1
|
Górska A, Canziani LM, Rinaldi E, Pana ZD, Beale S, Bai F, Boxma-de Klerk BM, de Bruijn S, Donà D, Ekkelenkamp MB, Incardona F, Mallon P, Marchetti GC, Puhan M, Riva A, Simensen VC, Vaillant M, van der Zalm MM, van Kuijk SMJ, Wingerden SV, Judd A, Tacconelli E, Peñalvo JL. Learning from post-COVID-19 condition for epidemic preparedness: a variable catalogue for future post-acute infection syndromes. Clin Microbiol Infect 2024:S1198-743X(24)00587-1. [PMID: 39662824 DOI: 10.1016/j.cmi.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
SCOPE The emergence of post-COVID-19 condition (PCC) after SARS-CoV-2 infection underscores the critical need for preparedness in addressing future post-acute infection syndromes (PAIS), particularly those linked to epidemic outbreaks. The lack of standardized clinical and epidemiological data during the COVID-19 pandemic has significantly hindered timely diagnosis and effective treatment of PCC, highlighting the necessity of pre-emptively standardizing data collection in clinical studies to better define and manage future PAIS. In response, the Cohort Coordination Board, a consortium of European-funded COVID-19 research projects, has reviewed data from PCC studies conducted by its members. This paper leverages the Cohort Coordination Board's expertise to propose a standardized catalogue of variables, informed by the lessons learned during the pandemic, intended for immediate use in the design of future observational studies and clinical trials for emerging infections of epidemic potential. RECOMMENDATIONS The early implementation of standardized data collection, facilitated by the PAIS data catalogue, is essential for accelerating the identification and management of PAIS in future epidemics. This approach will enable more precise syndrome definitions, expedite diagnostic processes, and optimize treatment strategies, while also supporting long-term follow-up of affected individuals. The availability of harmonized data collection protocols will enhance preparedness across European and international cohort studies, and trials enabling a prompt and coordinated response, as well as more efficient resource allocation, in the event of emerging infections and associated PAIS.
Collapse
Affiliation(s)
- Anna Górska
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Eugenia Rinaldi
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Zoi D Pana
- Medical School, Basic and Clinical Studies Department, University of Nicosia, Nicosia, Cyprus
| | - Sarah Beale
- UCL Institute of Health Informatics, University College London, London, United Kingdom
| | - Francesca Bai
- Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Bianca M Boxma-de Klerk
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Simeon de Bruijn
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Daniele Donà
- Department of Women's and Children's Health, Università Degli Studi di Padova, Padova, Italy
| | - Miquel B Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Patrick Mallon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Giulia C Marchetti
- Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy; Department of Health Science, University of Milan, Milan, Italy
| | - Milo Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Agostino Riva
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Victoria C Simensen
- Department of Vaccines and Immunisation, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Michel Vaillant
- Competence Centre for Methodology and Statistics, Department of Medical Informatics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Marieke M van der Zalm
- Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | | | - Sophie van Wingerden
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ali Judd
- MRC Clinical Trials Unit, University College London, London, United Kingdom; Fondazione Penta ETS, Padova, Italy
| | - Evelina Tacconelli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - José L Peñalvo
- National Center for Epidemiology, Carlos III Health Institute (ISCIII), Madrid, Spain.
| |
Collapse
|
2
|
de Lima MC, de Castro CC, Aguiar KEC, Monte N, da Costa Nunes GG, da Costa ACA, Rodrigues JCG, Guerreiro JF, Ribeiro-dos-Santos Â, de Assumpção PP, Burbano RMR, Fernandes MR, dos Santos SEB, dos Santos NPC. Molecular Profile of Important Genes for Radiogenomics in the Amazon Indigenous Population. J Pers Med 2024; 14:484. [PMID: 38793065 PMCID: PMC11122349 DOI: 10.3390/jpm14050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Radiotherapy is focused on the tumor but also reaches healthy tissues, causing toxicities that are possibly related to genomic factors. In this context, radiogenomics can help reduce the toxicity, increase the effectiveness of radiotherapy, and personalize treatment. It is important to consider the genomic profiles of populations not yet studied in radiogenomics, such as the indigenous Amazonian population. Thus, our objective was to analyze important genes for radiogenomics, such as ATM, TGFB1, RAD51, AREG, XRCC4, CDK1, MEG3, PRKCE, TANC1, and KDR, in indigenous people and draw a radiogenomic profile of this population. The NextSeq 500® platform was used for sequencing reactions; for differences in the allelic frequency between populations, Fisher's Exact Test was used. We identified 39 variants, 2 of which were high impact: 1 in KDR (rs41452948) and another in XRCC4 (rs1805377). We found four modifying variants not yet described in the literature in PRKCE. We did not find any variants in TANC1-an important gene for personalized medicine in radiotherapy-that were associated with toxicities in previous cohorts, configuring a protective factor for indigenous people. We identified four SNVs (rs664143, rs1801516, rs1870377, rs1800470) that were associated with toxicity in previous studies. Knowing the radiogenomic profile of indigenous people can help personalize their radiotherapy.
