37156500 PMCID: PMC10720952 DOI: 10.1093/jmcb/mjad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/17/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium ubiquitously present in freshwater environments and causes a serious type of pneumonia called Legionnaires' disease. During infections, L. pneumophila releases over 300 effector proteins into host cells through an Icm/Dot type IV secretion system to manipulate the host defense system for survival within the host. Notably, certain effector proteins mediate posttranslational modifications (PTMs), serving as useful approaches exploited by L. pneumophila to modify host proteins. Some effectors catalyze the addition of host protein PTMs, while others mediate the removal of PTMs from host proteins. In this review, we summarize L. pneumophila effector-mediated PTMs of host proteins, including phosphorylation, ubiquitination, glycosylation, AMPylation, phosphocholination, methylation, and ADP-ribosylation, as well as dephosphorylation, deubiquitination, deAMPylation, deADP-ribosylation, dephosphocholination, and delipidation. We describe their molecular mechanisms and biological functions in the regulation of bacterial growth and Legionella-containing vacuole biosynthesis and in the disruption of host immune and defense machinery.
Collapse
Affiliation(s)
- Yi Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Herrera A, Packer MM, Rosas-Lemus M, Minasov G, Brummel JH, Satchell KJF. Vibrio MARTX toxin processing and degradation of cellular Rab GTPases by the cytotoxic effector Makes Caterpillars Floppy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537381. [PMID: 37131655 PMCID: PMC10153396 DOI: 10.1101/2023.04.19.537381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vibrio vulnificus causes life threatening infections dependent upon the effectors released from the Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The Makes Caterpillars Floppy-like (MCF) cysteine protease effector is activated by host ADP ribosylation factors (ARFs), although the targets of processing activity were unknown. In this study we show MCF binds Ras-related proteins in brain (Rab) GTPases at the same interface occupied by ARFs and then cleaves and/or degrades 24 distinct members of the Rab GTPases family. The cleavage occurs in the C-terminal tails of Rabs. We determine the crystal structure of MCF as a swapped dimer revealing the open, activated state of MCF and then use structure prediction algorithms to show that structural composition, rather than sequence or localization, determine Rabs selected as MCF proteolytic targets. Once cleaved, Rabs become dispersed in cells to drive organelle damage and cell death to promote pathogenesis of these rapidly fatal infections.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan M. Packer
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John H. Brummel
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- SickKids IBD Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Kaspers MS, Pogenberg V, Pett C, Ernst S, Ecker F, Ochtrop P, Groll M, Hedberg C, Itzen A. Dephosphocholination by Legionella effector Lem3 functions through remodelling of the switch II region of Rab1b. Nat Commun 2023; 14:2245. [PMID: 37076474 PMCID: PMC10115812 DOI: 10.1038/s41467-023-37621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
Bacterial pathogens often make use of post-translational modifications to manipulate host cells. Legionella pneumophila, the causative agent of Legionnaires disease, secretes the enzyme AnkX that uses cytidine diphosphate-choline to post-translationally modify the human small G-Protein Rab1 with a phosphocholine moiety at Ser76. Later in the infection, the Legionella enzyme Lem3 acts as a dephosphocholinase, hydrolytically removing the phosphocholine. While the molecular mechanism for Rab1 phosphocholination by AnkX has recently been resolved, structural insights into the activity of Lem3 remained elusive. Here, we stabilise the transient Lem3:Rab1b complex by substrate mediated covalent capture. Through crystal structures of Lem3 in the apo form and in complex with Rab1b, we reveal Lem3's catalytic mechanism, showing that it acts on Rab1 by locally unfolding it. Since Lem3 shares high structural similarity with metal-dependent protein phosphatases, our Lem3:Rab1b complex structure also sheds light on how these phosphatases recognise protein substrates.
