1
|
Johansen ER, Schmalzriedt DL, Avila D, Sylvester PA, Rahlf CR, Bobek JM, Sahoo D, Dittel BN, Tarakanova VL. Combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression defines parameters of chronic gammaherpesvirus infection. mBio 2024; 15:e0159824. [PMID: 39440973 PMCID: PMC11559066 DOI: 10.1128/mbio.01598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Gammaherpesviruses are species-specific, ubiquitous pathogens that establish lifelong infection in their hosts and are associated with cancers, including B cell lymphomas. Type I and II interferons (IFNs) are critical for the control of acute and chronic gammaherpesvirus infection. However, the cell type-specific role of IFN signaling during natural infection is poorly defined and is masked by the altered viral pathogenesis observed in hosts with global IFN deficiencies. STAT1 is a constitutively expressed transcription factor that is critical for the effector function of type I and II IFNs. In this study, we defined the impact of B cell-specific STAT1 expression on gammaherpesvirus infection using murine gammaherpesvirus 68 (MHV68). While the acute stage of MHV68 infection was not affected, we found opposite, anatomic site-dependent effects of B cell-intrinsic STAT1 expression during chronic infection. Consistent with the antiviral role of STAT1, B cell-specific STAT1 expression attenuated the latent viral reservoir in peritoneal B cells of chronically infected mice. In contrast, STAT1 expression in splenic B cells supported the establishment of the latent MHV68 reservoir in germinal center B cells, revealing an unexpected proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection. These STAT1-dependent MHV68 chronic infection phenotypes were fully recapitulated in the peritoneal cavity but not the spleen of mice with B cell-specific deficiency of type I IFN receptor. In summary, our study uncovers the intriguing combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.IMPORTANCEInterferons (IFNs) execute broadly antiviral roles during acute and chronic viral infections. The constitutively expressed transcription factor STAT1 is a critical downstream effector of IFN signaling. Our studies demonstrate that B cell-intrinsic STAT1 expression has opposing and anatomic site-dependent roles during chronic gammaherpesvirus infection. Specifically, B cell-intrinsic STAT1 expression restricted gammaherpesvirus latent reservoir in the peritoneal cavity, consistent with the classical antiviral role of STAT1. In contrast, decreased STAT1 expression in splenic B cells led to the attenuated establishment of gammaherpesvirus latency and decreased latent infection of germinal center B cells, highlighting a novel proviral role of B cell-intrinsic STAT1 expression during chronic infection with a B cell-tropic gammaherpesvirus. Interestingly, B cell-specific type I IFN receptor deficiency primarily recapitulated the antiviral role of B cell-intrinsic STAT1 expression, suggesting the compensatory function of B cell-intrinsic type II IFN signaling or an IFN-independent proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- Erika R. Johansen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Damon L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Danilela Avila
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cade R. Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Vera L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Jondle CN, Sylvester PA, Schmalzriedt DL, Njoya K, Tarakanova VL. The Antagonism between the Murine Gammaherpesvirus Protein Kinase and Global Interferon Regulatory Factor 1 Expression Shapes the Establishment of Chronic Infection. J Virol 2022; 96:e0126022. [PMID: 36169331 PMCID: PMC9599343 DOI: 10.1128/jvi.01260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses infect most vertebrate species and are associated with B cell lymphomas. Manipulation of B cell differentiation is critical for natural infection and lymphomagenesis driven by gammaherpesviruses. Specifically, human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) drive differentiation of infected naive B cells into the germinal center to achieve exponential increase in the latent viral reservoir during the establishment of chronic infection. Infected germinal center B cells are also the target of viral lymphomagenesis, as most EBV-positive B cell lymphomas bear the signature of the germinal center response. All gammaherpesviruses encode a protein kinase, which, in the case of Kaposi's sarcoma-associated herpesvirus (KSHV) and MHV68, is sufficient and necessary, respectively, to drive B cell differentiation in vivo. In this study, we used the highly tractable MHV68 model of chronic gammaherpesvirus infection to unveil an antagonistic relationship between MHV68 protein kinase and interferon regulatory factor 1 (IRF-1). IRF-1 deficiency had minimal effect on the attenuated lytic replication of the kinase-null MHV68 in vivo. In contrast, the attenuated latent reservoir of the kinase-null MHV68 was partially to fully rescued in IRF-1-/- mice, along with complete rescue of the MHV68-driven germinal center response. Thus, the novel viral protein kinase-IRF-1 antagonism was largely limited to chronic infection dominated by viral latency and was less relevant