Collapse
Affiliation(s)
- Milena Cardoso de Lima
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Cinthia Costa de Castro
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Kaio Evandro Cardoso Aguiar
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Natasha Monte
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Giovanna Gilioli da Costa Nunes
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Ana Caroline Alves da Costa
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Juliana Carla Gomes Rodrigues
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - João Farias Guerreiro
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
- Laboratory of Human and Medical Genetics, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | | | - Paulo Pimentel de Assumpção
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Rommel Mario Rodríguez Burbano
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Marianne Rodrigues Fernandes
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| | - Sidney Emanuel Batista dos Santos
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
- Laboratory of Human and Medical Genetics, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Ney Pereira Carneiro dos Santos
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.C.d.L.); (C.C.d.C.); (K.E.C.A.); (N.M.); (G.G.d.C.N.); (A.C.A.d.C.); (J.C.G.R.); (J.F.G.); (P.P.d.A.); (R.M.R.B.); (M.R.F.)
| |
Collapse
|
3
|
Shankar-Hari M, Calandra T, Soares MP, Bauer M, Wiersinga WJ, Prescott HC, Knight JC, Baillie KJ, Bos LDJ, Derde LPG, Finfer S, Hotchkiss RS, Marshall J, Openshaw PJM, Seymour CW, Venet F, Vincent JL, Le Tourneau C, Maitland-van der Zee AH, McInnes IB, van der Poll T. Reframing sepsis immunobiology for translation: towards informative subtyping and targeted immunomodulatory therapies. THE LANCET. RESPIRATORY MEDICINE 2024; 12:323-336. [PMID: 38408467 PMCID: PMC11025021 DOI: 10.1016/s2213-2600(23)00468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 02/28/2024]
Abstract
Sepsis is a common and deadly condition. Within the current model of sepsis immunobiology, the framing of dysregulated host immune responses into proinflammatory and immunosuppressive responses for the testing of novel treatments has not resulted in successful immunomodulatory therapies. Thus, the recent focus has been to parse observable heterogeneity into subtypes of sepsis to enable personalised immunomodulation. In this Personal View, we highlight that many fundamental immunological concepts such as resistance, disease tolerance, resilience, resolution, and repair are not incorporated into the current sepsis immunobiology model. The focus for addressing heterogeneity in sepsis should be broadened beyond subtyping to encompass the identification of deterministic molecular networks or dominant mechanisms. We explicitly reframe the dysregulated host immune responses in sepsis as altered homoeostasis with pathological disruption of immune-driven resistance, disease tolerance, resilience, and resolution mechanisms. Our proposal highlights opportunities to identify novel treatment targets and could enable successful immunomodulation in the future.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Thierry Calandra
- Service of Immunology and Allergy, Center of Human Immunology Lausanne, Department of Medicine and Department of Laboratory Medicine and Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kenneth J Baillie
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lieuwe D J Bos
- Department of Intensive Care, Academic Medical Center, Amsterdam, Netherlands
| | - Lennie P G Derde
- Intensive Care Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Simon Finfer
- Critical Care Division, The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Richard S Hotchkiss
- Department of Anesthesiology and Critical Care Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - John Marshall
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
| | | | - Christopher W Seymour
- Department of Critical Care Medicine, The Clinical Research, Investigation, and Systems Modeling of Acute illness (CRISMA) Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabienne Venet
- Immunology Laboratory, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Iain B McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Pastana LF, Silva TA, Gellen LPA, Vieira GM, de Assunção LA, Leitão LPC, da Silva NM, Coelho RDCC, de Alcântara AL, Vinagre LWMS, Rodrigues JCG, Borges Leal DFDV, Fernandes MR, de Souza SJ, Kroll JE, Ribeiro-dos-Santos AM, Burbano RMR, Guerreiro JF, de Assumpção PP, Ribeiro-dos-Santos ÂC, dos Santos SEB, dos Santos NPC. The Genomic Profile Associated with Risk of Severe Forms of COVID-19 in Amazonian Native American Populations. J Pers Med 2022; 12:jpm12040554. [PMID: 35455670 PMCID: PMC9027999 DOI: 10.3390/jpm12040554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Genetic factors associated with COVID-19 disease outcomes are poorly understood. This study aimed to associate genetic variants in the SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1, and ABO genes with the risk of severe forms of COVID-19 in Amazonian Native Americans, and to compare the frequencies with continental populations. The study population was composed of 64 Amerindians from the Amazon region of northern Brazil. The difference in frequencies between the populations was analyzed using Fisher’s exact test, and the results were significant when p ≤ 0.05. We investigated 64 polymorphisms in 7 genes; we studied 47 genetic variants that were new or had impact predictions of high, moderate, or modifier. We identified 15 polymorphisms with moderate impact prediction in 4 genes (ABO, CXCR6, FYCO1, and SLC6A20). Among the variants analyzed, 18 showed significant differences in allele frequency in the NAM population when compared to others. We reported two new genetic variants with modifier impact in the Amazonian population that could be studied to validate the possible associations with COVID-19 outcomes. The genomic profile of Amazonian Native Americans may be associated with protection from severe forms of COVID-19. This work provides genomic data that may help forthcoming studies to improve COVID-19 outcomes.