Collapse
Affiliation(s)
- Marietta S Kaspers
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - Vivian Pogenberg
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Pett
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Stefan Ernst
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Felix Ecker
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Philipp Ochtrop
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Christian Hedberg
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Aymelt Itzen
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
- Centre for Structural Systems Biology, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
4
|
Gulen B, Casey A, Orth K. AMPylation of small GTPases by Fic enzymes. FEBS Lett 2023; 597:883-891. [PMID: 36239538 PMCID: PMC10050140 DOI: 10.1002/1873-3468.14516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
Small GTPases orchestrate numerous cellular pathways, acting as molecular switches and regulatory hubs to transmit molecular signals and because of this, they are often the target of pathogens. During infection, pathogens manipulate host cellular networks using post-translational modifications (PTMs). AMPylation, the modification of proteins with AMP, has been identified as a common PTM utilized by pathogens to hijack GTPase signalling during infection. AMPylation is primarily carried out by enzymes with a filamentation induced by cyclic-AMP (Fic) domain. Modification of small GTPases by AMP renders GTPases impervious to upstream regulatory inputs, resulting in unregulated downstream effector outputs for host cellular processes. Here, we overview Fic-mediated AMPylation of small GTPases by pathogens and other related PTMs catalysed by Fic enzymes on GTPases.
Collapse
Affiliation(s)
- Burak Gulen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX and Howard Hughes Medical Institute, Dallas, TX, USA
| |
Collapse
|
5
|
Liu M, Li L, Wang Z, Wang S, Tang X. Catalytic deAMPylation in AMPylation-inhibitory/assistant forms of FICD protein. Front Chem 2023; 11:1077188. [PMID: 36762200 PMCID: PMC9905249 DOI: 10.3389/fchem.2023.1077188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
DeAMPylation, as a reversible reaction of AMPylation and mediated by the endoplasmic reticulum-localized enzyme FICD (filamentation induced by cAMP domain protein, also known as HYPE), is an important process in protein posttranslational modifications (PTMs). Elucidating the function and catalytic details of FICD is of vital importance to provide a comprehensive understanding of protein folding homeostasis. However, the detailed deAMPylation mechanism is still unclear. Furthermore, the role of a conserved glutamine (Glu234), that plays an inhibitory role in the AMPylation response, is still an open question in the deAMPylation process. In the present work, the elaborated deAMPylation mechanisms with AMPylation-inhibitory/assistant forms of FICD (wild type and Glu234Ala mutant) were investigated based on the QM(DFT)/MM MD approach. The results revealed that deAMPylation was triggered by proton transfer from protonated histidine (His363) to AMPylated threonine, instead of a nucleophilic attack of water molecules adding to the phosphorus of AMP. The free energy barrier of deAMPylation in the wild type (∼17.3 kcal/mol) is consistent with that in the Glu234Ala mutant of FICD (∼17.1 kcal/mol), suggesting that the alteration of the Glu234 residue does not affect the deAMPylation reaction and indirectly verifying the inducement of deAMPylation in FICD. In the wild type, the proton in the nucleophilic water molecule is transferred to Glu234, whereas it is delivered to Asp367 through the hydrogen-bond network of coordinated water molecules in the Glu234Ala mutant. The present findings were inspirational for understanding the catalytic and inhibitory mechanisms of FICD-mediated AMP transfer, paving the way for further studies on the physiological role of FICD protein.
