1
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
2
|
Rohn H, Rebmann V. Is HLA-E with its receptors an immune checkpoint or an antigenic determinant in allo-HCT? Best Pract Res Clin Haematol 2024; 37:101560. [PMID: 39098806 DOI: 10.1016/j.beha.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality. Recently, non-classical HLA class I molecules, especially HLA-E, have gained increasing attention in the context of allogeneic HCT. This review aims to summarize the latest findings on the immunomodulatory role of HLA-E, which serves as a ligand for receptors of the innate and adaptive immune system. In particular, we aim to elucidate how (i) polymorphisms within HLA-E, (ii) the NKG2A/C axis and (iii) the repertoire of peptides presented by HLA-E jointly influence the functionality of immune effector cells. Understanding this intricate network of interactions is crucial as it significantly affects NK and T cell responses and thus clinical outcomes after HCT.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Zubković A, Gomes C, Parchure A, Cesarec M, Ferenčić A, Rokić F, Jakovac H, Whitford AL, Dochnal SA, Cliffe AR, Cuculić D, Gallo A, Vugrek O, Hackenberg M, Jurak I. HSV-1 miRNAs are post-transcriptionally edited in latently infected human ganglia. J Virol 2023; 97:e0073023. [PMID: 37712701 PMCID: PMC10617394 DOI: 10.1128/jvi.00730-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Herpes simplex virus 1 is an important human pathogen that has been intensively studied for many decades. Nevertheless, the molecular mechanisms regulating its establishment, maintenance, and reactivation from latency are poorly understood. Here, we show that HSV-1-encoded miR-H2 is post-transcriptionally edited in latently infected human tissues. Hyperediting of viral miRNAs increases the targeting potential of these miRNAs and may play an important role in regulating latency. We show that the edited miR-H2 can target ICP4, an essential viral protein. Interestingly, we found no evidence of hyperediting of its homolog, miR-H2, which is expressed by the closely related virus HSV-2. The discovery of post-translational modifications of viral miRNA in the latency phase suggests that these processes may also be important for other non-coding viral RNA in the latency phase, including the intron LAT, which in turn may be crucial for understanding the biology of this virus.
Collapse
Affiliation(s)
- Andreja Zubković
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Cristina Gomes
- Genetics Department and Biotechnology Institute, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Adwait Parchure
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Mia Cesarec
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Antun Ferenčić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Filip Rokić
- Laboratory for Advanced Genomics, Institute Ruđer Bošković, Zagreb, Croatia
| | - Hrvoje Jakovac
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Dražen Cuculić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Angela Gallo
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Institute Ruđer Bošković, Zagreb, Croatia
| | - Michael Hackenberg
- Genetics Department and Biotechnology Institute, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Igor Jurak
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
4
|
Ivanišević V, Žilić L, Čunko M, Fadiga H, Munitić I, Jurak I. RNA Editing-Dependent and -Independent Roles of Adenosine Deaminases Acting on RNA Proteins in Herpesvirus Infection-Hints on Another Layer of Complexity. Viruses 2023; 15:2007. [PMID: 37896783 PMCID: PMC10611208 DOI: 10.3390/v15102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The Adenosine Deaminases Acting on RNA (ADAR) catalyze the posttranscriptional deamination of adenosine residues to inosine in double-stranded RNAs (dsRNAs, A-to-I editing), preventing the overactivation of dsRNA sensor molecules and interferons. RNA editing is the cornerstone of innate immunity that distinguishes between self and non-self (virus), and it is essential for normal regulation of cellular homeostasis. Although much is already known about the role of ADAR proteins in RNA virus infection, the role of ADAR proteins in herpesvirus infection remains largely unexplored. In this review, we provide several lines of evidence from studies of different herpesviruses for another level of complexity in regulating the already intricate biphasic life cycle of herpesviruses.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Jurak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia (L.Ž.)
| |
Collapse
|
5
|
Yu Z, Wang J, Nan F, Shi W, Zhang X, Jiang S, Wang B. Human Cytomegalovirus Induced Aberrant Expression of Non-coding RNAs. Front Microbiol 2022; 13:918213. [PMID: 35770158 PMCID: PMC9234646 DOI: 10.3389/fmicb.2022.918213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus whose genome consists of double stranded linear DNA. HCMV genome can generate non-coding RNAs (ncRNAs) through transcription in its host cells. Besides that, HCMV infection also changes the ncRNAs expression profile of the host cells. ncRNAs play a key role in maintaining the normal physiological activity of cells, and the disorder of ncRNAs expression has numerous adverse effects on cells. However, until now, the relationship between ncRNAs and HCMV-induced adverse effects are not summarized in detail. This review aims to give a systematic summary of the role of HCMV infection in ncRNAs expression while providing insights into the molecular mechanism of unnormal cellular events caused by ncRNAs disorder. ncRNAs disorder induced by HCMV infection is highly associated with cell proliferation, apoptosis, tumorigenesis, and immune regulation, as well as the development of cardiovascular diseases, and the potential role of biomarker. We summarize the studies on HCMV associated ncRNAs disorder and suggest innovative strategies for eliminating the adverse effects caused by HCMV infection.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jing Wang
- Oral Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Fulong Nan
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wenyi Shi
- Oral Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
- *Correspondence: Bin Wang,
| |
Collapse
|
6
|
Rajendren S, Karijolich J. The Impact of RNA modifications on the Biology of DNA Virus Infection. Eur J Cell Biol 2022; 101:151239. [PMID: 35623231 PMCID: PMC9549750 DOI: 10.1016/j.ejcb.2022.151239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Approximately 170 RNA modifications have been identified and these are critical for determining the fate and function of cellular RNAs. Similar to human transcripts, viral RNAs possess an extensive RNA modification landscape. While initial efforts largely focused on investigating the RNA modification landscape in the context of RNA virus infection, a growing body of work has explored the impact of RNA modifications on DNA virus biology. These studies have revealed roles for RNA modifications in DNA virus infection, including gene regulation and viral pathogenesis. In this review, we will discuss the current knowledge on how RNA modifications impact DNA virus biology.