for lytic replication during acute infection and in vitro. Given the conserved nature of the viral and host protein, the antagonism between the two, as defined in this study, may regulate gammaherpesvirus infection across species. IMPORTANCE Gammaherpesviruses are prevalent pathogens that manipulate physiological B cell differentiation to establish lifelong infection. This manipulation is also involved in gammaherpesvirus-driven B cell lymphomas, as differentiation of latently infected B cells through the germinal center response targets these for transformation. In this study, we define a novel antagonistic interaction between a conserved gammaherpesvirus protein kinase and a host antiviral and tumor suppressor transcription factor. The virus-host antagonism unveiled in this study was critically important to shape the magnitude of gammaherpesvirus-driven germinal center response. In contrast, the virus-host antagonism was far less relevant for lytic viral replication in vitro and during acute infection in vivo, highlighting the emerging concept that nonoverlapping mechanisms shape the parameters of acute and chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- C. N. Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - P. A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - D. L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - K. Njoya
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - V. L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
KSHV LANA acetylation-selective acidic domain reader sequence mediates virus persistence. Proc Natl Acad Sci U S A 2020; 117:22443-22451. [PMID: 32820070 PMCID: PMC7486799 DOI: 10.1073/pnas.2004809117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viruses modulate biochemical cellular pathways to permit infection. A recently described mechanism mediates selective protein interactions between acidic domain readers and unacetylated, lysine-rich regions, opposite of bromodomain function. Kaposi´s sarcoma (KS)-associated herpesvirus (KSHV) is tightly linked with KS, primary effusion lymphoma, and multicentric Castleman's disease. KSHV latently infects cells, and its genome persists as a multicopy, extrachromosomal episome. During latency, KSHV expresses a small subset of genes, including the latency-associated nuclear antigen (LANA), which mediates viral episome persistence. Here we show that LANA contains two tandem, partially overlapping, acidic domain sequences homologous to the SET oncoprotein acidic domain reader. This domain selectively interacts with unacetylated p53, as evidenced by reduced LANA interaction after overexpression of CBP, which acetylates p53, or with an acetylation mimicking carboxyl-terminal domain p53 mutant. Conversely, the interaction of LANA with an acetylation-deficient p53 mutant is enhanced. Significantly, KSHV LANA mutants lacking the acidic domain reader sequence are deficient for establishment of latency and persistent infection. This deficiency was confirmed under physiological conditions, on infection of mice with a murine gammaherpesvirus 68 chimera expressing LANA, where the virus was highly deficient in establishing latent infection in germinal center B cells. Therefore, LANA's acidic domain reader is critical for viral latency. These results implicate an acetylation-dependent mechanism mediating KSHV persistence and expand the role of acidic domain readers.
Collapse
|
4
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
5
|
Sakakibara S, Yasui T, Jinzai H, O'donnell K, Tsai CY, Minamitani T, Takeda K, Belz GT, Tarlinton DM, Kikutani H. Self-reactive and polyreactive B cells are generated and selected in the germinal center during γ-herpesvirus infection. Int Immunol 2020; 32:27-38. [PMID: 31504561 DOI: 10.1093/intimm/dxz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/26/2019] [Indexed: 11/14/2022] Open
Abstract
Immune responses against certain viruses are accompanied by auto-antibody production although the origin of these infection-associated auto-antibodies is unclear. Here, we report that murine γ-herpesvirus 68 (MHV68)-induced auto-antibodies are derived from polyreactive B cells in the germinal center (GC) through the activity of short-lived plasmablasts. The analysis of recombinant antibodies from MHV68-infected mice revealed that about 40% of IgG+ GC B cells were self-reactive, with about half of them being polyreactive. On the other hand, virion-reactive clones accounted for only a minor proportion of IgG+ GC B cells, half of which also reacted with self-antigens. The self-reactivity of most polyreactive clones was dependent on somatic hypermutation (SHM), but this was dispensable for the reactivity of virus mono-specific clones. Furthermore, both virus-mono-specific and polyreactive clones were selected to differentiate to B220lo CD138+ plasma cells (PCs). However, the representation of GC-derived polyreactive clones was reduced and that of virus-mono-specific clones was markedly increased in terminally differentiated PCs as compared to transient plasmablasts. Collectively, our findings demonstrate that, during acute MHV68 infection, self-reactive B cells are generated through SHM and selected for further differentiation to short-lived plasmablasts but not terminally differentiated PCs.