Collapse
Affiliation(s)
- Lucas Favacho Pastana
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Thays Amâncio Silva
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Laura Patrícia Albarello Gellen
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Giovana Miranda Vieira
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Letícia Almeida de Assunção
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Luciana Pereira Colares Leitão
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Natasha Monte da Silva
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Rita de Cássia Calderaro Coelho
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Angélica Leite de Alcântara
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Lui Wallacy Morikawa Souza Vinagre
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Juliana Carla Gomes Rodrigues
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Diana Feio da Veiga Borges Leal
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Marianne Rodrigues Fernandes
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Sandro José de Souza
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal 59076-550, Brazil; (S.J.d.S.); (J.E.K.)
- BioME, Universidade Federal do Rio Grande do Norte, Natal 59078-400, Brazil
- Institute of Systems Genetics, West China Hospital, University of Sichuan, Chengdu 610041, China
| | - José Eduardo Kroll
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal 59076-550, Brazil; (S.J.d.S.); (J.E.K.)
| | - André Mauricio Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Brazil; (A.M.R.-d.-S.); (J.F.G.); (Â.C.R.-d.-S.)
| | - Rommel Mario Rodríguez Burbano
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - João Farias Guerreiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Brazil; (A.M.R.-d.-S.); (J.F.G.); (Â.C.R.-d.-S.)
| | - Paulo Pimentel de Assumpção
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Ândrea Campos Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Brazil; (A.M.R.-d.-S.); (J.F.G.); (Â.C.R.-d.-S.)
| | - Sidney Emanuel Batista dos Santos
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
| | - Ney Pereira Carneiro dos Santos
- Laboratório do Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil; (L.F.P.); (T.A.S.); (L.P.A.G.); (G.M.V.); (L.A.d.A.); (L.P.C.L.); (N.M.d.S.); (R.d.C.C.C.); (A.L.d.A.); (L.W.M.S.V.); (J.C.G.R.); (D.F.d.V.B.L.); (M.R.F.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.)
- Correspondence: ; Tel.: +55-(91)-98107-0850
| |
Collapse
|
5
|
Patrinos GP, Kambouris ME. The genomic dimension in biodefense: Therapeutics. GENOMICS IN BIOSECURITY 2022:183-195. [DOI: 10.1016/b978-0-323-85236-4.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Cheng N, Cui X, Chen C, Li C, Huang J. Exploration of Lung Cancer-Related Genetic Factors via Mendelian Randomization Method Based on Genomic and Transcriptomic Summarized Data. Front Cell Dev Biol 2021; 9:800756. [PMID: 34938740 PMCID: PMC8686495 DOI: 10.3389/fcell.2021.800756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Lung carcinoma is one of the most deadly malignant tumors in mankind. With the rising incidence of lung cancer, searching for the high effective cures become more and more imperative. There has been sufficient research evidence that living habits and situations such as smoking and air pollution are associated with an increased risk of lung cancer. Simultaneously, the influence of individual genetic susceptibility on lung carcinoma morbidity has been confirmed, and a growing body of evidence has been accumulated on the relationship between various risk factors and the risk of different pathological types of lung cancer. Additionally, the analyses from many large-scale cancer registries have shown a degree of familial aggregation of lung cancer. To explore lung cancer-related genetic factors, Genome-Wide Association Studies (GWAS) have been used to identify several lung cancer susceptibility sites and have been widely validated. However, the biological mechanism behind the impact of these site mutations on lung cancer remains unclear. Therefore, this study applied the Summary data-based Mendelian Randomization (SMR) model through the integration of two GWAS datasets and four expression Quantitative Trait Loci (eQTL) datasets to identify susceptibility genes. Using this strategy, we found ten of Single Nucleotide Polymorphisms (SNPs) sites that affect the occurrence and development of lung tumors by regulating the expression of seven genes. Further analysis of the signaling pathway about these genes not only provides important clues to explain the pathogenesis of lung cancer but also has critical significance for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Nitao Cheng
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xinran Cui
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Changsheng Li
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jingyu Huang
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Koch L, Lopes AA, Maiguy A, Guillier S, Guillier L, Tournier JN, Biot F. Natural outbreaks and bioterrorism: How to deal with the two sides of the same coin? J Glob Health 2021; 10:020317. [PMID: 33110519 PMCID: PMC7535343 DOI: 10.7189/jogh.10.020317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lionel Koch