Collapse
|
7
|
Abstract
There are strong incentives for human populations to develop antiviral systems. Similarly, genomes that encode antiviral systems have had strong selective advantages. Protein-guided immune systems, which have been well studied in mammals, are necessary for survival in our virus-laden environments. Small RNA–directed antiviral immune systems suppress invasion of cells by non-self genetic material via complementary base pairing with target sequences. These RNA silencing-dependent systems operate in diverse organisms. In mammals, there is strong evidence that microRNAs (miRNAs) regulate endogenous genes important for antiviral immunity, and emerging evidence that virus-derived nucleic acids can be directly targeted by small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNAs (tRNAs) for protection in some contexts. In this review, we summarize current knowledge of the antiviral functions of each of these small RNA types and consider their conceptual and mechanistic overlap with innate and adaptive protein-guided immunity, including mammalian antiviral cytokines, as well as the prokaryotic RNA-guided immune system, CRISPR. In light of recent successes in delivery of RNA for antiviral purposes, most notably for vaccination, we discuss the potential for development of small noncoding RNA–directed antiviral therapeutics and prophylactics. Viruses are all around us and are likely inside some of the reader’s cells at this moment. Organisms are accommodated to this reality and encode various immune systems to limit virus replication. In mammals, the best studied immune systems are directed by proteins that specifically recognize viruses. These include diverse antibodies and T cell receptors, which recognize viral proteins, and pattern recognition receptors, some of which can recognize viral nucleic acids. In other organisms, including bacteria, immune systems directed by small RNAs are also well known; spacer-derived guide RNAs in CRISPR/Cas immune systems are one prominent example. The small RNAs directing these systems derive their specificity via complementary base pairing with their targets, which include both host and viral nucleic acids. Rather than having “traded in” these systems for more advanced protein-directed systems, increasing evidence supports the perspective that small RNA–directed immune systems remain active in mammalian antiviral immunity in some contexts. Here, we review what is known so far about the emerging roles of mammalian siRNAs, miRNAs, piRNAs, and tRNAs in directing immunity to viruses.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- * E-mail: (TT); (NFP)
| | - Steven M. Heaton
- Genome Immunobiology RIKEN Hakubi Research Team, Cluster for Pioneering Research, RIKEN, Yokohama, Japan
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Nicholas F. Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, Cluster for Pioneering Research, RIKEN, Yokohama, Japan
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- * E-mail: (TT); (NFP)
| |
Collapse
|
8
|
Díaz‐Basabe A, Burrello C, Lattanzi G, Botti F, Carrara A, Cassinotti E, Caprioli F, Facciotti F. Human intestinal and circulating invariant natural killer T cells are cytotoxic against colorectal cancer cells via the perforin-granzyme pathway. Mol Oncol 2021; 15:3385-3403. [PMID: 34535957 PMCID: PMC8637555 DOI: 10.1002/1878-0261.13104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 11/05/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are lipid-specific T lymphocytes endowed with cytotoxic activities and are thus considered important in antitumor immunity. While several studies have demonstrated iNKT cell cytotoxicity against different tumors, very little is known about their cell-killing activities in human colorectal cancer (CRC). Our aim was to assess whether human iNKT cells are cytotoxic against colon cancer cells and the mechanisms underlying this activity. For this purpose, we generated stable iNKT cell lines from peripheral blood and colon specimens and used NK-92 and peripheral blood natural killer cells as cell-mediated cytotoxicity controls. In vitro cytotoxicity was assessed using a panel of well-characterized human CRC cell lines, and the cellular requirements for iNKT cell cytotoxic functions were evaluated. We demonstrated that both intestinal and circulating iNKT cells were cytotoxic against the entire panel of CRC lines, as well as against freshly isolated patient-derived colonic epithelial cancer cells. Perforin and/or granzyme inhibition impaired iNKT cell cytotoxicity, whereas T-cell receptor (TCR) signaling was a less stringent requirement for efficient killing. This study is the first evidence of tissue-derived iNKT cell cytotoxic activity in humans, as it shows that iNKT cells depend on the perforin-granzyme pathway and both adaptive and innate signal recognition for proper elimination of colon cancer cells.
Collapse
Affiliation(s)
- Angélica Díaz‐Basabe
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐oncologyUniversità degli Studi di MilanoMilanItaly
| | - Claudia Burrello
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
| | - Georgia Lattanzi
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐oncologyUniversità degli Studi di MilanoMilanItaly
| | - Fiorenzo Botti
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Department of SurgeryFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Alberto Carrara
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Department of SurgeryFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Elisa Cassinotti
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
| | - Flavio Caprioli
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Gastroenterology and Endoscopy UnitFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Federica Facciotti
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
| |
Collapse
|
9
|
Piontkivska H, Wales-McGrath B, Miyamoto M, Wayne ML. ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biol Evol 2021; 13:evab240. [PMID: 34694399 PMCID: PMC8586724 DOI: 10.1093/gbe/evab240] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine Deaminases that Act on RNA (ADARs) are RNA editing enzymes that play a dynamic and nuanced role in regulating transcriptome and proteome diversity. This editing can be highly selective, affecting a specific site within a transcript, or nonselective, resulting in hyperediting. ADAR editing is important for regulating neural functions and autoimmunity, and has a key role in the innate immune response to viral infections, where editing can have a range of pro- or antiviral effects and can contribute to viral evolution. Here we examine the role of ADAR editing across a broad range of viral groups. We propose that the effect of ADAR editing on viral replication, whether pro- or antiviral, is better viewed as an axis rather than a binary, and that the specific position of a given virus on this axis is highly dependent on virus- and host-specific factors, and can change over the course of infection. However, more research needs to be devoted to understanding these dynamic factors and how they affect virus-ADAR interactions and viral evolution. Another area that warrants significant attention is the effect of virus-ADAR interactions on host-ADAR interactions, particularly in light of the crucial role of ADAR in regulating neural functions. Answering these questions will be essential to developing our understanding of the relationship between ADAR editing and viral infection. In turn, this will further our understanding of the effects of viruses such as SARS-CoV-2, as well as many others, and thereby influence our approach to treating these deadly diseases.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences, Kent State University, Ohio, USA
- School of Biomedical Sciences, Kent State University, Ohio, USA
- Brain Health Research Institute, Kent State University, Ohio, USA
| | | | - Michael Miyamoto