Collapse
Affiliation(s)
- Meili Liu
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China,Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL, United States
| | - Li Li
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Zhiqin Wang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shuang Wang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China,Department of Stomatology, Huangdao District Central Hospital, Qingdao, China,*Correspondence: Shuang Wang, ; Xiaowen Tang,
| | - Xiaowen Tang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, China,*Correspondence: Shuang Wang, ; Xiaowen Tang,
| |
Collapse
|
6
|
Structures of a deAMPylation complex rationalise the switch between antagonistic catalytic activities of FICD. Nat Commun 2021; 12:5004. [PMID: 34408154 PMCID: PMC8373988 DOI: 10.1038/s41467-021-25076-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) Hsp70 chaperone BiP is regulated by AMPylation, a reversible inactivating post-translational modification. Both BiP AMPylation and deAMPylation are catalysed by a single ER-localised enzyme, FICD. Here we present crystallographic and solution structures of a deAMPylation Michaelis complex formed between mammalian AMPylated BiP and FICD. The latter, via its tetratricopeptide repeat domain, binds a surface that is specific to ATP-state Hsp70 chaperones, explaining the exquisite selectivity of FICD for BiP’s ATP-bound conformation both when AMPylating and deAMPylating Thr518. The eukaryotic deAMPylation mechanism thus revealed, rationalises the role of the conserved Fic domain Glu234 as a gatekeeper residue that both inhibits AMPylation and facilitates hydrolytic deAMPylation catalysed by dimeric FICD. These findings point to a monomerisation-induced increase in Glu234 flexibility as the basis of an oligomeric state-dependent switch between FICD’s antagonistic activities, despite a similar mode of engagement of its two substrates — unmodified and AMPylated BiP. The ER chaperone BiP is regulated by FICD-mediated AMPylation and deAMPylation. Here, the authors characterise the structure of mammalian AMPylated BiP bound to FICD, by X-ray crystallography and neutron scattering, providing insights into the mechanism of BiP AMPylation and deAMPylation.
Collapse
|
7
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
8
|
Black MH, Osinski A, Park GJ, Gradowski M, Servage KA, Pawłowski K, Tagliabracci VS. A Legionella effector ADP-ribosyltransferase inactivates glutamate dehydrogenase. J Biol Chem 2021; 296:100301. [PMID: 33476647 PMCID: PMC7949102 DOI: 10.1016/j.jbc.2021.100301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
ADP-ribosyltransferases (ARTs) are a widespread superfamily of enzymes frequently employed in pathogenic strategies of bacteria. Legionella pneumophila, the causative agent of a severe form of pneumonia known as Legionnaire's disease, has acquired over 330 translocated effectors that showcase remarkable biochemical and structural diversity. However, the ART effectors that influence L. pneumophila have not been well defined. Here, we took a bioinformatic approach to search the Legionella effector repertoire for additional divergent members of the ART superfamily and identified an ART domain in Legionella pneumophila gene0181, which we hereafter refer to as Legionella ADP-Ribosyltransferase 1 (Lart1) (Legionella ART 1). We show that L. pneumophila Lart1 targets a specific class of 120-kDa NAD+-dependent glutamate dehydrogenase (GDH) enzymes found in fungi and protists, including many natural hosts of Legionella. Lart1 targets a conserved arginine residue in the NAD+-binding pocket of GDH, thereby blocking oxidative deamination of glutamate. Therefore, Lart1 could be the first example of a Legionella effector which directly targets a host metabolic enzyme during infection.
Collapse
Affiliation(s)
- Miles H Black
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gina J Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marcin Gradowski
- Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kelly A Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Howard Hughes Medical Institute, Dallas, Texas, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
9
|
Tascón I, Li X, Lucas M, Nelson D, Vidaurrazaga A, Lin YH, Rojas AL, Hierro A, Machner MP. Structural insight into the membrane targeting domain of the Legionella deAMPylase SidD. PLoS Pathog 2020; 16:e1008734. [PMID: 32853279 PMCID: PMC7480848 DOI: 10.1371/journal.ppat.1008734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/09/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
AMPylation, the post-translational modification with adenosine monophosphate (AMP), is catalyzed by effector proteins from a variety of pathogens. Legionella pneumophila is thus far the only known pathogen that, in addition to encoding an AMPylase (SidM/DrrA), also encodes a deAMPylase, called SidD, that reverses SidM-mediated AMPylation of the vesicle transport GTPase Rab1. DeAMPylation is catalyzed by the N-terminal phosphatase-like domain of SidD. Here, we determined the crystal structure of full length SidD including the uncharacterized C-terminal domain (CTD). A flexible loop rich in aromatic residues within the CTD was required to target SidD to model membranes in vitro and to the Golgi apparatus within mammalian cells. Deletion of the loop (Δloop) or substitution of its aromatic phenylalanine residues rendered SidD cytosolic, showing that the hydrophobic loop is the primary membrane-targeting determinant of SidD. Notably, deletion of the two terminal alpha helices resulted in a CTD variant incapable of discriminating between membranes of different composition. Moreover, a L. pneumophila strain producing SidDΔloop phenocopied a L. pneumophila ΔsidD strain during growth in mouse macrophages and displayed prolonged co-localization of AMPylated Rab1 with LCVs, thus revealing that membrane targeting of SidD via its CTD is a critical prerequisite for its ability to catalyze Rab1 deAMPylation during L. pneumophila infection.