Collapse
Affiliation(s)
- Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, Ibaraki, Osaka, Japan.,Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Department of Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan , Suita, Osaka, Japan
| | - Hideyuki Jinzai
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kristy O'donnell
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takeharu Minamitani
- Laboratory of Infectious Diseases and Immunity, Ibaraki, Osaka, Japan.,Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kazuya Takeda
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Collins CM, Scharer CD, Murphy TJ, Boss JM, Speck SH. Murine gammaherpesvirus infection is skewed toward Igλ+ B cells expressing a specific heavy chain V-segment. PLoS Pathog 2020; 16:e1008438. [PMID: 32353066 PMCID: PMC7217478 DOI: 10.1371/journal.ppat.1008438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/12/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022] Open
Abstract
One of the defining characteristics of the B cell receptor (BCR) is the extensive diversity in the repertoire of immunoglobulin genes that make up the BCR, resulting in broad range of specificity. Gammaherpesviruses are B lymphotropic viruses that establish life-long infection in B cells, and although the B cell receptor plays a central role in B cell biology, very little is known about the immunoglobulin repertoire of gammaherpesvirus infected cells. To begin to characterize the Ig genes expressed by murine gammaherpesvirus 68 (MHV68) infected cells, we utilized single cell sorting to sequence and clone the Ig variable regions of infected germinal center (GC) B cells and plasma cells. We show that MHV68 infection is biased towards cells that express the Igλ light chain along with a single heavy chain variable gene, IGHV10-1*01. This population arises through clonal expansion but is not viral antigen specific. Furthermore, we show that class-switching in MHV68 infected cells differs from that of uninfected cells. Fewer infected GC B cells are class-switched compared to uninfected GC B cells, while more infected plasma cells are class-switched compared to uninfected plasma cells. Additionally, although they are germinal center derived, the majority of class switched plasma cells display no somatic hypermutation regardless of infection status. Taken together, these data indicate that selection of infected B cells with a specific BCR, as well as virus mediated manipulation of class switching and somatic hypermutation, are critical aspects in establishing life-long gammaherpesvirus infection.
Collapse
Affiliation(s)
- Christopher M. Collins
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Christopher D. Scharer
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thomas J. Murphy
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeremy M. Boss
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H. Speck
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Zelazowska MA, Dong Q, Plummer JB, Zhong Y, Liu B, Krug LT, McBride KM. Gammaherpesvirus-infected germinal center cells express a distinct immunoglobulin repertoire. Life Sci Alliance 2020; 3:3/3/e201900526. [PMID: 32029571 PMCID: PMC7012147 DOI: 10.26508/lsa.201900526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Germinal center B cells infected with gammaherpesvirus display altered repertoire with biased usage of lambda light chain and skewed utilization of IGHV genes. The gammaherpesviruses (γHVs), human Kaposi sarcoma-associated herpesvirus (KSHV), EBV, and murine γHV68 are prevalent infections associated with lymphocyte pathologies. After primary infection, EBV and γHV68 undergo latent expansion in germinal center (GC) B cells and persists in memory cells. The GC reaction evolves and selects antigen-specific B cells for memory development but whether γHV passively transients or manipulates this process in vivo is unknown. Using the γHV68 infection model, we analyzed the Ig repertoire of infected and uninfected GC cells from individual mice. We found that infected cells displayed the hallmarks of affinity maturation, hypermutation, and isotype switching but underwent clonal expansion. Strikingly, infected cells displayed distinct repertoire, not found in uninfected cells, with recurrent utilization of certain Ig heavy V segments including Ighv10-1. In a manner observed with KSHV, γHV68 infected cells also displayed lambda light chain bias. Thus, γHV68 subverts GC selection to expand in a specific B cell subset during the process that develops long-lived immunologic memory.