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Jasinski-Bergner S, Mandelboim O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance. J Immunother Cancer 2021; 8:jitc-2020-000841. [PMID: 32616556 PMCID: PMC7333871 DOI: 10.1136/jitc-2020-000841] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Several human herpes viruses (HHVs) exert oncogenic potential leading to malignant transformation of infected cells and/or tissues. The molecular processes induced by viral-encoded molecules including microRNAs, peptides, and proteins contributing to immune evasion of the infected host cells are equal to the molecular processes of immune evasion mediated by tumor cells independently of viral infections. Such major immune evasion strategies include (1) the downregulation of proinflammatory cytokines/chemokines as well as the induction of anti-inflammatory cytokines/chemokines, (2) the downregulation of major histocompatibility complex (MHC) class Ia directly as well as indirectly by downregulation of the components involved in the antigen processing, and (3) the downregulation of stress-induced ligands for activating receptors on immune effector cells with NKG2D leading the way. Furthermore, (4) immune modulatory molecules like MHC class Ib molecules and programmed cell death1 ligand 1 can be upregulated on infections with certain herpes viruses. This review article focuses on the known molecular mechanisms of HHVs modulating the above-mentioned possibilities for immune surveillance and even postulates a temporal order linking regular tumor immunology with basic virology and offering putatively novel insights for targeting HHVs.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Ofer Mandelboim
- Immunology & Cancer Research Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
11
|
Kim JI, Nakahama T, Yamasaki R, Costa Cruz PH, Vongpipatana T, Inoue M, Kanou N, Xing Y, Todo H, Shibuya T, Kato Y, Kawahara Y. RNA editing at a limited number of sites is sufficient to prevent MDA5 activation in the mouse brain. PLoS Genet 2021; 17:e1009516. [PMID: 33983932 PMCID: PMC8118328 DOI: 10.1371/journal.pgen.1009516] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/28/2021] [Indexed: 12/22/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1), an enzyme responsible for adenosine-to-inosine RNA editing, is composed of two isoforms: nuclear p110 and cytoplasmic p150. Deletion of Adar1 or Adar1 p150 genes in mice results in embryonic lethality with overexpression of interferon-stimulating genes (ISGs), caused by the aberrant recognition of unedited endogenous transcripts by melanoma differentiation-associated protein 5 (MDA5). However, among numerous RNA editing sites, how many RNA sites require editing, especially by ADAR1 p150, to avoid MDA5 activation and whether ADAR1 p110 contributes to this function remains elusive. In particular, ADAR1 p110 is abundant in the mouse brain where a subtle amount of ADAR1 p150 is expressed, whereas ADAR1 mutations cause Aicardi-Goutières syndrome, in which the brain is one of the most affected organs accompanied by the elevated expression of ISGs. Therefore, understanding RNA editing-mediated prevention of MDA5 activation in the brain is especially important. Here, we established Adar1 p110-specific knockout mice, in which the upregulated expression of ISGs was not observed. This result suggests that ADAR1 p150-mediated RNA editing is enough to suppress MDA5 activation. Therefore, we further created Adar1 p110/Adar2 double knockout mice to identify ADAR1 p150-mediated editing sites. This analysis demonstrated that although the elevated expression of ISGs was not observed, only less than 2% of editing sites were preserved in the brains of Adar1 p110/Adar2 double knockout mice. Of note, we found that some sites were highly edited, which was comparable to those found in wild-type mice, indicating the presence of ADAR1 p150-specific sites. These data suggest that RNA editing at a very limited sites, which is mediated by a subtle amount of ADAR1 p150, is sufficient to prevents MDA5 activation, at least in the mouse brain.
Collapse
Affiliation(s)
- Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryuichiro Yamasaki
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tuangtong Vongpipatana
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Maal Inoue
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Nao Kanou
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yanfang Xing
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyuki Todo
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Diggins NL, Crawford LB, Hancock MH, Mitchell J, Nelson JA. Human Cytomegalovirus miR-US25-1 Targets the GTPase RhoA To Inhibit CD34 + Hematopoietic Progenitor Cell Proliferation To Maintain the Latent Viral Genome. mBio 2021; 12:e00621-21. [PMID: 33824207 PMCID: PMC8092260 DOI: 10.1128/mbio.00621-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) microRNAs play essential roles in latency and reactivation in CD34+ hematopoietic progenitor cells (HPCs) via regulation of viral and cellular gene expression. In the present study, we show that HCMV miR-US25-1 targets RhoA, a small GTPase required for CD34+ HPC self-renewal, proliferation, and hematopoiesis. Expression of miR-US25-1 impairs signaling through the nonmuscle myosin II light chain, which leads to a block in cytokinesis and an inhibition of proliferation. Moreover, infection with an HCMV mutant lacking miR-US25-1 resulted in increased proliferation of CD34+ HPCs and a decrease in the proportion of genome-containing cells at the end of latency culture. These observations provide a mechanism by which HCMV limits proliferation to maintain latent viral genomes in CD34+ HPCs.IMPORTANCE Each herpesvirus family establishes latency in a unique cell type. Since herpesvirus genomes are maintained as episomes, the virus needs to devise mechanisms to retain the latent genome during cell division. Alphaherpesviruses overcome this obstacle by infecting nondividing neurons, while gammaherpesviruses tether their genome to the host chromosome in dividing B cells. The betaherpesvirus human cytomegalovirus (HCMV) establishes latency in CD34+ hematopoietic progenitor cells (HPCs), but the mechanism used to maintain the viral genome is unknown. In this report, we demonstrate that HCMV miR-US25-1 downregulates expression of RhoA, a key cell cycle regulator, which results in inhibition of CD34+ HPC proliferation by blocking mitosis. Mutation of miR-US25-1 during viral infection results in enhanced cellular proliferation and a decreased frequency of genome-containing CD34+ HPCs. These results reveal a novel mechanism through which HCMV is able to regulate cell division to prevent viral genome loss during proliferation.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Lindsey B Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jennifer Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| |
Collapse
|
13
|
Araújo RC, Bertol BC, César Dias F, Debortoli G, Almeida PH, Fernandes Souza F, Villanova MG, Ramalho LNZ, Candolo Martinelli AL, Cruz Castelli ÉD, Mendes Junior CT, Antonio Donadi E. HLA-E gene polymorphisms in chronic hepatitis C: Impact on HLA-E liver expression and disease severity. Hum Immunol 2021; 82:177-185. [PMID: 33597096 DOI: 10.1016/j.humimm.2021.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Hepatitis C virus usually produces chronic infection and liver damage. Considering that: i) the human leukocyte antigen-E (HLA-E) molecule may modulate the immune response, and ii) little is known about the role of HLA-E gene variability on chronic hepatitis C, we studied the impact of HLA-E polymorphisms on the magnitude of HLA-E liver expression and severity of hepatitis C. HLA-E variability was evaluated in terms of: i) single nucleotide polymorphism (SNP) alleles and genotypes along the gene (beginning of the promoter region, coding region and 3'UTR), and ii) ensemble of SNPs that defines the coding region alleles, considered individually or as genotypes. The comparisons of the HLA-E variation sites between patients and controls revealed no significant results. The HLA-E + 424 T > C (rs1059510), +756 G > A (rs1264457) and + 3777 G > A (rs1059655) variation sites and the HLA-E*01:01:01:01 and HLA-E*01:03:02:01 alleles, considered at single or double doses, were associated with the magnitude of HLA-E liver expression in Kupfer cell, steatosis, inflammatory activity and liver fibrosis. Although these associations were lost after corrections for multiple comparisons, these variable sites may propitiate biological clues for the understanding of the mechanisms associated with hepatitis C severity.
