1
|
McQuiston JH, McCollum A, Christie A, Torres F, Mermin J, Jernigan DB, Hutson CL. The Rise of Mpox in a Post-Smallpox World. Emerg Infect Dis 2025; 31:27-31. [PMID: 39626319 PMCID: PMC11682811 DOI: 10.3201/eid3101.241230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
Reports of mpox are rising in Africa where the disease is endemic and in new countries where the disease has not been previously seen. The 2022 global outbreak of clade II mpox and an ongoing outbreak of the more lethal clade I mpox highlight the pandemic potential for monkeypox virus. Waning population immunity after the cessation of routine immunization for smallpox plays a key role in the changing epidemiologic patterns of mpox. Sustained human-to-human transmission of mpox is occurring widely in the context of insufficient population immunity, fueling genetic mutations that affect the accuracy of some diagnostic tests and that could lead to changing virulence. Additional research should address complex challenges for control of mpox, including improved diagnostics and medical countermeasures. The availability of vaccines should be expanded not only for outbreak response but also for broader routine use for persons in mpox-endemic countries.
Collapse
|
2
|
Jhancy M. Poxvirus Vaccines: Past, Present, and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:273-287. [PMID: 38801584 DOI: 10.1007/978-3-031-57165-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Smallpox was a significant cause of mortality for over three thousand years, amounting to 10% of deaths yearly. Edward Jenner discovered smallpox vaccination in 1796, which rapidly became a smallpox infection preventive practice throughout the world and eradicated smallpox infection by 1980. After smallpox eradication, monkeypox vaccines have been used primarily in research and in outbreaks in Africa, where the disease is endemic. In the present, the vaccines are being used for people who work with animals or in high-risk areas, as well as for healthcare workers treating patients with monkeypox. Among all orthopoxviruses (OPXV), monkeypox viral (MPXV) infection occurs mainly in cynomolgus monkeys, natural reservoirs, and occasionally causes severe multi-organ infection in humans, who were the incidental hosts. The first case of the present epidemic of MXPV was identified on May 7, 2022, and rapidly increased the number of cases. In this regard, the WHO declared the outbreak, an international public health emergency on July 23, 2022. The first monkeypox vaccine was developed in the 1960s by the US Army and was based on the vaccinia virus, which is also used in smallpox vaccines. In recent years, newer monkeypox vaccines have been developed based on other viruses such as Modified Vaccinia Ankara (MVA). These newer vaccines are safer and can provide longer-lasting immunity with fewer side effects. For the future, there is ongoing research to improve the current vaccines and to develop new ones. One notable advance has been the development of a recombinant vaccine that uses a genetically modified vaccinia virus to express monkeypox antigens. This vaccine has shown promising results in pre-clinical trials and is currently undergoing further testing in clinical trials. Another recent development has been the use of a DNA vaccine, which delivers genetic material encoding monkeypox antigens directly into cells. This type of vaccine has shown effectiveness in animal studies and is also undergoing clinical testing in humans. Overall, these recent advances in monkeypox vaccine development hold promise for protecting individuals against this potentially serious disease.
Collapse
Affiliation(s)
- Malay Jhancy
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates.
