1
|
Ebert S, Böhm V, Büttner JK, Brune W, Brinkmann MM, Holtappels R, Reddehase MJ, Lemmermann NAW. Cytomegalovirus inhibitors of programmed cell death restrict antigen cross-presentation in the priming of antiviral CD8 T cells. PLoS Pathog 2024; 20:e1012173. [PMID: 39146364 PMCID: PMC11349235 DOI: 10.1371/journal.ppat.1012173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/27/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
CD8 T cells are the predominant effector cells of adaptive immunity in preventing cytomegalovirus (CMV) multiple-organ disease caused by cytopathogenic tissue infection. The mechanism by which CMV-specific, naïve CD8 T cells become primed and clonally expand is of fundamental importance for our understanding of CMV immune control. For CD8 T-cell priming, two pathways have been identified: direct antigen presentation by infected professional antigen-presenting cells (pAPCs) and antigen cross-presentation by uninfected pAPCs that take up antigenic material derived from infected tissue cells. Studies in mouse models using murine CMV (mCMV) and precluding either pathway genetically or experimentally have shown that, in principle, both pathways can congruently generate the mouse MHC/H-2 class-I-determined epitope-specificity repertoire of the CD8 T-cell response. Recent studies, however, have shown that direct antigen presentation is the canonical pathway when both are accessible. This raised the question of why antigen cross-presentation is ineffective even under conditions of high virus replication thought to provide high amounts of antigenic material for feeding cross-presenting pAPCs. As delivery of antigenic material for cross-presentation is associated with programmed cell death, and as CMVs encode inhibitors of different cell death pathways, we pursued the idea that these inhibitors restrict antigen delivery and thus CD8 T-cell priming by cross-presentation. To test this hypothesis, we compared the CD8 T-cell responses to recombinant mCMVs lacking expression of the apoptosis-inhibiting protein M36 or the necroptosis-inhibiting protein M45 with responses to wild-type mCMV and revertant viruses expressing the respective cell death inhibitors. The data reveal that increased programmed cell death improves CD8 T-cell priming in mice capable of antigen cross-presentation but not in a mutant mouse strain unable to cross-present. These findings strongly support the conclusion that CMV cell death inhibitors restrict the priming of CD8 T cells by antigen cross-presentation.
Collapse
Affiliation(s)
- Stefan Ebert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Verena Böhm
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia K. Büttner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rafaela Holtappels
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Holtappels R, Becker S, Hamdan S, Freitag K, Podlech J, Lemmermann NA, Reddehase MJ. Immunotherapy of cytomegalovirus infection by low-dose adoptive transfer of antiviral CD8 T cells relies on substantial post-transfer expansion of central memory cells but not effector-memory cells. PLoS Pathog 2023; 19:e1011643. [PMID: 37972198 PMCID: PMC10688903 DOI: 10.1371/journal.ppat.1011643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Cytomegaloviruses (CMVs) are host species-specific in their replication. It is a hallmark of all CMVs that productive primary infection is controlled by concerted innate and adaptive immune responses in the immunocompetent host. As a result, the infection usually passes without overt clinical symptoms and develops into latent infection, referred to as "latency". During latency, the virus is maintained in a non-replicative state from which it can reactivate to productive infection under conditions of waning immune surveillance. In contrast, infection of an immunocompromised host causes CMV disease with viral multiple-organ histopathology resulting in organ failure. Primary or reactivated CMV infection of hematopoietic cell transplantation (HCT) recipients in a "window of risk" between therapeutic hemato-ablative leukemia therapy and immune system reconstitution remains a clinical challenge. Studies in the mouse model of experimental HCT and infection with murine CMV (mCMV), followed by clinical trials in HCT patients with human CMV (hCMV) reactivation, have revealed a protective function of virus-specific CD8 T cells upon adoptive cell transfer (AT). Memory CD8 T cells derived from latently infected hosts are a