Collapse
Affiliation(s)
- Roberta Chaves Araújo
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil.
| | - Bruna Cristina Bertol
- Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Fabricio César Dias
- Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Guilherme Debortoli
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Patrícia Holanda Almeida
- Liver Transplant Department - Hospital Israelita Albert Einstein, 05652-900 São Paulo, State of São Paulo, Brazil
| | - Fernanda Fernandes Souza
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Marcia Guimarães Villanova
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Leandra Naira Zambelli Ramalho
- Pathology Department, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Ana Lourdes Candolo Martinelli
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Érick da Cruz Castelli
- Department of Pathology, School of Medicine. São Paulo State University, 18618-687 Botucatu, State of São Paulo, Brazil
| | - Celso Teixeira Mendes Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Eduardo Antonio Donadi
- Immunology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| |
Collapse
|
14
|
Vogel OA, Han J, Liang CY, Manicassamy S, Perez JT, Manicassamy B. The p150 Isoform of ADAR1 Blocks Sustained RLR signaling and Apoptosis during Influenza Virus Infection. PLoS Pathog 2020; 16:e1008842. [PMID: 32898178 PMCID: PMC7500621 DOI: 10.1371/journal.ppat.1008842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Signaling through retinoic acid inducible gene I (RIG-I) like receptors (RLRs) is tightly regulated, with activation occurring upon sensing of viral nucleic acids, and suppression mediated by negative regulators. Under homeostatic conditions aberrant activation of melanoma differentiation-associated protein-5 (MDA5) is prevented through editing of endogenous dsRNA by RNA editing enzyme Adenosine Deaminase Acting on RNA (ADAR1). In addition, ADAR1 is postulated to play pro-viral and antiviral roles during viral infections that are dependent or independent of RNA editing activity. Here, we investigated the importance of ADAR1 isoforms in modulating influenza A virus (IAV) replication and revealed the opposing roles for ADAR1 isoforms, with the nuclear p110 isoform restricting versus the cytoplasmic p150 isoform promoting IAV replication. Importantly, we demonstrate that p150 is critical for preventing sustained RIG-I signaling, as p150 deficient cells showed increased IFN-β expression and apoptosis during IAV infection, independent of RNA editing activity. Taken together, the p150 isoform of ADAR1 is important for preventing sustained RIG-I induced IFN-β expression and apoptosis during viral infection.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Julianna Han
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Chieh-Yu Liang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Augusta University, Augusta, Georgia
| | - Jasmine T. Perez
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
15
|
Bartoszewski R, Dabrowski M, Jakiela B, Matalon S, Harrod KS, Sanak M, Collawn JF. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. Am J Physiol Lung Cell Mol Physiol 2020; 319:L444-L455. [PMID: 32755307 DOI: 10.1152/ajplung.00252.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cold viruses have generally been considered fairly innocuous until the appearance of the severe acute respiratory coronavirus 2 (SARS-CoV-2) in 2019, which caused the coronavirus disease 2019 (COVID-19) global pandemic. Two previous viruses foreshadowed that a coronavirus could potentially have devastating consequences in 2002 [severe acute respiratory coronavirus (SARS-CoV)] and in 2012 [Middle East respiratory syndrome coronavirus (MERS-CoV)]. The question that arises is why these viruses are so different from the relatively harmless cold viruses. On the basis of an analysis of the current literature and using bioinformatic approaches, we examined the potential human miRNA interactions with the SARS-CoV-2's genome and compared the miRNA target sites in seven coronavirus genomes that include SARS-CoV-2, MERS-CoV, SARS-CoV, and four nonpathogenic coronaviruses. Here, we discuss the possibility that pathogenic human coronaviruses, including SARS-CoV-2, could modulate host miRNA levels by acting as miRNA sponges to facilitate viral replication and/or to avoid immune responses.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bogdan Jakiela
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marek Sanak
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Forrest C, Gomes A, Reeves M, Male V. NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030394. [PMID: 32698362 PMCID: PMC7563466 DOI: 10.3390/vaccines8030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that recognize and eliminate virally-infected and cancerous cells. Members of the innate immune system are not usually considered to mediate immune memory, but over the past decade evidence has emerged that NK cells can do this in several contexts. Of these, the best understood and most widely accepted is the response to cytomegaloviruses, with strong evidence for memory to murine cytomegalovirus (MCMV) and several lines of evidence suggesting that the same is likely to be true of human cytomegalovirus (HCMV). The importance of NK cells in the context of HCMV infection is underscored by the armory of NK immune evasion genes encoded by HCMV aimed at subverting the NK cell immune response. As such, ongoing studies that have utilized HCMV to investigate NK cell diversity and function have proven instructive. Here, we discuss our current understanding of NK cell memory to viral infection with a focus on the response to cytomegaloviruses. We will then discuss the implications that this will have for the development of a vaccine against HCMV with particular emphasis on how a strategy that can harness the innate immune system and NK cells could be crucial for the development of a vaccine against this high-priority pathogen.
Collapse
Affiliation(s)
- Calum Forrest
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
| | - Ariane Gomes
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
| | - Matthew Reeves
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
- Correspondence: (M.R.); (V.M.)
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Campus, London SW10 9NH, UK
- Correspondence: (M.R.); (V.M.)
| |
Collapse
|
17
|
Xu SJ, Hu HT, Li HL, Chang S. The Role of miRNAs in Immune Cell Development, Immune Cell Activation, and Tumor Immunity: With a Focus on Macrophages and Natural Killer Cells. Cells 2019; 8:cells8101140. [PMID: 31554344 PMCID: PMC6829453 DOI: 10.3390/cells8101140] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) is the primary arena where tumor cells and the host immune system interact. Bidirectional communication between tumor cells and the associated stromal cell types within the TME influences disease initiation and progression, as well as tumor immunity. Macrophages and natural killer (NK) cells are crucial components of the stromal compartment and display either pro- or anti-tumor properties, depending on the expression of key regulators. MicroRNAs (miRNAs) are emerging as such regulators. They affect several immune cell functions closely related to tumor evasion of the immune system. This review discusses the role of miRNAs in the differentiation, maturation, and activation of immune cells as well as tumor immunity, focusing particularly on macrophages and NK cells.