| |
Collapse
|
3
|
Alagarsamy V, Shyam Sundar P, Raja Solomon V, Narendhar B, Sulthana MT, Rohitha K, Dhanwar S, Dharshini Aishwarya A, Murugesan S. Pharmacophore modelling-based drug repurposing approaches for monkeypox therapeutics. J Biomol Struct Dyn 2023; 41:10678-10689. [PMID: 36905675 DOI: 10.1080/07391102.2023.2188428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 03/13/2023]
Abstract
Monkeypox is a zoonotic viral disease that mainly affects tropical rainforest regions of central and west Africa, with sporadic exportations to other places. Since there is no cure, treating monkeypox with an antiviral drug developed for smallpox is currently acceptable. Our study mainly focused on finding new therapeutics to target monkeypox from existing compounds or medications. It is a successful method for discovering or developing medicinal compounds with novel pharmacological or therapeutic applications. In this study, homology modelling developed the Monkeypox VarTMPK (IMNR) structure. Ligand-based pharmacophore was generated using the best docking pose of standard ticovirimat. Further, molecular docking analysis showed compounds, tetrahydroxycurcumin, procyanidin, rutin, vicenin-2, kaempferol 3-(6''-malonylglucoside) were the top five binding energy compounds against VarTMPK (1MNR). Furthermore, we carried out MD simulations for 100 ns for the six compounds, including reference based on the binding energies and interactions. MD studies revealed that as ticovirimat interacted with residues Lys17, Ser18, and Arg45, all the above five compounds interacted with the same amino acids at the active site during docking and simulation studies. Among all the compounds, ZINC4649679 (Tetrahydroxycurcumin) was shown to have the highest binding energy -9.7 kcal/mol and also observed stable protein-ligand complex during MD studies. ADMET profile estimation showed that the docked phytochemicals were safe. However, further biological assessment through a wet lab is essential to measure the efficacy and safety of the compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Alagarsamy
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - P Shyam Sundar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - V Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - B Narendhar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - M T Sulthana
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - Kotha Rohitha
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - Sangeeta Dhanwar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - A Dharshini Aishwarya
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - S Murugesan
- Department of Pharmacy, BITS, Pilani, Pilani, Rajasthan, India
| |
Collapse
|
4
|
Gurnani B, Kaur K, Chaudhary S, Balakrishnan H. Ophthalmic manifestations of monkeypox infection. Indian J Ophthalmol 2023; 71:1687-1697. [PMID: 37203020 PMCID: PMC10391517 DOI: 10.4103/ijo.ijo_2032_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
After the global COVID-19 pandemic, there has been an alarming concern with the monkeypox (mpox) outbreak, which has affected more than 110 countries worldwide. Monkeypox virus is a doublestranded DNA virus of the genus Orthopox of the Poxviridae family, which causes this zoonotic disease. Recently, the mpox outbreak was declared by the World Health Organization (WHO) as a public health emergency of international concern (PHEIC). Monkeypox patients can present with ophthalmic manifestation and ophthalmologists have a role to play in managing this rare entity. Apart from causing systemic involvement such as skin lesions, respiratory infection and involvement of body fluids, Monkeypox related ophthalmic disease (MPXROD) causes varied ocular manifestations such as lid and adnexal involvement, periorbital and lid lesion, periorbital rash, conjunctivitis, blepharocounctivitis and keratitis. A detailed literature review shows few reports on MPXROD infections with limited overview on management strategies. The current review article is aimed to provide the ophthalmologist with an overview of the disease with a spotlight on ophthalmic features. We briefly discuss the morphology of the MPX, various modes of transmission, an infectious pathway of the virus, and the host immune response. A brief overview of the systemic manifestations and complications has also been elucidated. We especially highlight the detailed ophthalmic manifestations of mpox, their management, and prevention of vision threatening sequelae.
Collapse
Affiliation(s)
- Bharat Gurnani
- Cornea and Refractive Services, Dr. Om Parkash Eye Institute, Mall Road, Amritsar, Punjab, India
| | - Kirandeep Kaur
- Pediatric Ophthalmology and Strabismus, Dr. Om Parkash Eye Institute, Mall Road, Amritsar, Punjab, India
| | - Sameer Chaudhary
- Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | | |
Collapse
|
5
|
Falendysz EA, Lopera JG, Rocke TE, Osorio JE. Monkeypox Virus in Animals: Current Knowledge of Viral Transmission and Pathogenesis in Wild Animal Reservoirs and Captive Animal Models. Viruses 2023; 15:v15040905. [PMID: 37112885 PMCID: PMC10142277 DOI: 10.3390/v15040905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Mpox, formerly called monkeypox, is now the most serious orthopoxvirus (OPXV) infection in humans. This zoonotic disease has been gradually re-emerging in humans with an increasing frequency of cases found in endemic areas, as well as an escalating frequency and size of epidemics outside of endemic areas in Africa. Currently, the largest known mpox epidemic is spreading throughout the world, with over 85,650 cases to date, mostly in Europe and North America. These increased endemic cases and epidemics are likely driven primarily by decreasing global immunity to OPXVs, along with other possible causes. The current unprecedented global outbreak of mpox has demonstrated higher numbers of human cases and greater human-to-human transmission than previously documented, necessitating an urgent need to better understand this disease in humans and animals. Monkeypox virus (MPXV) infections in animals, both naturally occurring and experimental, have provided critical information about the routes of transmission; the viral pathogenicity factors; the methods of control, such as vaccination and antivirals; the disease ecology in reservoir host species; and the conservation impacts on wildlife species. This review briefly described the epidemiology and transmission of MPXV between animals and humans and summarizes past studies on the ecology of MPXV in wild animals and experimental studies in captive animal models, with a focus on how animal infections have informed knowledge concerning various aspects of this pathogen. Knowledge gaps were highlighted in areas where future research, both in captive and free-ranging animals, could inform efforts to understand and control this disease in both humans and animals.