favored source for immunotherapy by AT. Strikingly low numbers of these cells were found to prevent CMV disease, suggesting either an immediate effector function of few transferred cells or a clonal expansion generating high numbers of effector cells. In the murine model, the memory population consists of resting central memory T cells (TCM), as well as of conventional effector-memory T cells (cTEM) and inflationary effector-memory T cells (iTEM). iTEM increase in numbers over time in the latently infected host, a phenomenon known as 'memory inflation' (MI). They thus appeared to be a promising source for use in immunotherapy. However, we show here that iTEM contribute little to the control of infection after AT, which relies almost entirely on superior proliferative potential of TCM.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sara Becker
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sara Hamdan
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias J. Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
3
|
Holtappels R, Podlech J, Freitag K, Lemmermann NA, Reddehase MJ. Memory CD8 T Cells Protect against Cytomegalovirus Disease by Formation of Nodular Inflammatory Foci Preventing Intra-Tissue Virus Spread. Viruses 2022; 14:v14061145. [PMID: 35746617 PMCID: PMC9229300 DOI: 10.3390/v14061145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/05/2022] Open
Abstract
Cytomegaloviruses (CMVs) are controlled by innate and adaptive immune responses in an immunocompetent host while causing multiple organ diseases in an immunocompromised host. A risk group of high clinical relevance comprises transiently immunocompromised recipients of hematopoietic cell transplantation (HCT) in the “window of risk” between eradicative therapy of hematopoietic malignancies and complete reconstitution of the immune system. Cellular immunotherapy by adoptive transfer of CMV-specific CD8 T cells is an option to prevent CMV disease by controlling a primary or reactivated infection. While experimental models have revealed a viral epitope-specific antiviral function of cognate CD8 T cells, the site at which control is exerted remained unidentified. The observation that remarkably few transferred cells protect all organs may indicate an early blockade of virus dissemination from a primary site of productive infection to various target organs. Alternatively, it could indicate clonal expansion of a few transferred CD8 T cells for preventing intra-tissue virus spread after successful initial organ colonization. Our data in the mouse model of murine CMV infection provide evidence in support of the second hypothesis. We show that transferred cells vigorously proliferate to prevent virus spread, and thus viral histopathology, by confining and eventually resolving tissue infection within nodular inflammatory foci.
Collapse
|
4
|
Becker S, Reddehase MJ, Lemmermann NA. Mast Cells Meet Cytomegalovirus: A New Example of Protective Mast Cell Involvement in an Infectious Disease. Cells 2022; 11:cells11091402. [PMID: 35563708 PMCID: PMC9101682 DOI: 10.3390/cells11091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
Cytomegaloviruses (CMVs) belong to the β-subfamily of herpesviruses. Their host-to-host transmission involves the airways. As primary infection of an immunocompetent host causes only mild feverish symptoms, human CMV (hCMV) is usually not considered in routine differential diagnostics of common airway infections. Medical relevance results from unrestricted tissue infection in an immunocompromised host. One risk group of concern are patients who receive hematopoietic cell transplantation (HCT) for immune reconstitution following hematoablative therapy of hematopoietic malignancies. In HCT patients, interstitial pneumonia is a frequent cause of death from hCMV strains that have developed resistance against antiviral drugs. Prevention of CMV pneumonia requires efficient reconstitution of antiviral CD8 T cells that infiltrate lung tissue. A role for mast cells (MC) in the immune control of lung infection by a CMV was discovered only recently in a mouse model. MC were shown to be susceptible for productive infection and to secrete the chemokine CCL-5, which recruits antiviral CD8 T cells to the lungs and thereby improves the immune control of pulmonary infection. Here, we review recent data on the mechanism of MC-CMV interaction, a field of science that is new for CMV virologists as well as for immunologists who have specialized in MC.