Collapse
Affiliation(s)
- Shi Jun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hong Tao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hai Liang Li
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
18
|
Friedrich M, Jasinski-Bergner S, Lazaridou MF, Subbarayan K, Massa C, Tretbar S, Mueller A, Handke D, Biehl K, Bukur J, Donia M, Mandelboim O, Seliger B. Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Cancer Immunol Immunother 2019; 68:1689-1700. [PMID: 31375885 DOI: 10.1007/s00262-019-02373-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022]
Abstract
Immunotherapy aims to activate the immune system to fight cancer in a very specific and targeted manner. Despite the success of different immunotherapeutic strategies, in particular antibodies directed against checkpoints as well as adoptive T-cell therapy, the response of patients is limited in different types of cancers. This attributes to escape of the tumor from immune surveillance and development of acquired resistances during therapy. In this review, the different evasion and resistance mechanisms that limit the efficacy of immunotherapies targeting tumor-associated antigens presented by major histocompatibility complex molecules on the surface of the malignant cells are summarized. Overcoming these escape mechanisms is a great challenge, but might lead to a better clinical outcome of patients and is therefore currently a major focus of research.
Collapse
Affiliation(s)
- Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Sandy Tretbar
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Jürgen Bukur
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Marco Donia
- Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany.
| |
Collapse
|
19
|
Detection and Application of RNA Editing in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:159-170. [PMID: 29943303 DOI: 10.1007/978-981-13-0502-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA editing is the process which happened in the post-transcriptional stage that the genetic information contained in an RNA molecule will be changed. RNA editing has been found to be related with many cancers, so through identifying RNA editing sites, we can find useful information on the process of carcinogenesis. In this review, we will discuss the main types of RNA editing and their role in cancers, as well as the current detection methods of RNA editing and the challenges we should overcome.
Collapse
|
20
|
Abstract
As masters of genome-wide regulation, miRNAs represent a key component in the complex architecture of cellular processes. Over the last decade, it has become increasingly apparent that miRNAs have many important roles in the development of disease and cancer. Recently, however, their role in viral and bacterial gene regulation as well as host gene regulation during disease progression has become a field of interest. Due to their small size, miRNAs are the ideal mechanism for bacteria and viruses that have limited room in their genomes, as a single miRNA can target up to ~30 genes. Currently, only a limited number of miRNA and miRNA-like RNAs have been found in bacteria and viruses, a number that is sure to increase rapidly in the future. The interactions of these small noncoding RNAs in such primitive species have wide-reaching effects, from increasing viral and bacterial proliferation, better responses to stress, increased virulence, to manipulation of host immune responses to provide a more ideal environment for these pathogens to thrive. Here, we explore those roles to obtain a better grasp of just how complicated disease truly is.
Collapse
|
21
|
Regis S, Caliendo F, Dondero A, Bellora F, Casu B, Bottino C, Castriconi R. Main NK cell receptors and their ligands: regulation by microRNAs. AIMS ALLERGY AND IMMUNOLOGY 2018. [DOI: 10.3934/allergy.2018.2.98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
Snyder EM, Licht K, Braun RE. Testicular adenosine to inosine RNA editing in the mouse is mediated by ADARB1. Biol Reprod 2017; 96:244-253. [PMID: 28395340 DOI: 10.1095/biolreprod.116.145151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/28/2016] [Indexed: 11/01/2022] Open
Abstract
Adenosine to inosine (A-to-I) RNA editing occurs in a wide range of tissues and cell types and can be catalyzed by one of the two adenosine deaminase acting on double-stranded RNA enzymes, ADAR and ADARB1. Editing can impact both coding and noncoding regions of RNA, and in higher organisms has been proposed to function in adaptive evolution. Neither the prevalence of A-to-I editing nor the role of either ADAR or ADARB1 has been examined in the context of germ cell development in mammals. Computational analysis of whole testis and cell-type specific RNA-sequencing data followed by molecular confirmation demonstrated that A-to-I RNA editing occurs in both the germ line and in somatic Sertoli cells in two targets, Cog3 and Rpa1. Expression analysis demonstrated both Adar and Adarb1 were expressed in both Sertoli cells and in a cell-type dependent manner during germ cell development. Conditional ablation of Adar did not impact testicular RNA editing in either germ cells or Sertoli cells. Additionally, Adar ablation in either cell type did not have gross impacts on germ cell development or male fertility. In contrast, global Adarb1 knockout animals demonstrated a complete loss of A-to-I RNA editing in spite of normal germ cell development. Taken together, these observations demonstrate ADARB1 mediates A-to-I RNA editing in the testis and these editing events are dispensable for male fertility in an inbred mouse strain in the lab.
Collapse
Affiliation(s)
| | - Konstantin Licht
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
23
|
Glasner A, Oiknine-Djian E, Weisblum Y, Diab M, Panet A, Wolf DG, Mandelboim O. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules. J Virol 2017; 91:e00785-17. [PMID: 28878071 PMCID: PMC5660495 DOI: 10.1128/jvi.00785-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus.IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-β-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection.
Collapse
Affiliation(s)
- Ariella Glasner
- Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Mohammad Diab
- Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry and Chanock Center for Virology, IMRIC, Faculty of Medicine, The Hebrew University Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
24
|
Increased NK cell immunity in a transgenic mouse model of NKp46 overexpression. Sci Rep 2017; 7:13090. [PMID: 29026144 PMCID: PMC5638832 DOI: 10.1038/s41598-017-12998-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/13/2017] [Indexed: 01/20/2023] Open
Abstract
Natural Killer (NK) cells employ activating receptors like the Natural Cytotoxicity Receptors (NCRs: NKp30, NKp44 and NKp46), of which only NKp46 has a mouse orthologue (Ncr1), to eliminate abnormal cells. NKp46/Ncr1 is considered a selective marker for NK cells, although it is also found on a subset of ILCs, where it appears to be without function. The influenza virus hemagglutinin (HA) was the first ligand identified for Ncr1/NKp46 followed by other viral, bacterial and even fungal ligands. NKp46/Ncr1 also recognizes unknown self and tumor ligands. Here we describe the generation of a transgenic mouse where the Ncr1 gene is expressed in the Rosa locus, preceded by a floxed stop sequence allowing Ncr1/NKp46 expression in various tissues upon crossing with Cre transgenic mouse lines. Surprisingly, while several crossings were attempted, Ncr1 overexpression was successful only where cre recombinase expression was dependent on the Ncr1 promoter. Ncr1 overexpression in NK cells increased NK cell immunity in two hallmark Ncr1 related pathologies, influenza virus infection and B16 melanoma. These data suggest that increasing NK cell cytotoxicity by enforced NKp46/Ncr1 expression serves as a potential therapeutic opportunity for the treatment of various pathologies, and in immunotherapy.