Collapse
|
6
|
Muacevic A, Adler JR. Monkeypox: Treatment, Vaccination, and Prevention. Cureus 2023; 15:e33434. [PMID: 36751201 PMCID: PMC9899345 DOI: 10.7759/cureus.33434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In regions where the disease is endemic, Monkeypox (MPV) transmission related to healthcare has been seen on numerous occasions. This disease has episodes of occurrence in certain regions around the globe, such as in the Democratic Republic of Congo's (DRC) Tshuapa region. Here, the disease was found with a prevalence of 0.35 per 1000, as per data collected by the Centers for Disease Control and Prevention (CDC) of the United States (US). Data also shows approximately 100 confirmed cases of MPV for every infection among Healthcare Workers (HCWs). These findings and scientific research on burns, superficial wounds, herpes, eczema vaccine, and other conditions indicate that MPV sufferers might get an advantage from medical care to lessen the effects of weakened skin and mucosa. This should involve guarding delicate anatomical areas like the eyes and genitalia, maintaining enough hydration and nourishment, and preventing and treating consequences like secondary bacterial diseases. In the DRC, this disease was first recognized in 1970. Since then, it has spread to numerous nations around the globe and gained substantial epidemiological significance. The most recent epidemic has taken place in 2022 worldwide. The viruses that cause MPV and cowpox are currently regarded as emerging. Because of the rise in international travel, the popularity of exotic pets, and the decline in smallpox vaccination rates, they pose a significant danger of spreading. Although it is believed that this viral illness will eventually go away on its own, the possibility of the pandemic raises several serious problems for the general public's health. In addition to providing a broad overview of the Monkeypox Virus (MPXV), this study will detail the epidemiology, clinical hallmarks, assessment, and treatment of MPV sufferers.
Collapse
|
7
|
Brown LE, Seitz S, Kondas AV, Marcyk PT, Filone CM, Hossain MM, Schaus SE, Olson VA, Connor JH. Identification of Small Molecules with Improved Potency against Orthopoxviruses from Vaccinia to Smallpox. Antimicrob Agents Chemother 2022; 66:e0084122. [PMID: 36222522 PMCID: PMC9664851 DOI: 10.1128/aac.00841-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The genus Orthopoxvirus contains several human pathogens, including vaccinia, monkeypox, cowpox, and variola virus, the causative agent of smallpox. Although there are a few effective vaccines, widespread prophylactic vaccination has ceased and is unlikely to resume, making therapeutics increasingly important to treat poxvirus disease. Here, we described efforts to improve the potency of the anti-poxvirus small molecule CMLDBU6128. This class of small molecules, referred to as pyridopyrimidinones (PDPMs), showed a wide range of biological activities. Through the synthesis and testing of several exploratory chemical libraries based on this molecule, we identified several compounds that had increased potency from the micromolar into the nanomolar range. Two compounds, designated (12) and (16), showed inhibitory concentrations of 326 nM and 101 nM, respectively, which was more than a 10-fold increase in potency to CMLDBU6128 with an inhibitory concentration of around 6 μM. We also expanded our investigation of the breadth of action of these molecules and showed that they can inhibit the replication of variola virus, a related orthopoxvirus. Together, these findings highlighted the promise of this new class of antipoxviral agents as broad-spectrum small molecules with significant potential to be developed as antiviral therapy. This would add a small molecule option for therapy of spreading diseases, including monkeypox and cowpox viruses, that would also be expected to have efficacy against smallpox.