Collapse
Affiliation(s)
- Igor Tascón
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Xiao Li
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - María Lucas
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - D’anna Nelson
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ander Vidaurrazaga
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Yi-Han Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adriana L. Rojas
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Aitor Hierro
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro, Bilbao, Spain
- * E-mail: (AH); (MPM)
| | - Matthias P. Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AH); (MPM)
| |
Collapse
|
10
|
Ernst S, Ecker F, Kaspers MS, Ochtrop P, Hedberg C, Groll M, Itzen A. Legionella effector AnkX displaces the switch II region for Rab1b phosphocholination. SCIENCE ADVANCES 2020; 6:eaaz8041. [PMID: 32440549 PMCID: PMC7228754 DOI: 10.1126/sciadv.aaz8041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
The causative agent of Legionnaires disease, Legionella pneumophila, translocates the phosphocholine transferase AnkX during infection and thereby posttranslationally modifies the small guanosine triphosphatase (GTPase) Rab1 with a phosphocholine moiety at S76 using cytidine diphosphate (CDP)-choline as a cosubstrate. The molecular basis for Rab1 binding and enzymatic modification have remained elusive because of lack of structural information of the low-affinity complex with AnkX. We combined thiol-reactive CDP-choline derivatives with recombinantly introduced cysteines in the AnkX active site to covalently capture the heterocomplex. The resulting crystal structure revealed that AnkX induces displacement of important regulatory elements of Rab1 by placing a β sheet into a conserved hydrophobic pocket, thereby permitting phosphocholine transfer to the active and inactive states of the GTPase. Together, the combination of chemical biology and structural analysis reveals the enzymatic mechanism of AnkX and the family of filamentation induced by cyclic adenosine monophosphate (FIC) proteins.
Collapse
Affiliation(s)
- Stefan Ernst
- Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Felix Ecker
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Marietta S. Kaspers
- Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany
| | - Philipp Ochtrop
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Christian Hedberg
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187 Umeå, Sweden
- Corresponding author. (C.H.); (A.I.)
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Aymelt Itzen
- Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
- Corresponding author. (C.H.); (A.I.)
| |
Collapse
|
11
|
Luo PM, Boyce M. Directing Traffic: Regulation of COPI Transport by Post-translational Modifications. Front Cell Dev Biol 2019; 7:190. [PMID: 31572722 PMCID: PMC6749011 DOI: 10.3389/fcell.2019.00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
The coat protein complex I (COPI) is an essential, highly conserved pathway that traffics proteins and lipids between the endoplasmic reticulum (ER) and the Golgi. Many aspects of the COPI machinery are well understood at the structural, biochemical and genetic levels. However, we know much less about how cells dynamically modulate COPI trafficking in response to changing signals, metabolic state, stress or other stimuli. Recently, post-translational modifications (PTMs) have emerged as one common theme in the regulation of the COPI pathway. Here, we review a range of modifications and mechanisms that govern COPI activity in interphase cells and suggest potential future directions to address as-yet unanswered questions.