- Bacteriology Unit, French Armed Forces Biomedical Research Institute (IRBA), Bretigny sur Orge, France
| | - Anne-Aurelie Lopes
- Pediatric Emergency Department, AP-HP, Robert Debre Hospital, Paris, Sorbonne University, France
| | | | - Sophie Guillier
- Bacteriology Unit, French Armed Forces Biomedical Research Institute (IRBA), Bretigny sur Orge, France
| | - Laurent Guillier
- Risk Assessment Department, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Jean-Nicolas Tournier
- Department of Microbiology and Infectious Diseases, French Armed Forces Biomedical Research Institute (IRBA), Bretigny sur Orge, France
| | - Fabrice Biot
- Bacteriology Unit, French Armed Forces Biomedical Research Institute (IRBA), Bretigny sur Orge, France
| |
Collapse
|
8
|
Challenges and Opportunities in Understanding Genetics of Fungal Diseases: Towards a Functional Genomics Approach. Infect Immun 2021; 89:e0000521. [PMID: 34031131 DOI: 10.1128/iai.00005-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and human pathogens have long been recognized as one of the main sources of evolutionary pressure, resulting in a high variable genetic background in immune-related genes. The study of the genetic contribution to infectious diseases has undergone tremendous advances over the last decades. Here, focusing on genetic predisposition to fungal diseases, we provide an overview of the available approaches for studying human genetic susceptibility to infections, reviewing current methodological and practical limitations. We describe how the classical methods available, such as family-based studies and candidate gene studies, have contributed to the discovery of crucial susceptibility factors for fungal infections. We will also discuss the contribution of novel unbiased approaches to the field, highlighting their success but also their limitations for the fungal immunology field. Finally, we show how a systems genomics approach can overcome those limitations and can lead to efficient prioritization and identification of genes and pathways with a critical role in susceptibility to fungal diseases. This knowledge will help to stratify at-risk patient groups and, subsequently, develop early appropriate prophylactic and treatment strategies.
Collapse
|
9
|
Emam M, Tabatabaei S, Sargolzaei M, Mallard B. Response to Oxidative Burst-Induced Hypoxia Is Associated With Macrophage Inflammatory Profiles as Revealed by Cellular Genome-Wide Association. Front Immunol 2021; 12:688503. [PMID: 34220845 PMCID: PMC8253053 DOI: 10.3389/fimmu.2021.688503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022] Open
Abstract
Background In mammalian species, hypoxia is a prominent feature of inflammation. The role of hypoxia in regulating macrophage responses via alteration in metabolic pathways is well established. Recently, oxidative burst-induced hypoxia has been shown in murine macrophages after phagocytosis. Despite the available detailed information on the regulation of macrophage function at transcriptomic and epigenomic levels, the association of genetic polymorphism and macrophage function has been less explored. Previously, we have shown that host genetics controls approximately 80% of the variation in an oxidative burst as measured by nitric oxide (NO-). Further studies revealed two clusters of transcription factors (hypoxia-related and inflammatory-related) are under the genetic control that shapes macrophages’ pro-inflammatory characteristics. Material and Methods In the current study, the association between 43,066 autosomal Single Nucleic Polymorphism (SNPs) and the ability of MDMs in production of NO- in response to E. coli was evaluated in 58 Holstein cows. The positional candidate genes near significant SNPs were selected to perform functional analysis. In addition, the interaction between the positional candidate genes and differentially expressed genes from our previous study was investigated. Results Sixty SNPs on 22 chromosomes of the bovine genome were found to be significantly associated with NO- production of macrophages. The functional genomic analysis showed a significant interaction between positional candidate genes and mitochondria-related differentially expressed genes from the previous study. Further examination showed 7 SNPs located in the vicinity of genes with roles in response to hypoxia, shaping approximately 73% of the observed individual variation in NO- production by MDM. Regarding the normoxic condition of macrophage culture in this study, it was hypothesized that oxidative burst is responsible for causing hypoxia at the cellular level. Conclusion The results suggest that the genetic polymorphism via regulation of response to hypoxia is a candidate step that perhaps shapes macrophage functional characteristics in the pathway of phagocytosis leading to oxidative burst, hypoxia, cellular response to hypoxia and finally the pro-inflammatory responses. Since all cells in one individual carry the same alleles, the effect of genetic predisposition of sensitivity to hypoxia will likely be notable on the clinical outcome to a broad range of host-pathogen interactions.
