1
|
Kibwana E, Kapulu M. Controlled Human Malaria Infection Studies in Africa-Past, Present, and Future. Curr Top Microbiol Immunol 2024; 445:337-365. [PMID: 35704094 PMCID: PMC7616462 DOI: 10.1007/82_2022_256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlled human infection studies have contributed significantly to the understanding of pathogeneses and treatment of infectious diseases. In malaria, deliberately infecting humans with malaria parasites was used as a treatment for neurosyphilis in the early 1920s. More recently, controlled human malaria infection (CHMI) has become a valuable, cost-effective tool to fast-track the development and evaluation of new anti-malarial drugs and/or vaccines. CHMI studies have also been used to define host/parasite interactions and immunological correlates of protection. CHMI involves infecting a small number of healthy volunteers with malaria parasites, monitoring their parasitemia and providing anti-malarial treatment when a set threshold is reached. In this review we discuss the introduction, development, and challenges of modern-day Plasmodium falciparum CHMI studies conducted in Africa, and the impact of naturally acquired immunity on infectivity and vaccine efficacy. CHMIs have shown to be an invaluable tool particularly in accelerating malaria vaccine research. Although there are limitations of CHMI studies for estimating public health impacts and for regulatory purposes, their strength lies in proof-of-concept efficacy data at an early stage of development, providing a faster way to select vaccines for further development and providing valuable insights in understanding the mechanisms of immunity to malarial infection.
Collapse
Affiliation(s)
- Elizabeth Kibwana
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Melissa Kapulu
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| |
Collapse
|
2
|
Abstract
Genetic exchange between different Leishmania strains in the sand fly vector has been experimentally demonstrated and is supported by population genetic studies. In nature, opportunities for Leishmania interstrain mating are restricted to flies biting multiply infected hosts or through multiple bites of different hosts. In contrast, self-mating could occur in any infected sand fly. By crossing two recombinant lines derived from the same Leishmania major strain, each expressing a different drug-resistance marker, self-hybridization in L. major was confirmed in a natural sand fly vector, Phlebotomus duboscqi, and in frequencies comparable to interstrain crosses. We provide the first high resolution, whole-genome sequencing analysis of large numbers of selfing progeny, their parents, and parental subclones. Genetic exchange consistent with classical meiosis is supported by the biallelic inheritance of the rare homozygous single nucleotide polymorphisms (SNPs) that arose by mutation during the generation of the parental clones. In contrast, heterozygous SNPs largely failed to be transmitted in Mendelian ratios for reasons not understood. SNPs that were heterozygous in both parents, however, recombined to produce homozygous alleles in some hybrids. For trisomic chromosomes present in both parents, transmittal to the progeny was only altered by self-hybridization, involving a gain or loss of somy in frequencies predicted by a meiotic process. Whole-genome polyploidization was also observed in the selfing progeny. Thus, self-hybridization in Leishmania, with its potential to occur in any infected sand fly, may be an important source of karyotype variation, loss of heterozygosity, and functional diversity. IMPORTANCE Leishmania are parasitic protozoa that cause a wide spectrum of diseases collectively known as the leishmaniases. Sexual reproduction in Leishmania has been proposed as an important source of genetic diversity and has been formally demonstrated to occur inside the sand fly vector midgut. Nevertheless, in the wild, opportunities for genetic exchange between different Leishmania species or strains are restricted by the capacity of different Leishmania strains to colonize the same sand fly. In this work, we report the first high resolution, whole-genome sequence analysis of intraclonal genetic exchange as a type of self-mating in Leishmania. Our data reveal that self-hybridization can occur with comparable frequency as interstrain mating under experimental lab conditions, leading to important genomic alterations that can potentially take place within every naturally infected sand fly.