Collapse
Affiliation(s)
- Lauren E. Brown
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Scott Seitz
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Ashley V. Kondas
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul T. Marcyk
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Claire Marie Filone
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Mohammad M. Hossain
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Scott E. Schaus
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Victoria A. Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John H. Connor
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Garcia DR, Souza FR, Guimarães AP, Valis M, Pavelek Z, Kuca K, Ramalho TC, França TCC. In Silico Studies of Potential Selective Inhibitors of Thymidylate Kinase from Variola virus. Pharmaceuticals (Basel) 2021; 14:ph14101027. [PMID: 34681251 PMCID: PMC8537287 DOI: 10.3390/ph14101027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Continuing the work developed by our research group, in the present manuscript, we performed a theoretical study of 10 new structures derived from the antivirals cidofovir and ribavirin, as inhibitor prototypes for the enzyme thymidylate kinase from Variola virus (VarTMPK). The proposed structures were subjected to docking calculations, molecular dynamics simulations, and free energy calculations, using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, inside the active sites of VarTMPK and human TMPK (HssTMPK). The docking and molecular dynamic studies pointed to structures 2, 3, 4, 6, and 9 as more selective towards VarTMPK. In addition, the free energy data calculated through the MM-PBSA method, corroborated these results. This suggests that these compounds are potential selective inhibitors of VarTMPK and, thus, can be considered as template molecules to be synthesized and experimentally evaluated against smallpox.
Collapse
Affiliation(s)
- Danielle R. Garcia
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tiburcio 80, Urca, Rio de Janeiro 22290-270, Brazil;
| | - Felipe R. Souza
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil;
| | - Ana P. Guimarães
- Department of Chemistry, Federal University of Viçosa, Avenida P. H. Rolfs, s/n, Centro, Viçosa 36570-000, MG, Brazil;
| | - Martin Valis
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (M.V.); (Z.P.)
| | - Zbyšek Pavelek
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (M.V.); (Z.P.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
- Correspondence: (K.K.); (T.C.C.F.)
| | - Teodorico C. Ramalho
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Laboratory of Computational Chemistry, Department of Chemistry, UFLA, Lavras 37200-000, MG, Brazil
| | - Tanos C. C. França
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tiburcio 80, Urca, Rio de Janeiro 22290-270, Brazil;
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Correspondence: (K.K.); (T.C.C.F.)
| |
Collapse
|
9
|
Rodrigues Garcia D, Rodrigues de Souza F, Paula Guimarães A, Castro Ramalho T, Palermo de Aguiar A, Celmar Costa França T. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox: part II. J Biomol Struct Dyn 2019; 37:4569-4579. [PMID: 30488769 PMCID: PMC9491145 DOI: 10.1080/07391102.2018.1554510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/21/2023]
Abstract
Acknowledging the importance of studies toward the development of measures against terrorism and bioterrorism, this study aims to contribute to the design of new prototypes of potential drugs against smallpox. Based on a former study, nine synthetic feasible prototypes of selective inhibitors for thymidylate kinase from Variola virus (VarTMPK) were designed and submitted to molecular docking, molecular dynamics simulations and binding energy calculations. The compounds are simplifications of two more complex scaffolds, with a guanine connected to an amide or alcohol through a spacer containing ether and/or amide groups, formerly suggested as promising for the design of selective inhibitors of VarTMPK. Our study showed that, despite the structural simplifications, the compounds presented effective energy values in interactions with VarTMPK and HssTMPK and that the guanine could be replaced by a simpler imidazole ring linked to a -NH2 group, without compromising the affinity for VarTMPK. It was also observed that a positive charge in the imidazole ring is important for the selectivity toward VarTMPK and that an amide group in the spacer does not contribute to selectivity. Finally, prototype 3 was pointed as the most promising to be synthesized and experimentally evaluated. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Danielle Rodrigues Garcia
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Felipe Rodrigues de Souza
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | | | - Teodorico Castro Ramalho
- Laboratory of Computational Chemistry, Department of Chemistry, UFLA, Lavras, MG, Brazil
- Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Králové, Hradec Králove, Czech Republic
| | | | - Tanos Celmar Costa França
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
- Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Králové, Hradec Králove, Czech Republic
| |
Collapse
|
10
|
Kabuga AI, El Zowalaty ME. A review of the monkeypox virus and a recent outbreak of skin rash disease in Nigeria. J Med Virol 2019; 91:533-540. [PMID: 30357851 DOI: 10.1002/jmv.25348] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/17/2018] [Indexed: 01/23/2023]
Abstract
Since the eradication of smallpox approximately 39 years ago, monkeypox virus remains the most pathogenic poxvirus, being mainly restricted to Central and West Africa. Before 1970, there were no reports of human monkeypox in Nigeria, while between 1971 and 1978 there were three cases, with none having been reported thereafter. However, in September 2017, a case of contagious skin rash disease, typical of monkeypox, was observed in an 11-year-old boy from the southern part of the country and confirmed to be associated with the monkeypox virus. This large outbreak consisted of 262 suspected, 115 confirmed cases, and 7 mortalities across 26 states and the Federal Capital Territory (FCT), Abuja. The aim of this manuscript is to provide an updated, comprehensive, and timely review of monkeypox, an important emerging infection in Nigeria. Monkeypox is now a major threat to global health security, requiring an urgent multidisciplinary approach involving veterinarians, physicians, virologists, and public health experts to fast-track the development of diagnostic assays, vaccines, antivirals, and other control strategies.