Collapse
|
25
|
Seliger B. Immune modulatory microRNAs as a novel mechanism to revert immune escape of tumors. Cytokine Growth Factor Rev 2017; 36:49-56. [DOI: 10.1016/j.cytogfr.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022]
|
26
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
27
|
Fruci D, Rota R, Gallo A. The Role of HCMV and HIV-1 MicroRNAs: Processing, and Mechanisms of Action during Viral Infection. Front Microbiol 2017; 8:689. [PMID: 28484438 PMCID: PMC5399795 DOI: 10.3389/fmicb.2017.00689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/04/2017] [Indexed: 11/23/2022] Open
Abstract
Viruses infect host cells releasing their genome (DNA or RNA) containing all information needed to replicate themselves. The viral genome takes control of the cells and helps the virus to evade the host immune system. Some viruses alter the functions of infected cells without killing them. In some cases infected cells lose control over normal cell proliferation and becomes cancerous. Viruses, such as HCMV and HIV-1, may leave their viral genome in the host cells for a certain period (latency) and begin to replicate when the cells are stressed causing diseases. HCMV and HIV-1 have developed multiple strategies to avoid recognition and elimination by the host’s immune system. These strategies rely on viral products that mimic specific components of the host cells to prevent immune recognition of virally infected cells. In addition to viral proteins, viruses encode short non-coding RNAs (vmiRNAs) that regulate both viral and host cellular transcripts to favor viral infection and actively curtail the host’s antiviral immune response. In this review, we will give an overview of the general functions of microRNAs generated by HCMV and HIV-1, their processing and interaction with the host’s immune system.
Collapse
Affiliation(s)
- Doriana Fruci
- Immuno-Oncology Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Rossella Rota
- Angiogenesis Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| |
Collapse
|
28
|
Olieslagers TI, Voorter CEM, Groeneweg M, Xu Y, Wieten L, Tilanus MGJ. New insights in HLA-E polymorphism by refined analysis of the full-length gene. HLA 2017; 89:143-149. [PMID: 28127896 DOI: 10.1111/tan.12965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/02/2016] [Accepted: 01/05/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Human leukocyte antigen (HLA)-E is a non-classical HLA class I molecule that plays a role in both the innate and the adaptive immune response through interaction with receptors on natural killer- and T-cells. The HLA-E gene is characterized by limited polymorphism compared with the classical HLA loci on chromosome 6. At the start of this study, only 13 variable sites had been identified (IPD-IMGT/HLA Database v3.18.0). While most previous studies focused on polymorphism in exons 2 and 3 or specific gene regions, polymorphism in the other exons and introns could influence protein expression and function as well. Studies that investigate extended HLA-E polymorphism are therefore needed to better understand the functional relevance of HLA-E in health and disease. AIMS The aim of this study was to examine the variability of the full-length HLA-E gene region in individuals originating from different populations. MATERIALS AND METHODS/RESULTS A total of 7 new HLA-E alleles were identified using full-length HLA-E sequencing of 123 individuals from Asian, Dutch or Hunan Han origin. Furthermore, genome variation analysis of the third phase of the 1000 genomes database showed 107 new variable sites in 2504 individuals originating from 26 different populations. DISCUSSION AND CONCLUSION Our study demonstrates that the nucleotide variability of the HLA-E gene is much higher than previously known, albeit in only a limited number of individuals. Overall only 2 variants, HLA-E*01:01 and *01:03, are frequently present worldwide, suggesting that balancing selection is acting on HLA-E.
Collapse
Affiliation(s)
- T I Olieslagers
- Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - C E M Voorter
- Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M Groeneweg
- Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Y Xu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - L Wieten
- Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M G J Tilanus
- Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
29
|
Jin X, Guo X, Zhu D, Ayaz M, Zheng Y. miRNA profiling in the mice in response to Echinococcus multilocularis infection. Acta Trop 2017; 166:39-44. [PMID: 27810427 DOI: 10.1016/j.actatropica.2016.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023]
Abstract
miRNAs are small non-coding regulatory RNAs and actively contribute to the pathogenesis of parasitic diseases in multiple ways. The influence of Echinococcus multilocularis infection on host miRNAs remains unclear. Herein, it was shown that E. multilocularis infection disturbed the expression of 4 of 10 genes essential to miRNA biogenesis in the mouse liver, including ago1, ago4, tarbp2 and xrn2. Comparative analysis of deep sequencing data identified 46 differentially expressed miRNAs with 93.5% (43/46) being down-regulated, some of which are associated with modulation of liver cell death and fibrosis, and GO analysis revealed that these miRNAs were mainly enriched in signal transduction (p<0.008). Moreover, 57 miRNAs were commonly found to be edited in complex patterns in both control and E. multilocularis-infected samples. In some miRNAs, editing of nucleotides at the same or/and distinct positions in a given miRNA occurred in different frequencies. Correlation analysis showed that the mutation and editing rates of 57 commonly edited miRNAs were significantly correlated between both samples (r=0.9974, p<0.0001), suggesting little effect of E. multilocularis infection on miRNA mutation and editing. These results provide a rich and informative data for further studies of a role of host miRNAs during E. multilocularis infection.