Collapse
|
3
|
Epigenetic and Epitranscriptomic Gene Regulation in Plasmodium falciparum and How We Can Use It against Malaria. Genes (Basel) 2022; 13:genes13101734. [PMID: 36292619 PMCID: PMC9601349 DOI: 10.3390/genes13101734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria, caused by Plasmodium parasites, is still one of the biggest global health challenges. P. falciparum is the deadliest species to humans. In this review, we discuss how this parasite develops and adapts to the complex and heterogenous environments of its two hosts thanks to varied chromatin-associated and epigenetic mechanisms. First, one small family of transcription factors, the ApiAP2 proteins, functions as master regulators of spatio-temporal patterns of gene expression through the parasite life cycle. In addition, chromatin plasticity determines variable parasite cell phenotypes that link to parasite growth, virulence and transmission, enabling parasite adaptation within host conditions. In recent years, epitranscriptomics is emerging as a new regulatory layer of gene expression. We present evidence of the variety of tRNA and mRNA modifications that are being characterized in Plasmodium spp., and the dynamic changes in their abundance during parasite development and cell fate. We end up outlining that new biological systems, like the mosquito model, to decipher the unknowns about epigenetic mechanisms in vivo; and novel methodologies, to study the function of RNA modifications; are needed to discover the Achilles heel of the parasite. With this new knowledge, future strategies manipulating the epigenetics and epitranscriptomic machinery of the parasite have the potential of providing new weapons against malaria.
Collapse
|
4
|
Mooney JP, DonVito SM, Lim R, Keith M, Pickles L, Maguire EA, Wagner-Gamble T, Oldfield T, Bermejo Pariente A, Ehimiyien AM, Philbey AA, Bottomley C, Riley EM, Thompson J. Intestinal inflammation and increased intestinal permeability in Plasmodium chabaudi AS infected mice. Wellcome Open Res 2022; 7:134. [PMID: 36408291 PMCID: PMC9647155 DOI: 10.12688/wellcomeopenres.17781.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Gastrointestinal symptoms are commonly associated with acute Plasmodium spp infection. Malaria-associated enteritis may provide an opportunity for enteric pathogens to breach the intestinal mucosa, resulting in life-threatening systemic infections. Methods: To investigate whether intestinal pathology also occurs during infection with a murine model of mild and resolving malaria, C57BL/6J mice were inoculated with recently mosquito-transmitted Plasmodium chabaudi AS. At schizogony, intestinal tissues were collected for quantification and localisation of immune mediators and malaria parasites, by PCR and immunohistochemistry. Inflammatory proteins were measured in plasma and faeces and intestinal permeability was assessed by FITC-dextran translocation after oral administration. Results: Parasitaemia peaked at approx. 1.5% at day 9 and resolved by day 14, with mice experiencing significant and transient anaemia but no weight loss. Plasma IFN-γ, TNF-α and IL10 were significantly elevated during peak infection and quantitative RT-PCR of the intestine revealed a significant increase in transcripts for ifng and cxcl10. Histological analysis revealed parasites within blood vessels of both the submucosa and intestinal villi and evidence of mild crypt hyperplasia. In faeces, concentrations of the inflammatory marker lactoferrin were significantly raised on days 9 and 11 and FITC-dextran was detected in plasma on days 7 to 14. At day 11, plasma FITC-dextran concentration was significantly positively correlated with peripheral parasitemia and faecal lactoferrin concentration. Conclusions: In summary, using a relevant, attenuated model of malaria, we have found that acute infection is associated with intestinal inflammation and increased intestinal permeability. This model can now be used to explore the mechanisms of parasite-induced intestinal inflammation and to assess the impact of increased intestinal permeability on translocation of enteropathogens.