Collapse
Affiliation(s)
- Auwal I Kabuga
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | - Mohamed E El Zowalaty
- Virology, Microbiology and Infectious Diseases Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Adam DC, Scotch M, MacIntyre CR. Bayesian Phylogeography and Pathogenic Characterization of Smallpox Based on HA, ATI, and CrmB Genes. Mol Biol Evol 2018; 35:2607-2617. [PMID: 30099520 PMCID: PMC6231489 DOI: 10.1093/molbev/msy153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Variola virus is at risk of re-emergence either through accidental release, bioterrorism, or synthetic biology. The use of phylogenetics and phylogeography to support epidemic field response is expected to grow as sequencing technology becomes miniaturized, cheap, and ubiquitous. In this study, we aimed to explore the use of common VARV diagnostic targets hemagglutinin (HA), cytokine response modifier B (CrmB), and A-type inclusion protein (ATI) for phylogenetic characterization as well as the representativeness of modelling strategies in phylogeography to support epidemic response should smallpox re-emerge. We used Bayesian discrete-trait phylogeography using the most complete data set currently available of whole genome (n = 51) and partially sequenced (n = 20) VARV isolates. We show that multilocus models combining HA, ATI, and CrmB genes may represent a useful heuristic to differentiate between VARV Major and subclades of VARV Minor which have been associated with variable case-fatality rates. Where whole genome sequencing is unavailable, phylogeography models of HA, ATI, and CrmB may provide preliminary but uncertain estimates of transmission, while supplementing whole genome models with additional isolates sequenced only for HA can improve sample representativeness, maintaining similar support for transmission relative to whole genome models. We have also provided empirical evidence delineating historic international VARV transmission using phylogeography. Due to the persistent threat of re-emergence, our results provide important research for smallpox epidemic preparedness in the posteradication era as recommended by the World Health Organisation.