Collapse
Affiliation(s)
- Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Dongqing Zhu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mazhar Ayaz
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
30
|
Djaoud Z, Riou R, Gavlovsky PJ, Mehlal S, Bressollette C, Gérard N, Gagne K, Charreau B, Retière C. Cytomegalovirus-Infected Primary Endothelial Cells Trigger NKG2C+ Natural Killer Cells. J Innate Immun 2016; 8:374-85. [PMID: 27116381 PMCID: PMC6738823 DOI: 10.1159/000445320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/04/2023] Open
Abstract
Among innate cells, natural killer (NK) cells play a crucial role in the defense against cytomegalovirus (CMV). In some individuals, CMV infection induces the expansion of NKG2C+ NK cells that persist after control of the infection. We have previously shown that KIR2DL+ NK cells, in contrast to NKG2C+ NK cells, contribute to controlling CMV infection using a CMV-infected monocyte-derived dendritic cell (MDDC) model. However, the nature of CMV-infected cells contributing to the expansion of the NKG2C+ NK cell subset remains unclear. To gain more insight into this question, we investigated the contribution of NKG2C+ NK cell activation by CMV-infected primary human aortic endothelial cells (EC) isolated from kidney transplant donors, which constitutively express the human leukocyte antigen (HLA)-E molecule. Here, we show that, although classic HLA class I expression was drastically downregulated, nonclassic HLA-E expression was maintained in CMV-infected EC. By comparing HLA expression patterns in CMV-infected EC, fibroblasts and MDDC, we demonstrate a cell-dependent modulation of HLA-E expression by CMV infection. NKG2C+ NK cell degranulation was significantly triggered by CMV-infected EC regardless of the nature of the HLA-E allele product. EC, predominantly present in vessels, may constitute a privileged site for CMV infection that drives a 'memory' NKG2C+ NK cell subset.
Collapse
Affiliation(s)
- Zakia Djaoud
- Etablissement Français du SangUniversité de Nantes, Nantes, France
- Equipe d'Accueil 4271, ImmunoVirologie et Polymorphisme Génétique, Université de Nantes, Nantes, France
| | - Raphaëlle Riou
- Etablissement Français du SangUniversité de Nantes, Nantes, France
- Equipe d'Accueil 4271, ImmunoVirologie et Polymorphisme Génétique, Université de Nantes, Nantes, France
| | - Pierre-Jean Gavlovsky
- INSERM UMR1064, Centre de Recherche en Transplantation et Immunologie, LabEx IGO, Centre Européen des Sciences de la Transplantation et Immunothérapie, Nantes, France
| | - Souad Mehlal
- Equipe d'Accueil 4271, ImmunoVirologie et Polymorphisme Génétique, Université de Nantes, Nantes, France
| | - Céline Bressollette
- Equipe d'Accueil 4271, ImmunoVirologie et Polymorphisme Génétique, Université de Nantes, Nantes, France
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Centre Hospitalier Universitaire (CHU), Nantes, France
- Service de Virologie, Centre Hospitalier Universitaire (CHU), Nantes, France
| | - Nathalie Gérard
- INSERM UMR1064, Centre de Recherche en Transplantation et Immunologie, LabEx IGO, Centre Européen des Sciences de la Transplantation et Immunothérapie, Nantes, France
| | - Katia Gagne
- Etablissement Français du SangUniversité de Nantes, Nantes, France
- Equipe d'Accueil 4271, ImmunoVirologie et Polymorphisme Génétique, Université de Nantes, Nantes, France
- LabExTransplantex, Université de Strasbourg, Strasbourg, France
| | - Béatrice Charreau
- Faculté de Médecine, L'Université Nantes Angers Le Mans (LUNAM), Nantes, France
- INSERM UMR1064, Centre de Recherche en Transplantation et Immunologie, LabEx IGO, Centre Européen des Sciences de la Transplantation et Immunothérapie, Nantes, France
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Centre Hospitalier Universitaire (CHU), Nantes, France
| | - Christelle Retière
- Etablissement Français du SangUniversité de Nantes, Nantes, France
- Equipe d'Accueil 4271, ImmunoVirologie et Polymorphisme Génétique, Université de Nantes, Nantes, France
| |
Collapse
|
31
|
|
32
|
Affiliation(s)
- Jayajit Das
- Battelle Center for Mathematical Medicine; The Research Institute at the Nationwide Children's Hospital and the Departments of Pediatrics and Physics; The Ohio State University; Columbus OH USA
| | - Salim I. Khakoo
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
33
|
Difference in microRNA expression and editing profile of lung tissues from different pig breeds related to immune responses to HP-PRRSV. Sci Rep 2015; 5:9549. [PMID: 25856272 PMCID: PMC5381705 DOI: 10.1038/srep09549] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating diseases for the pig industry. Our goal was to identify microRNAs involved in the host immune response to PRRS. We generated microRNA expression profiles of lung tissues from Tongcheng or Landrace pigs infected with a highly pathogenic PRRS virus (PRRSV) at 3, 5, 7 dpi (day post infection) and control individuals from these two breeds. Our data showed that 278 known and 294 novel microRNAs were expressed in these combined microRNA transcriptomes. Compared with control individuals, almost half of the known microRNAs (116 in Tongcheng and 153 in Landrace) showed significantly differential expression (DEmiRNAs) at least once. The numbers of down-regulated DEmiRNAs were larger than the corresponding number of up-regulated DEmiRNAs in both breeds. Interestingly, miR-2320-5p, which was predicted to bind to conserved sequences of the PRRSV genome, was down-regulated significantly at 3 dpi after PRRSV infection in both breeds. In addition, PRRSV infection induced a significant increase of microRNA editing level in both breeds. Our results provide novel insight into the role of microRNA in response to PRRSV infection in vivo, which will aid the research for developing novel therapies against PRRSV.
Collapse
|
34
|
Li MMH, MacDonald MR, Rice CM. To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends Cell Biol 2015; 25:320-9. [PMID: 25748385 PMCID: PMC4441850 DOI: 10.1016/j.tcb.2015.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
Translational regulation of viral and host mRNA is an important function of a subset of interferon-stimulated genes (ISGs). These ISGs repress translation through binding to viral RNA, direct interaction with, or perturbation of the translation machinery components. Several ISGs localize to cytoplasmic granules such as stress granules (SGs) and processing bodies (PBs), and interfere with the processing or function of microRNAs (miRNAs).
Type I interferon (IFN) is one of the first lines of cellular defense against viral pathogens. As a result of IFN signaling, a wide array of IFN-stimulated gene (ISG) products is upregulated to target different stages of the viral life cycle. We review recent findings implicating a subset of ISGs in translational regulation of viral and host mRNAs. Translation inhibition is mediated either by binding to viral RNA or by disrupting physiological interactions or levels of the translation complex components. In addition, many of these ISGs localize to translationally silent cytoplasmic granules, such as stress granules and processing bodies, and intersect with the microRNA (miRNA)-mediated silencing pathway to regulate translation of cellular mRNAs.