Collapse
Affiliation(s)
- Jason P Mooney
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Sophia M DonVito
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Rivka Lim
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Marianne Keith
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lia Pickles
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Eleanor A Maguire
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Tara Wagner-Gamble
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Thomas Oldfield
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Ana Bermejo Pariente
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK.,Editorial Team, F1000 Ltd., London, UK
| | - Ajoke M Ehimiyien
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK.,Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Adrian A Philbey
- Easter Bush Pathology, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom., Edinburgh, EH25 9RG, UK
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Joanne Thompson
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| |
Collapse
|
5
|
Mooney JP, DonVito SM, Lim R, Keith M, Pickles L, Maguire EA, Wagner-Gamble T, Oldfield T, Bermejo Pariente A, Ehimiyein AM, Philbey AA, Bottomley C, Riley EM, Thompson J. Intestinal inflammation and increased intestinal permeability in Plasmodium chabaudi AS infected mice. Wellcome Open Res 2022; 7:134. [PMID: 36408291 PMCID: PMC9647155 DOI: 10.12688/wellcomeopenres.17781.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Gastrointestinal symptoms are commonly associated with acute Plasmodium spp infection. Malaria-associated enteritis may provide an opportunity for enteric pathogens to breach the intestinal mucosa, resulting in life-threatening systemic infections. Methods: To investigate whether intestinal pathology also occurs during infection with a murine model of mild and resolving malaria, C57BL/6J mice were inoculated with recently mosquito-transmitted Plasmodium chabaudi AS. At schizogony, intestinal tissues were collected for quantification and localisation of immune mediators and malaria parasites, by PCR and immunohistochemistry. Inflammatory proteins were measured in plasma and faeces and intestinal permeability was assessed by FITC-dextran translocation after oral administration. Results: Parasitaemia peaked at approx. 1.5% at day 9 and resolved by day 14, with mice experiencing significant and transient anaemia but no weight loss. Plasma IFNγ, TNFα and IL10 were significantly elevated during peak infection and quantitative RT-PCR of the intestine revealed a significant increase in transcripts for ifng and cxcl10. Histological analysis revealed parasites within blood vessels of both the submucosa and intestinal villi and evidence of mild crypt hyperplasia. In faeces, concentrations of the inflammatory marker lactoferrin were significantly raised on days 9 and 11 and FITC-dextran was detected in plasma on days 7 to 14. At day 11, plasma FITC-dextran concentration was significantly positively correlated with peripheral parasitemia and faecal lactoferrin concentration. Conclusions: In summary, using a relevant, attenuated model of malaria, we have found that acute infection is associated with intestinal inflammation and increased intestinal permeability. This model can now be used to explore the mechanisms of parasite-induced intestinal inflammation and to assess the impact of increased intestinal permeability on translocation of enteropathogens.
Collapse
Affiliation(s)
- Jason P Mooney
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Sophia M DonVito
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Rivka Lim
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Marianne Keith
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lia Pickles
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Eleanor A Maguire
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Tara Wagner-Gamble
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Thomas Oldfield
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Ana Bermejo Pariente
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK.,Editorial Team, F1000 Ltd., London, UK
| | - Ajoke M Ehimiyein
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK.,Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Adrian A Philbey
- Easter Bush Pathology, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom., Edinburgh, EH25 9RG, UK
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Joanne Thompson
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| |
Collapse
|
6
|
Expression Patterns of Plasmodium falciparum Clonally Variant Genes at the Onset of a Blood Infection in Malaria-Naive Humans. mBio 2021; 12:e0163621. [PMID: 34340541 PMCID: PMC8406225 DOI: 10.1128/mbio.01636-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clonally variant genes (CVGs) play fundamental roles in the adaptation of Plasmodium falciparum to fluctuating conditions of the human host. However, their expression patterns under the natural conditions of the blood circulation have been characterized in detail for only a few specific gene families. Here, we provide a detailed characterization of the complete P. falciparum transcriptome across the full intraerythrocytic development cycle (IDC) at the onset of a blood infection in malaria-naive human volunteers. We found that the vast majority of transcriptional differences between parasites obtained from the volunteers and the parental parasite line maintained in culture occurred in CVGs. In particular, we observed a major increase in the transcript levels of most genes of the pfmc-2tm and gbp families and of specific genes of other families, such as phist, hyp10, rif, or stevor, in addition to previously reported changes in var and clag3 gene expression. Increased transcript levels of individual pfmc-2tm, rif, and stevor genes involved activation in small subsets of parasites. Large transcriptional differences correlated with changes in the distribution of heterochromatin, confirming their epigenetic nature. Furthermore, the similar expression of several CVGs between parasites collected at different time points along the blood infection suggests that the epigenetic memory for multiple CVG families is lost during transmission stages, resulting in a reset of their transcriptional state. Finally, the CVG expression patterns observed in a volunteer likely infected by a single sporozoite suggest that new epigenetic patterns are established during liver stages.