Collapse
Affiliation(s)
- Mehdi Emam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Saeid Tabatabaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Select Sires Inc., Plain City, OH, United States
| | - Bonnie Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Center for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Emam M, Tabatabaei S, Sargolzaei M, Sharif S, Schenkel F, Mallard B. The effect of host genetics on in vitro performance of bovine monocyte-derived macrophages. J Dairy Sci 2019; 102:9107-9116. [PMID: 31400895 DOI: 10.3168/jds.2018-15960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
The dynamic interaction between the host and pathogens, along with environmental factors, influences the regulation of mammalian immune responses. Therefore, comprehensive in vivo immune-phenotyping during an active response to a pathogen can be complex and prone to confounding effects. Evaluating critical fundamental aspects of the immune system at a cellular level is an alternative approach to reduce this complexity. Therefore, the objective of the current study was to examine an in vitro model for functional phenotyping of bovine monocyte-derived macrophages (MDM), cells which play a crucial role at all phases of inflammation, as well influence downstream immune responses. As indicators of MDM function, phagocytosis and nitric oxide (NO-) production were tested in MDM of 16 cows in response to 2 common bacterial pathogens of dairy cows, Escherichia coli and Staphylococcus aureus. Notable functional variations were observed among the individuals (coefficient of variation: 33% for phagocytosis and 70% in the production of NO-). The rank correlation analysis revealed a significant, positive, and strong correlation (rho = 0.92) between NO- production in response to E. coli and S. aureus, and a positive but moderate correlation (rho = 0.58) between phagocytosis of E. coli and S. aureus. To gain further insight into this trait, another 58 cows were evaluated solely for NO- response against E. coli. The pedigree of the tested animals was added to the statistical model and the heritability was estimated to be 0.776. Overall, the finding of this study showed a strong effect of host genetics on the in vitro activities of MDM and the possibility of ranking Holstein cows based on the in vitro functional variation of MDM.
Collapse
Affiliation(s)
- Mehdi Emam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Saeid Tabatabaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Select Sires Inc., Plain City, OH 43064
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Flavio Schenkel
- Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bonnie Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
11
|
Yeung A, Hale C, Clare S, Palmer S, Bartholdson Scott J, Baker S, Dougan G. Using a Systems Biology Approach To Study Host-Pathogen Interactions. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0021-2019. [PMID: 30953425 PMCID: PMC11590422 DOI: 10.1128/microbiolspec.bai-0021-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
The rapid development of genomics and other "-omics" approaches has significantly impacted how we have investigated host-pathogen interactions since the turn of the millennium. Technologies such as next-generation sequencing, stem cell biology, and high-throughput proteomics have transformed the scale and sensitivity with which we interrogate biological samples. These approaches are impacting experimental design in the laboratory and transforming clinical management in health care systems. Here, we review this area from the perspective of research on bacterial pathogens.
Collapse
Affiliation(s)
- Amy Yeung
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Christine Hale
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sophie Palmer
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Josefin Bartholdson Scott
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Stephen Baker
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
- Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
12
|
Tavera G, Morgan DR, Williams SM. Tipping the Scale Toward Gastric Disease: A Host-Pathogen Genomic Mismatch? CURRENT GENETIC MEDICINE REPORTS 2018; 6:199-207. [PMID: 30775159 PMCID: PMC6373874 DOI: 10.1007/s40142-018-0153-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Chronic infection with Helicobacter pylori infection is necessary but not sufficient to initiate development of intestinal-type gastric adenocarcinoma. It is not clear what additional factors tip the scale from commensal bacteria towards a pathogen that facilitates development of gastric cancer. Genetic variants in both the pathogen and host have been implicated, but neither alone explains a substantial portion of disease risk. RECENT FINDINGS In this review, we consider studies that address the important role of human and bacterial genetics, ancestry and their interactions in determining gastric disease risk. We observe gaps in the current literature that should guide future work to confirm the hypothesis of the interacting roles of host and bacterial genetics that will be necessary to translate these findings into clinically relevant information. SUMMARY We summarize genetic risk factors for gastric disease in both H. pylori and human hosts. However, genetic variation of one or the other organism in isolation insufficiently explains gastric disease risk. The most promising models of gastric disease risk simultaneously consider the genetic variation of both the H. pylori and human host, under a co-evolution model.