Collapse
Affiliation(s)
- Peter M Luo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
12
|
Abstract
Understanding protein kinase family members that lack key catalytic residues-or pseudokinases-is a major challenge in cell signaling. In this issue of Cell, Sreelatha et al. (2018) describe how one pseudokinase transfers adenosine monophosphate (AMP) rather than phosphate to protein substrates, revealing unexpected catalytic diversity for the kinase fold.
Collapse
|
13
|
Characterization of the glucosyltransferase activity of Legionella pneumophila effector SetA. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:69-79. [PMID: 30225797 DOI: 10.1007/s00210-018-1562-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
Legionella pneumophila glucosyltransferase SetA, which is introduced into target cells by a type IV secretion system, affects the intracellular traffic of host cells. Here, we characterized the enzyme activity of the Legionella effector. We report that Asp118 and Arg121 of SetA are essential for glucohydrolase and glucotransferase activities. Exchange of Trp36 to alanine reduced the enzyme activity of SetA. All three amino acids were crucial for the cytotoxic effects of SetA in yeast. We observed that phosphatidylinositol-3-phosphate (PI3P) increased the glucosyltransferase activity of SetA severalfold, while the glucohydrolase activity was not affected. In the presence of PI3P, we observed the glucosylation of actin, vimentin and the chaperonin CCT5 in the cytosolic fraction of target cells. Studies on the functional consequences of glucosylation of skeletal muscle α-actin in vitro revealed inhibition of actin polymerization by glucosylation.
Collapse
|
14
|
Abstract
Posttranslational modifications are covalent changes made to proteins that typically alter the function or location of the protein. AMPylation is an emerging posttranslational modification that involves the addition of adenosine monophosphate (AMP) to a protein. Like other, more well-studied posttranslational modifications, AMPylation is predicted to regulate the activity of the modified target proteins. However, the scope of this modification both in bacteria and in eukaryotes remains to be fully determined. In this review, we provide an up to date overview of the known AMPylating enzymes, the regulation of these enzymes, and the effect of this modification on target proteins.
Collapse
Affiliation(s)
- Amanda K. Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard NA5.120F, Dallas, Texas 75390-9148, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard NA5.120F, Dallas, Texas 75390-9148, United States
- Howard Hughes Medical Institute, 6000 Harry Hines Boulevard NA5.120F, Dallas, Texas 75390-9148, United States
| |
Collapse
|
15
|
Abstract
Intracellular bacterial pathogens survive and replicate within specialized eukaryotic cell organelles. To establish their intracellular niches these pathogens have adopted sophisticated strategies to control intracellular membrane trafficking. Since Rab-family GTPases are critical regulators of endocytic and secretory membrane trafficking events, many intracellular pathogens have evolved specific mechanisms to modulate or hijack Rab GTPases dynamics and trafficking functions. One such strategy is the delivery of bacterial effectors through specialized machines to specifically target Rab GTPases. Some of these effectors functionally mimic host proteins that regulate the Rab GTP cycle, while others regulate Rabs proteins through their post-translation modifications or proteolysis. In this review, we examine how the localization and function of Rab-family GTPases are altered during infection with 3 well-studied intracellular bacterial pathogens, Mycobacterium tuberculosis, Salmonella enterica and Legionella pneumophila. We also discuss recent findings about specific mechanisms by which these intracellular pathogens target this protein family.
Collapse
Affiliation(s)
- Stefania Spanò
- a Institute of Medical Sciences, University of Aberdeen , Foresterhill , Aberdeen , UK
| | - Jorge E Galán
- b Department of Microbial Pathogenesis , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
16
|
Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles. Cells 2016; 5:cells5010011. [PMID: 27005665 PMCID: PMC4810096 DOI: 10.3390/cells5010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis) or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiellaburnetti and Legionella pneumophila). The bacteria described in this review often use secretion systems to control the host’s response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII) are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections.