Collapse
|
7
|
Hobbs CV, Sahu T, Neal J, Conteh S, Voza T, Borkowsky W, Langhorne J, Duffy PE. Determinants of Malaria Protective Immunity in Mice Immunized with Live Sporozoites during Trimethoprim-Sulfamethoxazole Prophylaxis. Am J Trop Med Hyg 2020; 104:666-670. [PMID: 33350377 PMCID: PMC7866335 DOI: 10.4269/ajtmh.20-0749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/09/2020] [Indexed: 11/21/2022] Open
Abstract
HIV and malaria geographically overlap. Trimethoprim–sulfamethoxazole (TMP-SMX) is a drug widely used in HIV-exposed uninfected and infected children in malaria-endemic areas, and is known to have antimalarial effects. Further study in terms of antimalarial impact and effect on development of malaria-specific immunity is therefore essential. Using rodent malaria models, we previously showed that repeated Plasmodium exposure during TMP-SMX administration, or chemoprophylaxis vaccination (CVac), induces CD8 T-cell–dependent preerythrocytic immunity. However, humoral immune responses have been shown to be important in models of preerythrocytic immunity. Herein, we demonstrate that antibody-mediated responses contribute to protective immunity induced by CVac immune sera using TMP-SMX in models of homologous, but not heterologous, parasite species. Clinical studies must account for potential anti-Plasmodium antibody induced during TMP-SMX prophylaxis.
Collapse
Affiliation(s)
- Charlotte V Hobbs
- Department of Microbiology, Batson Children's Hospital, University of Mississippi Medical Center, Jackson, Mississippi.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Division of Infectious Diseases, Department of Pediatrics, Batson Children's Hospital, University of Mississippi Medical Center, Jackson, Mississippi
| | - Tejram Sahu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tatiana Voza
- Biological Sciences Department, New York City College of Technology, CUNY, New York, New York
| | - William Borkowsky
- Division of Infectious Disease and Immunology, Department of Pediatrics, New York University School of Medicine, New York, New York
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Smith NL, Nahrendorf W, Sutherland C, Mooney JP, Thompson J, Spence PJ, Cowan GJM. A Conserved TCRβ Signature Dominates a Highly Polyclonal T-Cell Expansion During the Acute Phase of a Murine Malaria Infection. Front Immunol 2020; 11:587756. [PMID: 33329568 PMCID: PMC7719809 DOI: 10.3389/fimmu.2020.587756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/27/2020] [Indexed: 01/31/2023] Open
Abstract
CD4+ αβ T-cells are key mediators of the immune response to a first Plasmodium infection, undergoing extensive activation and splenic expansion during the acute phase of an infection. However, the clonality and clonal composition of this expansion has not previously been described. Using a comparative infection model, we sequenced the splenic CD4+ T-cell receptor repertoires generated over the time-course of a Plasmodium chabaudi infection. We show through repeat replicate experiments, single-cell RNA-seq, and analyses of independent RNA-seq data, that following a first infection - within a highly polyclonal expansion - T-effector repertoires are consistently dominated by TRBV3 gene usage. Clustering by sequence similarity, we find the same dominant clonal signature is expanded across replicates in the acute phase of an infection, revealing a conserved pathogen-specific T-cell response that is consistently a hallmark of a first infection, but not expanded upon re-challenge. Determining the host or parasite factors driving this conserved response may uncover novel immune targets for malaria therapeutic purposes.