Collapse
Affiliation(s)
- Gloria Tavera
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Douglas R Morgan
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Klemm E, Dougan G. Advances in Understanding Bacterial Pathogenesis Gained from Whole-Genome Sequencing and Phylogenetics. Cell Host Microbe 2017; 19:599-610. [PMID: 27173928 DOI: 10.1016/j.chom.2016.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/07/2023]
Abstract
The development of next-generation sequencing as a cost-effective technology has facilitated the analysis of bacterial population structure at a whole-genome level and at scale. From these data, phylogenic trees have been constructed that define population structures at a local, national, and global level, providing a framework for genetic analysis. Although still at an early stage, these approaches have yielded progress in several areas, including pathogen transmission mapping, the genetics of niche colonization and host adaptation, as well as gene-to-phenotype association studies. Antibiotic resistance has proven to be a major challenge in the early 21(st) century, and phylogenetic analyses have uncovered the dramatic effect that the use of antibiotics has had on shaping bacterial population structures. An update on insights into bacterial evolution from comparative genomics is provided in this review.
Collapse
Affiliation(s)
- Elizabeth Klemm
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
14
|
Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol. Proc Natl Acad Sci U S A 2017; 114:E7746-E7755. [PMID: 28827342 DOI: 10.1073/pnas.1706070114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi (S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.
Collapse
|
15
|
Langlais D, Fodil N, Gros P. Genetics of Infectious and Inflammatory Diseases: Overlapping Discoveries from Association and Exome-Sequencing Studies. Annu Rev Immunol 2017; 35:1-30. [DOI: 10.1146/annurev-immunol-051116-052442] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Nassima Fodil
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Philippe Gros
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
16
|
Wang L, Ko ER, Gilchrist JJ, Pittman KJ, Rautanen A, Pirinen M, Thompson JW, Dubois LG, Langley RJ, Jaslow SL, Salinas RE, Rouse DC, Moseley MA, Mwarumba S, Njuguna P, Mturi N, Williams TN, Scott JAG, Hill AVS, Woods CW, Ginsburg GS, Tsalik EL, Ko DC. Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis. SCIENCE ADVANCES 2017; 3:e1602096. [PMID: 28345042 PMCID: PMC5342653 DOI: 10.1126/sciadv.1602096] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Sepsis is a deleterious inflammatory response to infection with high mortality. Reliable sepsis biomarkers could improve diagnosis, prognosis, and treatment. Integration of human genetics, patient metabolite and cytokine measurements, and testing in a mouse model demonstrate that the methionine salvage pathway is a regulator of sepsis that can accurately predict prognosis in patients. Pathway-based genome-wide association analysis of nontyphoidal Salmonella bacteremia showed a strong enrichment for single-nucleotide polymorphisms near the components of the methionine salvage pathway. Measurement of the pathway's substrate, methylthioadenosine (MTA), in two cohorts of sepsis patients demonstrated increased plasma MTA in nonsurvivors. Plasma MTA was correlated with levels of inflammatory cytokines, indicating that elevated MTA marks a subset of patients with excessive inflammation. A machine-learning model combining MTA and other variables yielded approximately 80% accuracy (area under the curve) in predicting death. Furthermore, mice infected with Salmonella had prolonged survival when MTA was administered before infection, suggesting that manipulating MTA levels could regulate the severity of the inflammatory response. Our results demonstrate how combining genetic data, biomolecule measurements, and animal models can shape our understanding of disease and lead to new biomarkers for patient stratification and potential therapeutic targeting.
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Emily R. Ko
- Duke Regional Hospital, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC 27708, USA
| | - James J. Gilchrist
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, U.K
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, U.K
| | - Kelly J. Pittman
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Anna Rautanen
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, U.K
| | - Matti Pirinen
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, U.K
| | - J. Will Thompson
- Proteomics and Metabolomics Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura G. Dubois
- Proteomics and Metabolomics Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Raymond J. Langley
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | - Sarah L. Jaslow
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Raul E. Salinas
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - D. Clayburn Rouse
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC 27710, USA
| | - M. Arthur Moseley
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC 27708, USA
- Proteomics and Metabolomics Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Salim Mwarumba
- Kenya Medical Research Institute–Wellcome Trust Clinical Research Programme, Kilifi 80108, Kenya
| | - Patricia Njuguna
- Kenya Medical Research Institute–Wellcome Trust Clinical Research Programme, Kilifi 80108, Kenya
| | - Neema Mturi
- Kenya Medical Research Institute–Wellcome Trust Clinical Research Programme, Kilifi 80108, Kenya
| | | | | | - Thomas N. Williams
- Kenya Medical Research Institute–Wellcome Trust Clinical Research Programme, Kilifi 80108, Kenya
- Department of Medicine, Imperial College, Norfolk Place, London W2 1PG, U.K
| | - J. Anthony G. Scott
- Kenya Medical Research Institute–Wellcome Trust Clinical Research Programme, Kilifi 80108, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Adrian V. S. Hill
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, U.K
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K
| | - Christopher W. Woods
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC 27708, USA
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
- Medical Service, Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
| | - Geoffrey S. Ginsburg
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Ephraim L. Tsalik
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC 27708, USA
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