Collapse
Affiliation(s)
- Monika A Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Qiwen Dong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Joshua B Plummer
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Yi Zhong
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
8
|
A CD4 + T Cell-NK Cell Axis of Gammaherpesvirus Control. J Virol 2020; 94:JVI.01545-19. [PMID: 31694958 DOI: 10.1128/jvi.01545-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/31/2019] [Indexed: 01/27/2023] Open
Abstract
CD4+ T cells are essential to control herpesviruses. Murid herpesvirus 4 (MuHV-4)-driven lung disease in CD4+ T-cell-deficient mice provides a well-studied example. Protective CD4+ T cells have been hypothesized to kill infected cells directly. However, removing major histocompatibility complex class II (MHCII) from LysM+ or CD11c+ cells increased MuHV-4 replication not in those cells but in type 1 alveolar epithelial cells, which lack MHCII, LysM, or CD11c. Disruption of MHCII in infected cells had no effect. Therefore, CD4+ T cells engaged uninfected presenting cells and protected indirectly. Mice lacking MHCII in LysM+ or CD11c+ cells maintained systemic antiviral CD4+ T cell responses, but recruited fewer CD4+ T cells into infected lungs. NK cell infiltration was also reduced, and NK cell depletion normalized infection between MHCII-deficient and control mice. Therefore, NK cell recruitment seemed to be an important component of CD4+ T-cell-dependent protection. Disruption of viral CD8+ T cell evasion made this defense redundant, suggesting that it is important mainly to control CD8-evasive pathogens.IMPORTANCE Gammaherpesviruses are widespread and cause cancers. CD4+ T cells are a key defense. We found that they defend indirectly, engaging uninfected presenting cells and recruiting innate immune cells to attack infected targets. This segregation of CD4+ T cells from immediate contact with infection helps the immune system to cope with viral evasion. Priming this defense by vaccination offers a way to protect against gammaherpesvirus-induced cancers.
Collapse
|
9
|
Johnson KE, Tarakanova VL. Gammaherpesviruses and B Cells: A Relationship That Lasts a Lifetime. Viral Immunol 2020; 33:316-326. [PMID: 31913773 DOI: 10.1089/vim.2019.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gammaherpesviruses are highly prevalent pathogens that establish life-long infection and are associated with diverse malignancies, including lymphoproliferative diseases and B cell lymphomas. Unlike other viruses that either do not infect B cells or infect B cells transiently, gammaherpesviruses manipulate physiological B cell differentiation to establish life-long infection in memory B cells. Disruption of such viral manipulation by genetic or environmental causes is likely to seed viral lymphomagenesis. In this review, we discuss physiological and unique host and viral mechanisms usurped by gammaherpesviruses to fine tune host B cell biology for optimal infection establishment and maintenance.
Collapse
Affiliation(s)
- Kaitlin E Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
B Cell-Intrinsic SHP1 Expression Promotes the Gammaherpesvirus-Driven Germinal Center Response and the Establishment of Chronic Infection. J Virol 2019; 94:JVI.01232-19. [PMID: 31597758 DOI: 10.1128/jvi.01232-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the majority of adults worldwide. Chronic gammaherpesvirus infection has been implicated in both lymphomagenesis and, somewhat controversially, autoimmune disease development. Pathogenesis is largely associated with the unique ability of gammaherpesviruses to usurp B cell differentiation, specifically, the germinal center response, to establish long-term latency in memory B cells. The host tyrosine phosphatase SHP1 is known as a brake on immune cell activation and is downregulated in several gammaherpesvirus-driven malignancies. However, here we demonstrate that B cell- but not T cell-intrinsic SHP1 expression supports the gammaherpesvirus-driven germinal center response and the establishment of viral latency. Furthermore, B cell-intrinsic SHP1 deficiency cooperated with gammaherpesvirus infection to increase the levels of double-stranded DNA-reactive antibodies at the peak of viral latency. Thus, in spite of decreased SHP1 levels in gammaherpesvirus-driven B cell lymphomas, B cell-intrinsic SHP1 expression plays a proviral role during the establishment of chronic infection, suggesting that the gammaherpesvirus-SHP1 interaction is more nuanced and is modified by the stage of infection and pathogenesis.IMPORTANCE Gammaherpesviruses establish lifelong infection in a majority of adults worldwide and are associated with a number of malignancies, including B cell lymphomas. These viruses infect naive B cells and manipulate B cell differentiation to achieve a lifelong infection of memory B cells. The germinal center stage of B cell differentiation is important as both an amplifier of the viral latent reservoir and the target of malignant transformation. In this study, we demonstrate that expression of tyrosine phosphatase SHP1, a negative regulator that normally limits the activation and proliferation of hematopoietic cells, enhances the gammaherpesvirus-driven germinal center response and the establishment of chronic infection. The results of this study uncover an intriguing beneficial interaction between gammaherpesviruses that are presumed to profit from B cell activation and a cellular phosphatase that is traditionally perceived to be a negative regulator of the same processes.