Collapse
|
17
|
Intrinsic regulation of FIC-domain AMP-transferases by oligomerization and automodification. Proc Natl Acad Sci U S A 2016; 113:E529-37. [PMID: 26787847 DOI: 10.1073/pnas.1516930113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Filamentation induced by cyclic AMP (FIC)-domain enzymes catalyze adenylylation or other posttranslational modifications of target proteins to control their function. Recently, we have shown that Fic enzymes are autoinhibited by an α-helix (αinh) that partly obstructs the active site. For the single-domain class III Fic proteins, the αinh is located at the C terminus and its deletion relieves autoinhibition. However, it has remained unclear how activation occurs naturally. Here, we show by structural, biophysical, and enzymatic analyses combined with in vivo data that the class III Fic protein NmFic from Neisseria meningitidis gets autoadenylylated in cis, thereby autonomously relieving autoinhibition and thus allowing subsequent adenylylation of its target, the DNA gyrase subunit GyrB. Furthermore, we show that NmFic activation is antagonized by tetramerization. The combination of autoadenylylation and tetramerization results in nonmonotonic concentration dependence of NmFic activity and a pronounced lag phase in the progress of target adenylylation. Bioinformatic analyses indicate that this elaborate dual-control mechanism is conserved throughout class III Fic proteins.
Collapse
|
18
|
Connor MG, Pulsifer AR, Price CT, Abu Kwaik Y, Lawrenz MB. Yersinia pestis Requires Host Rab1b for Survival in Macrophages. PLoS Pathog 2015; 11:e1005241. [PMID: 26495854 PMCID: PMC4619670 DOI: 10.1371/journal.ppat.1005241] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV) and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH. Yersinia pestis is the bacterial agent that causes the human disease known as plague. While often considered a historic disease, Y. pestis is endemic in rodent populations on several continents and the World Health Organization considers plague to be a reemerging disease. Much of the success of this pathogen comes from its ability to evade clearance by the innate immune system of its host. One weapon in the Y. pestis arsenal is its ability to resist killing when engulfed by macrophages. Upon invasion of macrophages, Y. pestis actively manipulates the cell to generate a protective vacuolar compartment, called the Yersinia containing vacuole (YCV) that allows the bacterium to evade the normal pathogen killing mechanisms of the macrophage. Here we demonstrate that the host protein Rab1b is recruited to the YCV and is required for Y. pestis to inhibit both the acidification and normal maturation of the phagosome to establish a protective niche within the cell. Rab1b is the first protein, either from the host or Y. pestis, shown to contribute to the biogenesis of the YCV. Furthermore, our data suggest a previously unknown impact of Rab1b recruitment in the phagosome maturation pathway.
Collapse
Affiliation(s)
- Michael G. Connor
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Amanda R. Pulsifer
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Christopher T. Price
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
19
|
So EC, Mattheis C, Tate EW, Frankel G, Schroeder GN. Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. Can J Microbiol 2015; 61:617-35. [PMID: 26059316 DOI: 10.1139/cjm-2015-0166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Gram-negative facultative intracellular pathogen Legionella pneumophila infects a wide range of different protozoa in the environment and also human alveolar macrophages upon inhalation of contaminated aerosols. Inside its hosts, it creates a defined and unique compartment, termed the Legionella-containing vacuole (LCV), for survival and replication. To establish the LCV, L. pneumophila uses its Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effector proteins into the host cell. Although it has become apparent in the past years that these effectors subvert a multitude of cellular processes and allow Legionella to take control of host cell vesicle trafficking, transcription, and translation, the exact function of the vast majority of effectors still remains unknown. This is partly due to high functional redundancy among the effectors, which renders conventional genetic approaches to elucidate their role ineffective. Here, we review the current knowledge about Legionella T4SS effectors, highlight open questions, and discuss new methods that promise to facilitate the characterization of T4SS effector functions in the future.