Collapse
Affiliation(s)
- Natasha L. Smith
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Marr EJ, Milne RM, Anar B, Girling G, Schwach F, Mooney JP, Nahrendorf W, Spence PJ, Cunningham D, Baker DA, Langhorne J, Rayner JC, Billker O, Bushell ES, Thompson J. An enhanced toolkit for the generation of knockout and marker-free fluorescent Plasmodium chabaudi. Wellcome Open Res 2020; 5:71. [PMID: 32500098 PMCID: PMC7236590 DOI: 10.12688/wellcomeopenres.15587.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
The rodent parasite
Plasmodium chabaudi is an important
in vivo model of malaria. The ability to produce chronic infections makes it particularly useful for investigating the development of anti-
Plasmodium immunity, as well as features associated with parasite virulence during both the acute and chronic phases of infection.
P. chabaudi also undergoes asexual maturation (schizogony) and erythrocyte invasion in culture, so offers an experimentally-amenable
in vivo to
in vitro model for studying gene function and drug activity during parasite replication. To extend the usefulness of this model, we have further optimised transfection protocols and plasmids for
P. chabaudi and generated stable, fluorescent lines that are free from drug-selectable marker genes. These mother-lines show the same infection dynamics as wild-type parasites throughout the lifecycle in mice and mosquitoes; furthermore, their virulence can be increased by serial blood passage and reset by mosquito transmission. We have also adapted the large-insert, linear
PlasmoGEM vectors that have revolutionised the scale of experimental genetics in another rodent malaria parasite and used these to generate barcoded
P. chabaudi gene-deletion and –tagging vectors for transfection in our fluorescent
P. chabaudi mother-lines. This produces a tool-kit of
P. chabaudi lines, vectors and transfection approaches that will be of broad utility to the research community.
Collapse
Affiliation(s)
- Edward J Marr
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Rachel M Milne
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Burcu Anar
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Gareth Girling
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Frank Schwach
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, EH25 9RG, UK
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Philip J Spence
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Julian C Rayner
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Oliver Billker
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Ellen S Bushell
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| |
Collapse
|
10
|
Marr EJ, Milne RM, Anar B, Girling G, Schwach F, Mooney JP, Nahrendorf W, Spence PJ, Cunningham D, Baker DA, Langhorne J, Rayner JC, Billker O, Bushell ES, Thompson J. An enhanced toolkit for the generation of knockout and marker-free fluorescent Plasmodium chabaudi. Wellcome Open Res 2020; 5:71. [PMID: 32500098 PMCID: PMC7236590 DOI: 10.12688/wellcomeopenres.15587.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 08/17/2023] Open
Abstract
The rodent parasite Plasmodium chabaudi is an important in vivo model of malaria. The ability to produce chronic infections makes it particularly useful for investigating the development of anti- Plasmodium immunity, as well as features associated with parasite virulence during both the acute and chronic phases of infection. P. chabaudi also undergoes asexual maturation (schizogony) and erythrocyte invasion in culture, so offers an experimentally-amenable in vivo to in vitro model for studying gene function and drug activity during parasite replication. To extend the usefulness of this model, we have further optimised transfection protocols and plasmids for P. chabaudi and generated stable, fluorescent lines that are free from drug-selectable marker genes. These mother-lines show the same infection dynamics as wild-type parasites throughout the lifecycle in mice and mosquitoes; furthermore, their virulence can be increased by serial blood passage and reset by mosquito transmission. We have also adapted the large-insert, linear PlasmoGEM vectors that have revolutionised the scale of experimental genetics in another rodent malaria parasite and used these to generate barcoded P. chabaudi gene-deletion and -tagging vectors for transfection in our fluorescent P. chabaudi mother-lines. This produces a tool-kit of P. chabaudi lines, vectors and transfection approaches that will be of broad utility to the research community.