Collapse
|
11
|
Huang Q, Hu J, Tang J, Xu L, Ye L. Molecular Basis of the Differentiation and Function of Virus Specific Follicular Helper CD4 + T Cells. Front Immunol 2019; 10:249. [PMID: 30828337 PMCID: PMC6384271 DOI: 10.3389/fimmu.2019.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
During viral infection, virus-specific follicular helper T cells provide important help to cognate B cells for their survival, consecutive proliferation and mutation and eventual differentiation into memory B cells and antibody-secreting plasma cells. Similar to Tfh cells generated in other conditions, the differentiation of virus-specific Tfh cells can also be characterized as a process involved multiple factors and stages, however, which also exhibits distinct features. Here, we mainly focus on the current understanding of Tfh fate commitment, functional maturation, lineage maintenance and memory transition and formation in the context of viral infection.
Collapse
Affiliation(s)
- Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
In Vivo Persistence of Chimeric Virus after Substitution of the Kaposi's Sarcoma-Associated Herpesvirus LANA DNA Binding Domain with That of Murid Herpesvirus 4. J Virol 2018; 92:JVI.01251-18. [PMID: 30111565 PMCID: PMC6189500 DOI: 10.1128/jvi.01251-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
The latency-associated nuclear antigen from Kaposi's sarcoma-associated herpesvirus (KSHV), kLANA, and its homolog from the murid herpesvirus 4 (MuHV-4), mLANA, are essential for viral latency. kLANA is nearly four times the size of mLANA, mainly due to an extensive central repeat region that is absent in mLANA. Both proteins harbor a C-terminal DNA binding domain (DBD). The DBD binds the terminal repeat (TR) DNA sequences of the viral genome to mediate persistence. Despite structural conservation, the kLANA and mLANA DBDs differ in sequence and mode of oligomerization. kLANA DBD oligomers are flexible and bent, while mLANA DBD oligomers bind DNA in a rigid, linear conformation. We previously reported that kLANA and mLANA acted reciprocally on TR sequences. Furthermore, a MuHV-4 expressing kLANA instead of mLANA (v-kLANA) established latency in mice, albeit at a lower magnitude than the wild-type (WT) virus. Here, we asked if kLANA can accommodate the mLANA DBD and generated a fusion protein which contains kLANA but with the mLANA C-terminal region in place of that of kLANA. We report a recombinant MuHV-4 (v-KM) encoding this LANA fusion protein instead of mLANA. The fusion protein was expressed in lytic infection in vitro and assembled nuclear LANA dots in infected splenocytes. Results demonstrated that kLANA functionally accommodated mLANA's mode of DNA binding, allowing MuHV-4 chimeric virus to establish latency in vivo Notably, v-KM established latency in germinal center B cells more efficiently than did v-kLANA, although levels were reduced compared to WT MuHV-4.IMPORTANCE KSHV is a human oncogenic virus for which there is no tractable, immunocompetent animal model of infection. MuHV-4, a related rodent gammaherpesvirus, enables pathogenesis studies in mice. In latency, both viruses persist as extrachromosomal, circular genomes (episomes). LANA proteins encoded by KSHV (kLANA) and MuHV-4 (mLANA) contain a C-terminal DNA binding domain (DBD) that acts on the virus terminal repeats to enable episome persistence. mLANA is a smaller protein than kLANA. Their DBDs are structurally conserved but differ strikingly in the conformation of DNA binding. We report a recombinant, chimeric MuHV-4 which contains kLANA in place of mLANA, but in which the DBD is replaced with that of mLANA. Results showed that kLANA functionally accommodated mLANA's mode of DNA binding. In fact, the new chimeric virus established latency in vivo more efficiently than MuHV-4 expressing full-length kLANA.