Collapse
Affiliation(s)
- Dillon C Adam
- Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Scotch
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ
- Department of Biomedical Informatics, College of Health Solutions, Arizona State University, Tempe, AZ
| | - Chandini Raina MacIntyre
- Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- College of Public Service and Community Solutions and College of Health Solutions, Arizona State University, Tempe, AZ
| |
Collapse
|
12
|
Cheng WY, He XB, Jia HJ, Chen GH, Jin QW, Long ZL, Jing ZZ. The cGas-Sting Signaling Pathway Is Required for the Innate Immune Response Against Ectromelia Virus. Front Immunol 2018; 9:1297. [PMID: 29963044 PMCID: PMC6010520 DOI: 10.3389/fimmu.2018.01297] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Activation of the DNA-dependent innate immune pathway plays a pivotal role in the host defense against poxvirus. Cyclic GMP-AMP synthase (cGAS) is a key cytosolic DNA sensor that produces the cyclic dinucleotide cGMP-AMP (cGAMP) upon activation, which triggers stimulator of interferon genes (STING), leading to type I Interferons (IFNs) production and an antiviral response. Ectromelia virus (ECTV) has emerged as a valuable model for investigating the host-Orthopoxvirus relationship. However, the role of cGas-Sting pathway in response to ECTV is not clearly understood. Here, we showed that murine cells (L929 and RAW264.7) mount type I IFN responses to ECTV that are dependent upon cGas, Sting, TANK binding kinase 1 (Tbk1), and interferon regulatory factor 3 (Irf3) signaling. Disruption of cGas or Sting expression in mouse macrophages blocked the type I IFN production and facilitated ECTV replication. Consistently, mice deficient in cGas or Sting exhibited lower type I IFN levels and higher viral loads, and are more susceptible to mousepox. Collectively, our study indicates that the cGas-Sting pathway is critical for sensing of ECTV infection, inducing the type I IFN production, and controlling ECTV replication.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Bing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huai-Jie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guo-Hua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qi-Wang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhao-Lin Long
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhi-Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
13
|
Cheng W, Jia H, Wang X, He X, Jin Q, Cao J, Jing Z. Ectromelia virus upregulates the expression of heat shock protein�70 to promote viral replication. Int J Mol Med 2018; 42:1044-1053. [DOI: 10.3892/ijmm.2018.3655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/26/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Wenyu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu�730046, P.R.�China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiaoxia Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Qiwang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB�R3E 3R2, Canada
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|
14
|
Cheng WY, Jia HJ, He XB, Chen GH, Feng Y, Wang CY, Wang XX, Jing ZZ. Comparison of Host Gene Expression Profiles in Spleen Tissues of Genetically Susceptible and Resistant Mice during ECTV Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6456180. [PMID: 29430463 PMCID: PMC5752998 DOI: 10.1155/2017/6456180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/19/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022]
Abstract
Ectromelia virus (ECTV), the causative agent of mousepox, has emerged as a valuable model for investigating the host-Orthopoxvirus relationship as it relates to pathogenesis and the immune response. ECTV is a mouse-specific virus and causes high mortality in susceptible mice strains, including BALB/c and C3H, whereas C57BL/6 and 129 strains are resistant to the disease. To understand the host genetic factors in different mouse strains during the ECTV infection, we carried out a microarray analysis of spleen tissues derived from BALB/c and C57BL/6 mice, respectively, at 3 and 10 days after ECTV infection. Differential Expression of Genes (DEGs) analyses revealed distinct differences in the gene profiles of susceptible and resistant mice. The susceptible BALB/c mice generated more DEGs than the resistant C57BL/6 mice. Additionally, gene ontology and KEGG pathway analysis showed the DEGs of susceptible mice were involved in innate immunity, apoptosis, metabolism, and cancer-related pathways, while the DEGs of resistant mice were largely involved in MAPK signaling and leukocyte transendothelial migration. Furthermore, the BALB/c mice showed a strong induction of interferon-induced genes, which, however, were weaker in the C57BL/6 mice. Collectively, the differential transcriptome profiles of susceptible and resistant mouse strains with ECTV infection will be crucial for further uncovering the molecular mechanisms of the host-Orthopoxvirus interaction.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Huai-Jie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Xiao-Bing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Guo-Hua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Chun-Yan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Xiao-Xia Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
15
|
Damaso CR. Revisiting Jenner's mysteries, the role of the Beaugency lymph in the evolutionary path of ancient smallpox vaccines. THE LANCET. INFECTIOUS DISEASES 2017; 18:e55-e63. [PMID: 28827144 DOI: 10.1016/s1473-3099(17)30445-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
Abstract
In 1796, Edward Jenner developed the smallpox vaccine consisting of pustular material obtained from lesions on cows affected by so-called cow-pox. The disease, caused by cowpox virus, confers crossprotection against smallpox. However, historical evidence suggests that Jenner might have used vaccinia virus or even horsepox virus instead of cowpox virus. Mysteries surrounding the origin and nature of the smallpox vaccine persisted during the 19th century, a period of intense exchange of vaccine strains, including the Beaugency lymph. This lymph was obtained from spontaneous cases of cow-pox in France in 1866 and then distributed worldwide. A detailed Historical Review of the distribution of the Beaugency lymph supports recent genetic analyses of extant vaccine strains, suggesting the lymph was probably a vaccinia strain or a horsepox-like virus. This Review is a historical investigation that revisits the mysteries of the smallpox vaccine and reveals an intricate evolutionary relationship of extant vaccinia strains.