Collapse
Affiliation(s)
- Melody M H Li
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| |
Collapse
|
35
|
Wieten L, Mahaweni NM, Voorter CEM, Bos GMJ, Tilanus MGJ. Clinical and immunological significance of HLA-E in stem cell transplantation and cancer. TISSUE ANTIGENS 2014; 84:523-35. [PMID: 25413103 DOI: 10.1111/tan.12478] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human leukocyte antigen-E (HLA-E) is a nonclassical HLA class I molecule that canonically binds peptides derived from the leader sequence of classical HLA class I. HLA-E can also bind peptides from stress protein [e.g. heat shock protein 60 (Hsp60)] and pathogens, illustrating the importance of HLA-E for anti-viral and anti-tumor immunity. Like classical HLA class I molecules, HLA-E is ubiquitously expressed, however, it is characterized by only a very limited sequence variability and two dominant protein forms have been described (HLA-E*01:01 and HLA-E*01:03). HLA-E influences both the innate and the adaptive arms of the immune system by the engagement of inhibitory (e.g. NKG2A) and activating receptors [e.g. αβ T cell receptor (αβTCR) or NKG2C] on NK cells and CD8 T cells. The effects of HLA-E on the cellular immune response are therefore complex and not completely understood yet. Here, we aim to provide an overview of the immunological and clinical relevance of HLA-E and HLA-E polymorphism in stem cell transplantation and in cancer. We review novel insights in the mechanism via which HLA-E expression levels are controlled and how the cellular immune response in transplantation and cancer is influenced by HLA-E.
Collapse
Affiliation(s)
- L Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
36
|
Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol 2014; 12:139-53. [PMID: 25418469 PMCID: PMC4654289 DOI: 10.1038/cmi.2014.105] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system.
Collapse
|
37
|
Kraemer T, Blasczyk R, Bade-Doeding C. HLA-E: a novel player for histocompatibility. J Immunol Res 2014; 2014:352160. [PMID: 25401109 PMCID: PMC4221882 DOI: 10.1155/2014/352160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/03/2014] [Indexed: 11/17/2022] Open
Abstract
The classical class I human leukocyte antigens (HLA-A, -B, and -C) present allele-specific self- or pathogenic peptides originated by intracellular processing to CD8(+) immune effector cells. Even a single mismatch in the heavy chain (hc) of an HLA class I molecule can impact on the peptide binding profile. Since HLA class I molecules are highly polymorphic and most of their polymorphisms affect the peptide binding region (PBR), it becomes obvious that systematic HLA matching is crucial in determining the outcome of transplantation. The opposite holds true for the nonclassical HLA class I molecule HLA-E. HLA-E polymorphism is restricted to two functional versions and is thought to present a limited set of highly conserved peptides derived from class I leader sequences. However, HLA-E appears to be a ligand for the innate and adaptive immune system, where the immunological response to peptide-HLA-E complexes is dictated through the sequence of the bound peptide. Structural investigations clearly demonstrate how subtle amino acid differences impact the strength and response of the cognate CD94/NKG2 or T cell receptor.
Collapse
Affiliation(s)
- Thomas Kraemer
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Straße 5, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Straße 5, 30625 Hannover, Germany
| | - Christina Bade-Doeding
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Straße 5, 30625 Hannover, Germany
| |
Collapse
|
38
|
Goldberger T, Mandelboim O. The use of microRNA by human viruses: lessons from NK cells and HCMV infection. Semin Immunopathol 2014; 36:659-74. [PMID: 25234555 DOI: 10.1007/s00281-014-0447-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022]
Abstract
Depending on ethnicity and on social conditions, between 40 and 90 % of the population is infected with human cytomegalovirus (HCMV). In immunocompetent patients, the virus may cause an acute disease and then revert to a state of latency, which enables its coexistence with the human host. However, in cases of immunosuppression or in neonatal infections, HCMV can cause serious long-lasting illnesses. HCMV has developed multiple mechanisms in order to escape its elimination by the immune system, specifically by two killer cell types of the adaptive and the innate immune systems; cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, respectively. Another fascinating aspect of HCMV is that like other highly developed herpesviruses, it expresses its own unique set of microRNAs. Here, we initially describe how the activity of NK cells is regulated under normal conditions and during infection. Then, we discuss what is currently known about HCMV microRNA-mediated interactions, with special emphasis on immune modulation and NK cell evasion. We further illustrate the significant modulation of cellular microRNAs during HCMV infection. Although, the full target spectrum of HCMV microRNAs is far from being completely elucidated, it can already be concluded that HCMV uses its "multitasking" microRNAs to globally affect its own life cycle, as well as important cellular and immune-related pathways.
Collapse
Affiliation(s)
- Tal Goldberger
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, 91120, Israel
| | | |
Collapse
|
39
|
Liu H, Ma CP, Chen YT, Schuyler SC, Chang KP, Tan BCM. Functional Impact of RNA editing and ADARs on regulation of gene expression: perspectives from deep sequencing studies. Cell Biosci 2014; 4:44. [PMID: 25949793 PMCID: PMC4422215 DOI: 10.1186/2045-3701-4-44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/14/2014] [Indexed: 11/13/2022] Open
Abstract
Cells regulate gene expression at multiple levels leading to a balance between robustness and complexity within their proteome. One core molecular step contributing to this important balance during metazoan gene expression is RNA editing, such as the co-transcriptional recoding of RNA transcripts catalyzed by the adenosine deaminse acting on RNA (ADAR) family of enzymes. Understanding of the adenosine-to-inosine RNA editing process has been broadened considerably by the next generation sequencing (NGS) technology, which allows for in-depth demarcation of an RNA editome at nucleotide resolution. However, critical issues remain unresolved with regard to how RNA editing cooperates with other transcript-associated events to underpin regulated gene expression. Here we review the growing body of evidence, provided by recent NGS-based studies, that links RNA editing to other mechanisms of post-transcriptional RNA processing and gene expression regulation including alternative splicing, transcript stability and localization, and the biogenesis and function of microRNAs (miRNAs). We also discuss the possibility that systematic integration of NGS data may be employed to establish the rules of an “RNA editing code”, which may give us new insights into the functional consequences of RNA editing.
Collapse
Affiliation(s)
- Hsuan Liu
- Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan ; Department of Biochemistry, Tao-Yuan, Taiwan ; Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chung-Pei Ma
- Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan
| | - Yi-Tung Chen
- Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan
| | - Scott C Schuyler
- Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan ; Department of Biomedical Sciences, College of Medicine, Tao-Yuan, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan ; Department of Otolaryngology, Chang Gung Memorial Hospital at Lin-Kuo, Tao-Yuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan ; Department of Biomedical Sciences, College of Medicine, Tao-Yuan, Taiwan ; Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
40
|
Antiviral immunity: editing HLA-E expression. Nat Rev Immunol 2014; 14:210. [PMID: 24625842 DOI: 10.1038/nri3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|