Collapse
|
13
|
Habison AC, de Miranda MP, Beauchemin C, Tan M, Cerqueira SA, Correia B, Ponnusamy R, Usherwood EJ, McVey CE, Simas JP, Kaye KM. Cross-species conservation of episome maintenance provides a basis for in vivo investigation of Kaposi's sarcoma herpesvirus LANA. PLoS Pathog 2017; 13:e1006555. [PMID: 28910389 PMCID: PMC5599060 DOI: 10.1371/journal.ppat.1006555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/27/2017] [Indexed: 12/26/2022] Open
Abstract
Many pathogens, including Kaposi's sarcoma herpesvirus (KSHV), lack tractable small animal models. KSHV persists as a multi-copy, nuclear episome in latently infected cells. KSHV latency-associated nuclear antigen (kLANA) binds viral terminal repeat (kTR) DNA to mediate episome persistence. Model pathogen murine gammaherpesvirus 68 (MHV68) mLANA acts analogously on mTR DNA. kLANA and mLANA differ substantially in size and kTR and mTR show little sequence conservation. Here, we find kLANA and mLANA act reciprocally to mediate episome persistence of TR DNA. Further, kLANA rescued mLANA deficient MHV68, enabling a chimeric virus to establish latent infection in vivo in germinal center B cells. The level of chimeric virus in vivo latency was moderately reduced compared to WT infection, but WT or chimeric MHV68 infected cells had similar viral genome copy numbers as assessed by immunofluorescence of LANA intranuclear dots or qPCR. Thus, despite more than 60 Ma of evolutionary divergence, mLANA and kLANA act reciprocally on TR DNA, and kLANA functionally substitutes for mLANA, allowing kLANA investigation in vivo. Analogous chimeras may allow in vivo investigation of genes of other human pathogens.
Collapse
Affiliation(s)
- Aline C. Habison
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marta Pires de Miranda
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Chantal Beauchemin
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Tan
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sofia A. Cerqueira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Correia
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rajesh Ponnusamy
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Colin E. McVey
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (KMK); (JPS)
| | - Kenneth M. Kaye
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (KMK); (JPS)
| |
Collapse
|
14
|
Kaye S, Wang W, Miller C, McLuckie A, Beatty JA, Grant CK, VandeWoude S, Bielefeldt-Ohmann H. Role of Feline Immunodeficiency Virus in Lymphomagenesis--Going Alone or Colluding? ILAR J 2017; 57:24-33. [PMID: 27034392 DOI: 10.1093/ilar/ilv047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic and nondomestic feline species. Infection in domestic cats leads to immune dysfunction via mechanisms similar to those caused by human immunodeficiency virus (HIV) and, as such, is a valuable natural animal model for acquired immunodeficiency syndrome (AIDS) in humans. An association between FIV and an increased incidence of neoplasia has long been recognized, with frequencies of up to 20% in FIV-positive cats recorded in some studies. This is similar to the rate of neoplasia seen in HIV-positive individuals, and in both species neoplasia typically requires several years to arise. The most frequently reported type of neoplasia associated with FIV infection is lymphoma. Here we review the possible mechanisms involved in FIV lymphomagenesis, including the possible involvement of coinfections, notably those with gamma-herpesviruses.