Collapse
Affiliation(s)
- Edward J Marr
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Rachel M Milne
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Burcu Anar
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Gareth Girling
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Frank Schwach
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, EH25 9RG, UK
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - Philip J Spence
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Julian C Rayner
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Oliver Billker
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Ellen S Bushell
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh, EH9 3FL, UK
| |
Collapse
|
11
|
Ruiz JL, Gómez-Díaz E. The second life of Plasmodium in the mosquito host: gene regulation on the move. Brief Funct Genomics 2020; 18:313-357. [PMID: 31058281 DOI: 10.1093/bfgp/elz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites face dynamically changing environments and strong selective constraints within human and mosquito hosts. To survive such hostile and shifting conditions, Plasmodium switches transcriptional programs during development and has evolved mechanisms to adjust its phenotype through heterogeneous patterns of gene expression. In vitro studies on culture-adapted isolates have served to set the link between chromatin structure and functional gene expression. Yet, experimental evidence is limited to certain stages of the parasite in the vertebrate, i.e. blood, while the precise mechanisms underlying the dynamic regulatory landscapes during development and in the adaptation to within-host conditions remain poorly understood. In this review, we discuss available data on transcriptional and epigenetic regulation in Plasmodium mosquito stages in the context of sporogonic development and phenotypic variation, including both bet-hedging and environmentally triggered direct transcriptional responses. With this, we advocate the mosquito offers an in vivo biological model to investigate the regulatory networks, transcription factors and chromatin-modifying enzymes and their modes of interaction with regulatory sequences, which might be responsible for the plasticity of the Plasmodium genome that dictates stage- and cell type-specific blueprints of gene expression.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
12
|
Gbedande K, Carpio VH, Stephens R. Using two phases of the CD4 T cell response to blood-stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunol Rev 2020; 293:88-114. [PMID: 31903675 PMCID: PMC7540220 DOI: 10.1111/imr.12835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum infection and malaria remain a risk for millions of children and pregnant women. Here, we seek to integrate knowledge of mouse and human T helper cell (Th) responses to blood-stage Plasmodium infection to understand their contribution to protection and pathology. Although there is no complete Th subset differentiation, the adaptive response occurs in two phases in non-lethal rodent Plasmodium infection, coordinated by Th cells. In short, cellular immune responses limit the peak of parasitemia during the first phase; in the second phase, humoral immunity from T cell-dependent germinal centers is critical for complete clearance of rapidly changing parasite. A strong IFN-γ response kills parasite, but an excess of TNF compared with regulatory cytokines (IL-10, TGF-β) can cause immunopathology. This common pathway for pathology is associated with anemia, cerebral malaria, and placental malaria. These two phases can be used to both understand how the host responds to rapidly growing parasite and how it attempts to control immunopathology and variation. This dual nature of T cell immunity to Plasmodium is discussed, with particular reference to the protective nature of the continuous generation of effector T cells, and the unique contribution of effector memory T cells.
Collapse
Affiliation(s)
- Komi Gbedande
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
13
|
Cooper MM, Loiseau C, McCarthy JS, Doolan DL. Human challenge models: tools to accelerate the development of malaria vaccines. Expert Rev Vaccines 2019; 18:241-251. [PMID: 30732492 DOI: 10.1080/14760584.2019.1580577] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Malaria challenge models, where healthy human volunteers are intentionally infected with Plasmodium species parasites under controlled conditions, can be undertaken in several well-defined ways. These challenge models enable evaluation of the kinetics of parasite growth and clearance, host-pathogen interactions and the host immune response. They can facilitate discovery of candidate diagnostic biomarkers and novel vaccine targets. As translational tools they can facilitate testing of candidate vaccines and drugs and evaluation of diagnostic tests. AREAS COVERED Until recently, malaria human challenge models have been limited to only a few Plasmodium falciparum strains and used exclusively in malaria-naïve volunteers in non-endemic regions. Several recent advances include the use of alternate P. falciparum strains and other species of Plasmodia, as well as strains attenuated by chemical, radiation or genetic modification, and the conduct of studies in pre-exposed individuals. Herein, we discuss how this diversification is enabling more thorough vaccine efficacy testing and informing rational vaccine development. EXPERT OPINION The ability to comprehensively evaluate vaccine efficacy in controlled settings will continue to accelerate the translation of candidate malaria vaccines to the clinic, and inform the development and optimisation of potential vaccines that would be effective against multiple strains in geographically and demographically diverse settings.