- Emergency Medicine Service, Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
17
|
Shi Y, Du M, Fang Y, Tong N, Zhai X, Sheng X, Li Z, Xue Y, Li J, Chu H, Chen J, Song Z, Shen J, Ji J, Li X, Hu Z, Shen H, Xu J, Wang M, Zhang Z. Identification of a novel susceptibility locus at 16q23.1 associated with childhood acute lymphoblastic leukemia in Han Chinese. Hum Mol Genet 2016; 25:2873-2880. [PMID: 27094129 DOI: 10.1093/hmg/ddw112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/13/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Recently, genome-wide association studies (GWAS) have identified several susceptibility loci for childhood acute lymphoblastic leukemia (ALL) in populations of European descent; only a few loci could be confirmed in Asian populations because of those populations' genetic heterogeneity. To identify genetic factors associated with childhood ALL risk in the Chinese population, we performed a three-stage GWAS of 1184 childhood ALL cases and 3219 non-ALL controls. The combined analysis identified a new locus (rs1121404 in WWOX) at 16q23.1 associated with childhood ALL susceptibility (odds ratio (OR) = 1.38, P = 5.29 × 10-10), especially in the subtype of B-ALL (OR = 1.39, P = 2.47 × 10-9). The functional studies subsequently revealed that the expression of WWOX in ALL bone marrow was significantly lower than that in normal bone marrow. The G allele of rs1121404 displayed significantly decreased levels of mRNA expression of WWOX These results suggest that WWOX plays an important role in the development of childhood ALL and provide new insights into the etiology of childhood ALL.
Collapse
Affiliation(s)
- Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China .,The Affiliated Hospital of Qingdao University, Qingdao 266003, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mulong Du
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Nanjing Children's Hospital Affiliated with Nanjing Medical University, Nanjing 210000, China
| | - Na Tong
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's hospital of Fudan University, Shanghai 200032, China
| | - Xiaojing Sheng
- Department of Children's healthcare, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Xue
- Department of Hematology and Oncology, Nanjing Children's Hospital Affiliated with Nanjing Medical University, Nanjing 210000, China
| | - Jie Li
- Department of Hematology and Oncology, The Affiliated Children's Hospital of Soochow University, Suzhou 215025, China
| | - Haiyan Chu
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jue Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois 60201, USA
| | - Meilin Wang
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
18
|
Wang L, Oehlers SH, Espenschied ST, Rawls JF, Tobin DM, Ko DC. CPAG: software for leveraging pleiotropy in GWAS to reveal similarity between human traits links plasma fatty acids and intestinal inflammation. Genome Biol 2015; 16:190. [PMID: 26374098 PMCID: PMC4570686 DOI: 10.1186/s13059-015-0722-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/09/2015] [Indexed: 12/31/2022] Open
Abstract
Meta-analyses of genome-wide association studies (GWAS) have demonstrated that the same genetic variants can be associated with multiple diseases and other complex traits. We present software called CPAG (Cross-Phenotype Analysis of GWAS) to look for similarities between 700 traits, build trees with informative clusters, and highlight underlying pathways. Clusters are consistent with pre-defined groups and literature-based validation but also reveal novel connections. We report similarity between plasma palmitoleic acid and Crohn's disease and find that specific fatty acids exacerbate enterocolitis in zebrafish. CPAG will become increasingly powerful as more genetic variants are uncovered, leading to a deeper understanding of complex traits. CPAG is freely available at www.sourceforge.net/projects/CPAG/.
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Stefan H Oehlers
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Scott T Espenschied
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA.
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA.
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA. .,Department of Medicine and the Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
19
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
20
|
Lee SC, Li A, Calo S, Inoue M, Tonthat NK, Bain JM, Louw J, Shinohara ML, Erwig LP, Schumacher MA, Ko DC, Heitman J. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol Microbiol 2015; 97:844-65. [PMID: 26010100 DOI: 10.1111/mmi.13071] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 01/09/2023]
Abstract
Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Alicia Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Silvia Calo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Makoto Inoue
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nam K Tonthat
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Judith M Bain
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Johanna Louw
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Mari L Shinohara
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lars P Erwig
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Center for Human Genome Variation, Duke University Medical Center, Durham, NC, 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
21
|
Kodaman N, Sobota RS, Mera R, Schneider BG, Williams SM. Disrupted human-pathogen co-evolution: a model for disease. Front Genet 2014; 5:290. [PMID: 25202324 PMCID: PMC4142859 DOI: 10.3389/fgene.2014.00290] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023] Open
Abstract
A major goal in infectious disease research is to identify the human and pathogenic genetic variants that explain differences in microbial pathogenesis. However, neither pathogenic strain nor human genetic variation in isolation has proven adequate to explain the heterogeneity of disease pathology. We suggest that disrupted co-evolution between a pathogen and its human host can explain variation in disease outcomes, and that genome-by-genome interactions should therefore be incorporated into genetic models of disease caused by infectious agents. Genetic epidemiological studies that fail to take both the pathogen and host into account can lead to false and misleading conclusions about disease etiology. We discuss our model in the context of three pathogens, Helicobacter pylori, Mycobacterium tuberculosis and human papillomavirus, and generalize the conditions under which it may be applicable.