Collapse
Affiliation(s)
- Sarah Kaye
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Wenqi Wang
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Craig Miller
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Alicia McLuckie
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Julia A Beatty
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Chris K Grant
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Sue VandeWoude
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Helle Bielefeldt-Ohmann
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| |
Collapse
|
15
|
Murid Gammaherpesvirus Latency-Associated Protein M2 Promotes the Formation of Conjugates between Transformed B Lymphoma Cells and T Helper Cells. PLoS One 2015; 10:e0142540. [PMID: 26544979 PMCID: PMC4636232 DOI: 10.1371/journal.pone.0142540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/22/2015] [Indexed: 12/02/2022] Open
Abstract
Establishment of persistent infection in memory B cells by murid herpesvirus-4 (MuHV-4) depends on the proliferation of latently infected germinal center B cells, for which T cell help is essential. Whether the virus is capable of modulating B-T helper cell interaction for its own benefit is still unknown. Here, we investigate if the MuHV-4 latency associated M2 protein, which assembles multiprotein complexes with B cell signaling proteins, plays a role. We observed that M2 led to the upregulation of adhesion and co-stimulatory molecules in transduced B cell lines. In an MHC-II restricted OVA peptide-specific system, M2 polarized to the B-T helper contact zone. Furthermore, it promoted B cell polarization, as demonstrated by the increased proximity of the B cell microtubule organizing center to the interface. Consistent with these data, M2 promoted the formation of B-T helper cell conjugates. In an in vitro competition assay, this translated into a competitive advantage, as T cells preferentially conjugated with M2-expressing B cells. However, expression of M2 alone in B cells was not sufficient to lead to T cell activation, as it only occurred in the presence of specific peptide. Taken together, these findings support that M2 promotes the formation of B-T helper cell conjugates. In an in vivo context this may confer a competitive advantage to the infected B cell in acquisition of T cell help and initiation of a germinal center reaction, hence host colonization.
Collapse
|
16
|
Collins CM, Speck SH. Interleukin 21 signaling in B cells is required for efficient establishment of murine gammaherpesvirus latency. PLoS Pathog 2015; 11:e1004831. [PMID: 25875847 PMCID: PMC4395336 DOI: 10.1371/journal.ppat.1004831] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022] Open
Abstract
The human gammaherpesviruses take advantage of normal B cell differentiation pathways to establish life-long infection in memory B cells. Murine gammaherpesvirus 68 (MHV68) infection of laboratory strains of mice also leads to life-long infection in memory B cells. To gain access to the memory B cell population, MHV68 infected B cells pass through the germinal center reaction during the onset of latency and require signals from T follicular helper (TFH) cells for proliferation. Interleukin 21 (IL-21), one of the secreted factors produced by TFH cells, plays an important role in both the maintenance of the germinal center response as well as in the generation of long-lived plasma cells. Using IL-21R deficient mice, we show that IL-21 signaling is required for efficient establishment of MHV68 infection. In the absence of IL-21 signaling, fewer infected splenocytes are able to gain access to either the germinal center B cell population or the plasma cell population – the latter being a major site of MHV68 reactivation. Furthermore, the germinal center B cell population in IL-21R-/- mice is skewed towards the non-proliferating centrocyte phenotype, resulting in reduced expansion of infected B cells. Additionally, the reduced frequency of infected plasma cells results in a significant reduction in the frequency of splenocytes capable of reactivating virus. This defect in establishment of MHV68 infection is intrinsic to B cells, as MHV68 preferentially establishes infection in IL-21R sufficient B cells in mixed bone marrow chimeric mice. Taken together, these data indicate that IL-21 signaling plays multiple roles during establishment of MHV68 infection, and identify IL-21 as a critical TFH cell-derived factor for efficient establishment of gammaherpesvirus B cell latency. Gammaherpesviruses establish life-long infection in B cells by taking advantage of the host immune response that is generated during primary infection. During initial infection, the immune system responds by inducing rapid proliferation of responding B cells during the germinal center reaction. This response is highly coordinated and relies on the interplay of multiple cell types. CD4 T helper cells are an important component of the germinal center reaction in that they communicate with B cells by providing both proliferation and survival signals. Gammaherpesviruses infect B cells that receive these signals, resulting in proliferation and survival of infected cells, allowing the virus to establish life-long infection. Here we show that interleukin 21 (IL-21), one of the signaling factors produced by CD4 T cells, is required for efficient establishment of infection in a mouse model of gammaherpesvirus infection. In the absence of IL-21 signaling, the viral load is markedly reduced and the composition of the infected cell population is altered to cell types that are less proliferative and produce less virus. These results demonstrate how gammaherpesviruses are able to take advantage of the immune response being generated against it to establish lifelong infection.
Collapse
Affiliation(s)
- Christopher M. Collins
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H. Speck
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|