Collapse
Affiliation(s)
- Ernest C So
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.,b Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
| | - Corinna Mattheis
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Edward W Tate
- b Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
| | - Gad Frankel
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| |
Collapse
|
20
|
Abstract
In the cell, proteins are frequently modified covalently at specific amino acids with post-translational modifications, leading to a diversification of protein functions and activities. Since the introduction of high-resolution mass spectrometry, new post-translational modifications are constantly being discovered. One particular modification is the adenylylation of mammalian proteins. In adenylylation, adenosine triphosphate (ATP) is utilized to attach an adenosine monophosphate at protein threonine or tyrosine residues via a phosphodiester linkage. Adenylylation is particularly interesting in the context of infections by bacterial pathogens during which mammalian proteins are manipulated through AMP attachment via secreted bacterial factors. In this review, we summarize the role and regulation of enzymatic adenylylation and the mechanisms of catalysis. We also refer to recent methods for the detection of adenylylated proteins by modification-specific antibodies, ATP analogues equipped with chemical handles, and mass spectrometry approaches. Additionally, we review screening approaches for inhibiting adenylylation and briefly discuss related modifications such as phosphocholination and phosphorylation.
Collapse
Affiliation(s)
- Christian Hedberg
- Chemical
Biology Center (KBC), Institute of Chemistry, Umeå University, Umeå, 90187, Sweden
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Dortmund 44227, Germany
| | - Aymelt Itzen
- Center
for Integrated Protein Science Munich, Chemistry Department, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
21
|
Gavriljuk K, Schartner J, Itzen A, Goody RS, Gerwert K, Kötting C. Reaction mechanism of adenylyltransferase DrrA from Legionella pneumophila elucidated by time-resolved fourier transform infrared spectroscopy. J Am Chem Soc 2014; 136:9338-45. [PMID: 24950229 DOI: 10.1021/ja501496d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Modulation of the function of small GTPases that regulate vesicular trafficking is a strategy employed by several human pathogens. Legionella pneumophila infects lung macrophages and injects a plethora of different proteins into its host cell. Among these is DrrA/SidM, which catalyzes stable adenylylation of Rab1b, a regulator of endoplasmatic reticulum to Golgi trafficking, and thereby alters the function and interactions of this small GTPase. We employed time-resolved FTIR-spectroscopy to monitor the DrrA-catalyzed AMP-transfer to Tyr77 of Rab1b. A transient complex between DrrA, adenylylated Rab1b, and the pyrophosphate byproduct was resolved, allowing us to analyze the interactions at the active site. Combination of isotopic labeling and site-directed mutagenesis allowed us to derive the catalytic mechanism of DrrA from the FTIR difference spectra. DrrA shares crucial residues in the ATP-binding pocket with similar AMP-transferring enzymes such as glutamine synthetase adenylyltransferase or kanamycin nucleotidyltransferase, but provides the complete active site on a single subunit. We determined that Asp112 of DrrA functions as the catalytic base for deprotonation of Tyr77 of Rab1b to enable nucleophilic attack on the ATP. The study provides detailed understanding of the Legionella pneumophila protein DrrA and of AMP-transfer reactions in general.
Collapse
Affiliation(s)
- Konstantin Gavriljuk
- Department of Biophysics, Ruhr-Universität Bochum , Universitätsstrasse 150, 44801 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The ability to create and maintain a specialized organelle that supports bacterial replication is an important virulence property for many intracellular pathogens. Living in a membrane-bound vacuole presents inherent challenges, including the need to remodel a plasma membrane-derived organelle into a novel structure that will expand and provide essential nutrients to support replication, while also having the vacuole avoid membrane transport pathways that target bacteria for destruction in lysosomes. It is clear that pathogenic bacteria use different strategies to accomplish these tasks. The dynamics by which host Rab GTPases associate with pathogen-occupied vacuoles provide insight into the mechanisms used by different bacteria to manipulate host membrane transport. In this review we highlight some of the strategies bacteria use to maintain a pathogen-occupied vacuole by focusing on the Rab proteins involved in biogenesis and maintenance of these novel organelles.