Collapse
Affiliation(s)
- Clarissa R Damaso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Human Monkeypox: Current State of Knowledge and Implications for the Future. Trop Med Infect Dis 2016; 1:tropicalmed1010008. [PMID: 30270859 PMCID: PMC6082047 DOI: 10.3390/tropicalmed1010008] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022] Open
Abstract
The zoonosis human monkeypox (MPX) was discovered in 1970, twelve years after the discovery of monkeypox virus (MPXV) in a Danish laboratory in 1958. Historically confined to West Africa (WA) and the Congo basin (CB), new epidemics in Sudan and the United States of America (USA) have fuelled new research highlighting environmental factors contributing to the expanded geographical spread of monkeypox virus (MPXV). A systematic literature review was conducted in MEDLINE® (Ovid), MEDLINE® (PubMed) and Google Scholar databases using the search terms: monkeypox, MPXV and “human monkeypox”. The literature revealed MPX has classic prodromal symptoms followed by a total body rash. The sole distinguishing clinical characteristic from other pox-like illnesses is the profound lymphadenopathy. Laboratory diagnosis of MPX is essential, a suitable test for endemic areas is under development but not yet available. For the time being anti-poxvirus antibodies in an unvaccinated individual with a history of severe illness and rash can suggest MPX infection. The reservoir host remains elusive yet the rope squirrel and Gambian pouched rat appear to be the most likely candidates. Transmission includes fomite, droplet, direct contact with infected humans or animals and consumption of infected meat. Though smallpox vaccination is protective against MPXV, new non-immune generations contribute to increasing incidence. Environmental factors are increasing the frequency of contact with potential hosts, thus increasing the risk of animal-to-human transmission. Increased risk of transmission through globalisation, conflict and environmental influences makes MPX a more realistic threat to previously unaffected countries. Health worker training and further development and accessibility of suitable diagnostic tests, vaccinations and anti-viral treatment is becoming increasingly necessary.
Collapse
|
17
|
Wang X, Zhao T, Qin X. Model of epidemic control based on quarantine and message delivery. PHYSICA A 2016; 458:168-178. [PMID: 32288100 PMCID: PMC7127083 DOI: 10.1016/j.physa.2016.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/01/2016] [Indexed: 05/24/2023]
Abstract
The model provides two novel strategies for the preventive control of epidemic diseases. One approach is related to the different isolating rates in latent period and invasion period. Experiments show that the increasing of isolating rates in invasion period, as long as over 0.5, contributes little to the preventing of epidemic; the improvement of isolation rate in latent period is key to control the disease spreading. Another is a specific mechanism of message delivering and forwarding. Information quality and information accumulating process are also considered there. Macroscopically, diseases are easy to control as long as the immune messages reach a certain quality. Individually, the accumulating messages bring people with certain immunity to the disease. Also, the model is performed on the classic complex networks like scale-free network and small-world network, and location-based social networks. Results show that the proposed measures demonstrate superior performance and significantly reduce the negative impact of epidemic disease.
Collapse
|
18
|
Johnson RF, Hammoud DA, Perry DL, Solomon J, Moore IN, Lackemeyer MG, Bohannon JK, Sayre PJ, Minai M, Papaneri AB, Hagen KR, Janosko KB, Jett C, Cooper K, Blaney JE, Jahrling PB. Exposure of rhesus monkeys to cowpox virus Brighton Red by large-particle aerosol droplets results in an upper respiratory tract disease. J Gen Virol 2016; 97:1942-1954. [PMID: 27166137 PMCID: PMC5764124 DOI: 10.1099/jgv.0.000501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/07/2016] [Indexed: 01/13/2023] Open
Abstract
We previously demonstrated that small-particle (0.5-3.0 µm) aerosol infection of rhesus monkeys (Macaca mulatta) with cowpox virus (CPXV)-Brighton Red (BR) results in fulminant respiratory tract disease characterized by severe lung parenchymal pathology but only limited systemic virus dissemination and limited classic epidermal pox-like lesion development (Johnson et al., 2015). Based on these results, and to further develop CPXV as an improved model of human smallpox, we evaluated a novel large-particle aerosol (7.0-9.0 µm) exposure of rhesus monkeys to CPXV-BR and monitored for respiratory tract disease by serial computed tomography (CT). As expected, the upper respiratory tract and large airways were the major sites of virus-induced pathology following large-particle aerosol exposure. Large-particle aerosol CPXV exposure of rhesus macaques resulted in severe upper airway and large airway pathology with limited systemic dissemination.