Collapse
Affiliation(s)
- Nuri Kodaman
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA ; Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University Medical Center Nashville, TN, USA
| | - Rafal S Sobota
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA ; Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University Medical Center Nashville, TN, USA
| | - Robertino Mera
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center Nashville, TN, USA
| | - Barbara G Schneider
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center Nashville, TN, USA
| | - Scott M Williams
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA
| |
Collapse
|
22
|
Ko DC, Jaslow SL. The marriage of quantitative genetics and cell biology: a novel screening approach reveals people have genetically encoded variation in microtubule stability. BIOARCHITECTURE 2014; 4:58-61. [PMID: 24618686 DOI: 10.4161/bioa.28481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microtubules play a central role in many essential cellular processes, including chromosome segregation, intracellular transport, and cell polarity. As these dynamic polymers are crucial components of eukaryotic cellular architecture, we were surprised by our recent discovery that a common human genetic difference leads to variation in microtubule stability in cells from different people. A single nucleotide polymorphism (SNP) near the TUBB6 gene, encoding class V β-tubulin, is associated with the expression level of this protein, which reduces microtubule stability at higher levels of expression. We discuss the novel cellular GWAS (genome-wide association study) platform that led to this discovery of natural, common variation in microtubule stability and the implications this finding may have for human health and disease, including cancer and neurological disorders. Furthermore, our generalizable approach provides a gateway for cell biologists to help interpret the functional consequences of human genetic variation.
Collapse
Affiliation(s)
- Dennis C Ko
- Department of Molecular Genetics and Microbiology; School of Medicine; Duke University; Durham, NC USA; Department of Medicine and the Center for Human Genome Variation; School of Medicine; Duke University; Durham, NC USA
| | - Sarah L Jaslow
- Department of Molecular Genetics and Microbiology; School of Medicine; Duke University; Durham, NC USA
| |
Collapse
|
23
|
Salinas RE, Ogohara C, Thomas MI, Shukla KP, Miller SI, Ko DC. A cellular genome-wide association study reveals human variation in microtubule stability and a role in inflammatory cell death. Mol Biol Cell 2013; 25:76-86. [PMID: 24173717 PMCID: PMC3873895 DOI: 10.1091/mbc.e13-06-0294] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interindividual variation was screened for inflammatory cell death—pyroptosis. Natural variation in expression of the tubulin isoform TUBB6 or experimental manipulation of expression altered microtubule stability and susceptibility of cells to pyroptosis. Diversity in microtubule stability regulates pyroptosis and likely other human traits. Pyroptosis is proinflammatory cell death that occurs in response to certain microbes. Activation of the protease caspase-1 by molecular platforms called inflammasomes is required for pyroptosis. We performed a cellular genome-wide association study (GWAS) using Salmonella typhimurium infection of human lymphoblastoid cell lines as a means of dissecting the genetic architecture of susceptibility to pyroptosis and identifying unknown regulatory mechanisms. Cellular GWAS revealed that a common human genetic difference that regulates pyroptosis also alters microtubule stability. An intergenic single-nucleotide polymorphism on chromosome 18 is associated with decreased pyroptosis and increased expression of TUBB6 (tubulin, β 6 class V). TUBB6 is unique among tubulin isoforms in that its overexpression can completely disrupt the microtubule network. Cells from individuals with higher levels of TUBB6 expression have lower microtubule stability and less pyroptosis. Reducing TUBB6 expression or stabilizing microtubules pharmacologically with paclitaxel (Taxol) increases pyroptosis without affecting the other major readout of caspase-1 activation, interleukin-1β secretion. The results reveal a new role for microtubules and possibly specific tubulin isoforms in the execution of pyroptosis. Furthermore, the finding that there is common diversity in TUBB6 expression and microtubule stability could have broad consequences for other microtubule-dependent phenotypes, diseases, and pharmacological responses.
Collapse
Affiliation(s)
- Raul E Salinas
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710 Department of Medicine and Center for Human Genome Variation, School of Medicine, Duke University, Durham, NC 27710 Department of Microbiology, University of Washington, Seattle, WA 98195 Departments of Medicine, Genome Sciences, and Immunology, University of Washington, Seattle, WA 98195
| | | | | | | | | | | |
Collapse
|