Collapse
Affiliation(s)
- Martha M Cooper
- a Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Claire Loiseau
- a Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - James S McCarthy
- b Infectious Diseases Programme , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Denise L Doolan
- a Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| |
Collapse
|
14
|
Mira-Martínez S, van Schuppen E, Amambua-Ngwa A, Bottieau E, Affara M, Van Esbroeck M, Vlieghe E, Guetens P, Rovira-Graells N, Gómez-Pérez GP, Alonso PL, D'Alessandro U, Rosanas-Urgell A, Cortés A. Expression of the Plasmodium falciparum Clonally Variant clag3 Genes in Human Infections. J Infect Dis 2017; 215:938-945. [PMID: 28419281 PMCID: PMC5407054 DOI: 10.1093/infdis/jix053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background Many genes of the malaria parasite Plasmodium falciparum show clonally variant expression regulated at the epigenetic level. These genes participate in fundamental host-parasite interactions and contribute to adaptive processes. However, little is known about their expression patterns during human infections. A peculiar case of clonally variant genes are the 2 nearly identical clag3 genes, clag3.1 and clag3.2, which mediate nutrient uptake and are linked to resistance to some toxic compounds. Methods We developed a procedure to characterize the expression of clag3 genes in naturally infected patients and in experimentally infected human volunteers. Results We provide the first description of clag3 expression during human infections, which revealed mutually exclusive expression and identified the gene predominantly expressed. Adaptation to culture conditions or selection with a toxic compound resulted in isolate-dependent changes in clag3 expression. We also found that clag3 expression patterns were reset during transmission stages. Conclusions Different environment conditions select for parasites with different clag3 expression patterns, implying functional differences between the proteins encoded. The epigenetic memory is likely erased before parasites start infection of a new human host. Altogether, our findings support the idea that clonally variant genes facilitate the adaptation of parasite populations to changing conditions through bet-hedging strategies.
Collapse
Affiliation(s)
- Sofía Mira-Martínez
- Institute of Tropical Medicine, Antwerp, Belgium.,Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Evi van Schuppen
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | | | - Muna Affara
- Medical Research Council Unit, Fajara, The Gambia
| | | | | | | | - Núria Rovira-Graells
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gloria P Gómez-Pérez
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Pedro L Alonso
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Umberto D'Alessandro
- Institute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council Unit, Fajara, The Gambia.,London School of Hygiene and Tropical Medicine, United Kingdom
| | | | - Alfred Cortés
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
15
|
Abstract
Organisms with identical genome sequences can show substantial differences in their phenotypes owing to epigenetic changes that result in different use of their genes. Epigenetic regulation of gene expression plays a key role in the control of several fundamental processes in the biology of malaria parasites, including antigenic variation and sexual differentiation. Some of the histone modifications and chromatin-modifying enzymes that control the epigenetic states of malaria genes have been characterized, and their functions are beginning to be unraveled. The fundamental principles of epigenetic regulation of gene expression appear to be conserved between malaria parasites and model eukaryotes, but important peculiarities exist. Here, we review the current knowledge of malaria epigenetics and discuss how it can be exploited for the development of new molecular markers and new types of drugs that may contribute to malaria eradication efforts.