Collapse
Affiliation(s)
- Racquel Kim Sherwood
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | |
Collapse
|
23
|
AMPylation is critical for Rab1 localization to vacuoles containing Legionella pneumophila. mBio 2014; 5:e01035-13. [PMID: 24520063 PMCID: PMC3950522 DOI: 10.1128/mbio.01035-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Legionella pneumophila is an intracellular pathogen that resides within a membrane-bound compartment that is derived from vesicles exiting the endoplasmic reticulum (ER). To create this compartment, these bacteria use a type IV secretion system to deliver effector proteins that subvert host cell functions. Several Legionella effector proteins modulate the function of the host protein Rab1, which is a GTPase that is recruited to the Legionella-containing vacuole (LCV). Here, we examined which of the Rab1-directed enzymatic activities displayed by Legionella effectors are important for localizing the Rab1 protein to the LCV membrane. The guanine nucleotide exchange factor (GEF) domain in the effector protein DrrA (SidM) was essential for Rab1 recruitment to the LCV and Rab1 AMPylation by the nucleotidyltransferase domain in DrrA was important for Rab1 retention. Legionella organisms producing mutant DrrA proteins that were severely attenuated for GEF activity in vitro retained the ability to localize Rab1 to the LCV. Rab1 localization to the LCV mediated by these GEF-defective mutants required AMPylation. Importantly, we found that efficient localization of Rab1 to the LCV occurred when Rab1 GEF activity and Rab1 AMPylation activity were provided by separate proteins. Rab1 phosphocholination (PCylation) by the effector protein AnkX, however, was unable to substitute for Rab1 AMPylation. Lastly, the defect in Rab1 localization to the LCV in AMPylation-deficient strains of Legionella was partially suppressed if the GTPase-activating protein (GAP) LepB was eliminated. Thus, our data indicate that AMPylation of Rab1 is an effective strategy to maintain this GTPase on the LCV membrane. IMPORTANCE Activities that enable the intracellular pathogen Legionella pneumophila to subvert the function of the host protein Rab1 were investigated. Our data show that a posttranslational modification called AMPylation is critical for maintaining a pool of Rab1 on the LCV membrane. AMPylation of Rab1 led to the accumulation of GTP-bound Rab1 on the LCV membrane by protecting the protein from inactivation by GAPs. Importantly, PCylation of Rab1 by the Legionella effector protein AnkX was neither necessary nor sufficient to maintain Rab1 on the LCV, indicating that AMPylation and PCylation represent functionally distinct activities. We conclude that modification of Rab1 by AMPylation is an effective strategy to spatially and temporally regulate the function of this GTPase on a membrane-bound organelle.
Collapse
|
24
|
Garcia-Pino A, Zenkin N, Loris R. The many faces of Fic: structural and functional aspects of Fic enzymes. Trends Biochem Sci 2014; 39:121-9. [PMID: 24507752 DOI: 10.1016/j.tibs.2014.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/01/2014] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
Fic enzymes post-translationally modify proteins through AMPylation, UMPylation, phosphorylation, or phosphocholination. They have been identified across all domains of life, and they target a myriad of proteins such as eukaryotic GTPases, unstructured protein segments, and bacterial enzymes. Consequently, they play crucial roles in eukaryotic signal transduction, drug tolerance, bacterial pathogenicity, and the bacterial stress response. Structurally, they consist of an all α-helical core domain that supports and scaffolds a structurally conserved active-site loop, which catalyses the transfer of various parts of a nucleotide cofactor to proteins. Despite their diverse substrates and targets, they retain a conserved active site and reaction chemistry. This catalytic variety came to light only recently with the crystal structures of different Fic enzymes.
Collapse
Affiliation(s)
- Abel Garcia-Pino
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Building E, B-1050 Brussel, Belgium; Department of Structural Biology, VIB, Pleinlaan 2, Building E, B-1050 Brussel, Belgium.
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Building E, B-1050 Brussel, Belgium; Department of Structural Biology, VIB, Pleinlaan 2, Building E, B-1050 Brussel, Belgium
| |
Collapse
|