Collapse
Affiliation(s)
- Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna L. Perry
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jeffrey Solomon
- Clinical Research Directorate/Clinical Monitoring Research Program Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew G. Lackemeyer
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jordan K. Bohannon
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Philip J. Sayre
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy B. Papaneri
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Katie R. Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Krisztina B. Janosko
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Catherine Jett
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Joseph E. Blaney
- Office of the Scientific Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter B. Jahrling
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
19
|
Genomic Analysis, Phenotype, and Virulence of the Historical Brazilian Smallpox Vaccine Strain IOC: Implications for the Origins and Evolutionary Relationships of Vaccinia Virus. J Virol 2015; 89:11909-25. [PMID: 26378174 DOI: 10.1128/jvi.01833-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Smallpox was declared eradicated in 1980 after an intensive vaccination program using different strains of vaccinia virus (VACV; Poxviridae). VACV strain IOC (VACV-IOC) was the seed strain of the smallpox vaccine manufactured by the major vaccine producer in Brazil during the smallpox eradication program. However, little is known about the biological and immunological features as well as the phylogenetic relationships of this first-generation vaccine. In this work, we present a comprehensive characterization of two clones of VACV-IOC. Both clones had low virulence in infected mice and induced a protective immune response against a lethal infection comparable to the response of the licensed vaccine ACAM2000 and the parental strain VACV-IOC. Full-genome sequencing revealed the presence of several fragmented virulence genes that probably are nonfunctional, e.g., F1L, B13R, C10L, K3L, and C3L. Most notably, phylogenetic inference supported by the structural analysis of the genome ends provides evidence of a novel, independent cluster in VACV phylogeny formed by VACV-IOC, the Brazilian field strains Cantagalo (CTGV) and Serro 2 viruses, and horsepox virus, a VACV-like virus supposedly related to an ancestor of the VACV lineage. Our data strongly support the hypothesis that CTGV-like viruses represent feral VACV that evolved in parallel with VACV-IOC after splitting from a most recent common ancestor, probably an ancient smallpox vaccine strain related to horsepox virus. Our data, together with an interesting historical investigation, revisit the origins of VACV and propose new evolutionary relationships between ancient and extant VACV strains, mainly horsepox virus, VACV-IOC/CTGV-like viruses, and Dryvax strain. IMPORTANCE First-generation vaccines used to eradicate smallpox had rates of adverse effects that are not acceptable by current health care standards. Moreover, these vaccines are genetically heterogeneous and consist of a pool of quasispecies of VACV. Therefore, the search for new-generation smallpox vaccines that combine low pathogenicity, immune protection, and genetic homogeneity is extremely important. In addition, the phylogenetic relationships and origins of VACV strains are quite nebulous. We show the characterization of two clones of VACV-IOC, a unique smallpox vaccine strain that contributed to smallpox eradication in Brazil. The immunogenicity and reduced virulence make the IOC clones good options for alternative second-generation smallpox vaccines. More importantly, this study reveals the phylogenetic relationship between VACV-IOC, feral VACV established in nature, and the ancestor-like horsepox virus. Our data expand the discussion on the origins and evolutionary connections of VACV lineages.
Collapse
|
20
|
Johnson RF, Hammoud DA, Lackemeyer MG, Yellayi S, Solomon J, Bohannon JK, Janosko KB, Jett C, Cooper K, Blaney JE, Jahrling PB. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease. Virology 2015; 481:124-35. [PMID: 25776759 PMCID: PMC4535421 DOI: 10.1016/j.virol.2015.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases.
Collapse
Affiliation(s)
- Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew G Lackemeyer
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Srikanth Yellayi
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jeffrey Solomon
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan K Bohannon
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Krisztina B Janosko
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Catherine Jett
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Joseph E Blaney
- Office of the Scientific Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter B Jahrling
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|