Collapse
Affiliation(s)
- Alfred Cortés
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain.,ICREA, Barcelona, Catalonia 08010, Spain
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
16
|
Gómez-Díaz E, Yerbanga RS, Lefèvre T, Cohuet A, Rowley MJ, Ouedraogo JB, Corces VG. Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae. Sci Rep 2017; 7:40655. [PMID: 28091569 PMCID: PMC5238449 DOI: 10.1038/srep40655] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
P. falciparum phenotypic plasticity is linked to the variant expression of clonal multigene families such as the var genes. We have examined changes in transcription and histone modifications that occur during sporogonic development of P. falciparum in the mosquito host. All var genes are silenced or transcribed at low levels in blood stages (gametocyte/ring) of the parasite in the human host. After infection of mosquitoes, a single var gene is selected for expression in the oocyst, and transcription of this gene increases dramatically in the sporozoite. The same PF3D7_1255200 var gene was activated in 4 different experimental infections. Transcription of this var gene during parasite development in the mosquito correlates with the presence of low levels of H3K9me3 at the binding site for the PF3D7_1466400 AP2 transcription factor. This chromatin state in the sporozoite also correlates with the expression of an antisense long non-coding RNA (lncRNA) that has previously been shown to promote var gene transcription during the intraerythrocytic cycle in vitro. Expression of both the sense protein-coding transcript and the antisense lncRNA increase dramatically in sporozoites. The findings suggest a complex process for the activation of a single particular var gene that involves AP2 transcription factors and lncRNAs.
Collapse
|
17
|
Hobbs CV, Anderson C, Neal J, Sahu T, Conteh S, Voza T, Langhorne J, Borkowsky W, Duffy PE. Trimethoprim-Sulfamethoxazole Prophylaxis During Live Malaria Sporozoite Immunization Induces Long-Lived, Homologous, and Heterologous Protective Immunity Against Sporozoite Challenge. J Infect Dis 2016; 215:122-130. [PMID: 28077589 DOI: 10.1093/infdis/jiw482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/30/2016] [Indexed: 11/12/2022] Open
Abstract
Trimethoprim-sulfamethoxazole (TMP-SMX) is widely used in malaria-endemic areas in human immunodeficiency virus (HIV)-infected children and HIV-uninfected, HIV-exposed children as opportunistic infection prophylaxis. Despite the known effects that TMP-SMX has in reducing clinical malaria, its impact on development of malaria-specific immunity in these children remains poorly understood. Using rodent malaria models, we previously showed that TMP-SMX, at prophylactic doses, can arrest liver stage development of malaria parasites and speculated that TMP-SMX prophylaxis during repeated malaria exposures would induce protective long-lived sterile immunity targeting pre-erythrocytic stage parasites in mice. Using the same models, we now demonstrate that repeated exposures to malaria parasites during TMP-SMX administration induces stage-specific and long-lived pre-erythrocytic protective anti-malarial immunity, mediated primarily by CD8+ T-cells. Given the HIV infection and malaria coepidemic in sub-Saharan Africa, clinical studies aimed at determining the optimum duration of TMP-SMX prophylaxis in HIV-infected or HIV-exposed children must account for the potential anti-infection immunity effect of TMP-SMX prophylaxis.
Collapse
Affiliation(s)
- Charlotte V Hobbs
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland.,Division of Infectious Diseases, Department of Pediatrics.,Department of Microbiology, Batson Children's Hospital, University of Mississippi Medical Center, Jackson.,Division of Infectious Disease and Immunology, Department of Pediatrics, New York University School of Medicine
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Tejram Sahu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Tatiana Voza
- Biological Sciences Department, New York City College of Technology, City University of New York
| | - Jean Langhorne
- Mill Hill Laboratory, Francis Crick Institute, London, United Kingdom
| | - William Borkowsky
- Division of Infectious Disease and Immunology, Department of Pediatrics, New York University School of Medicine
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| |
Collapse
|