Collapse
|
5
|
Comparable anti-CMV responses of transplant donor and third-party CMV-specific T cells for treatment of CMV infection after allogeneic stem cell transplantation. Cell Mol Immunol 2022; 19:482-491. [PMID: 35017718 PMCID: PMC8975930 DOI: 10.1038/s41423-021-00829-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
Adoptive transfer of cytomegalovirus (CMV)-specific cytotoxic T lymphocytes (CMV-CTLs) from original transplant donors or third-party donors was effective for the treatment of CMV infection after allogenic stem cell transplantation (allo-SCT), but the antiviral activity of CMV-CTL types has not been compared. To determine whether third-party CMV-CTLs provide comparable long-term antiviral efficacy to transplant donor CMV-CTLs, we first compared the antiviral abilities of transplant donors and third-party CMV-CTLs for treatment of CMV infection in two mouse models, compared the in vivo recovery of CMV-specific immunity, and analyzed the underlying mechanisms driving sustained antiviral immunity. The results showed that both donor and third-party CMV-CTLs effectively combated systemic CMV infection by reducing CMV pathology and tumor burden 28 days postinfusion. The in vivo recovery of CMV-specific immunity after CMV-CTL infusion was comparable in both groups. A detailed analysis of the source of recovered CMV-CTLs showed the proliferation and expansion of graft-derived endogenous CMV-CTLs in both groups. Our clinical study, which enrolled 31 patients who received third-party CMV-CTLs and 62 matched pairs of individuals who received transplant donor CMV-CTLs for refractory CMV infection, further showed that adoptive therapy with donor or third-party CMV-CTLs had comparable clinical responses without significant therapy-related toxicity. We observed strong expansion of CD8+ tetramer+ T cells and proliferation of recipient endogenous CMV-CTLs after CMV-CTL infusion, which were associated with a reduced or cleared viral load. Our data confirmed that adoptive therapy with third-party or transplant donor CMV-CTLs triggered comparable antiviral responses to CMV infection that might be mediated by restoration of endogenous CMV-specific immunity.
Collapse
|
6
|
Gergely KM, Podlech J, Becker S, Freitag K, Krauter S, Büscher N, Holtappels R, Plachter B, Reddehase MJ, Lemmermann NAW. Therapeutic Vaccination of Hematopoietic Cell Transplantation Recipients Improves Protective CD8 T-Cell Immunotherapy of Cytomegalovirus Infection. Front Immunol 2021; 12:694588. [PMID: 34489940 PMCID: PMC8416627 DOI: 10.3389/fimmu.2021.694588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Reactivation of latent cytomegalovirus (CMV) endangers the therapeutic success of hematopoietic cell transplantation (HCT) in tumor patients due to cytopathogenic virus spread that leads to organ manifestations of CMV disease, to interstitial pneumonia in particular. In cases of virus variants that are refractory to standard antiviral pharmacotherapy, immunotherapy by adoptive cell transfer (ACT) of virus-specific CD8+ T cells is the last resort to bridge the "protection gap" between hematoablative conditioning for HCT and endogenous reconstitution of antiviral immunity. We have used the well-established mouse model of CD8+ T-cell immunotherapy by ACT in a setting of experimental HCT and murine CMV (mCMV) infection to pursue the concept of improving the efficacy of ACT by therapeutic vaccination (TherVac) post-HCT. TherVac aims at restimulation and expansion of limited numbers of transferred antiviral CD8+ T cells within the recipient. Syngeneic HCT was performed with C57BL/6 mice as donors and recipients. Recipients were infected with recombinant mCMV (mCMV-SIINFEKL) that expresses antigenic peptide SIINFEKL presented to CD8+ T cells by the MHC class-I molecule Kb. ACT was performed with transgenic OT-I CD8+ T cells expressing a T-cell receptor specific for SIINFEKL-Kb. Recombinant human CMV dense bodies (DB-SIINFEKL), engineered to contain SIINFEKL within tegument protein pUL83/pp65, served for vaccination. DBs were chosen as they represent non-infectious, enveloped, and thus fusion-competent subviral particles capable of activating dendritic cells and delivering antigens directly into the cytosol for processing and presentation in the MHC class-I pathway. One set of our experiments documents the power of vaccination with DBs in protecting the immunocompetent host against a challenge infection. A further set of experiments revealed a significant improvement of antiviral control in HCT recipients by combining ACT with TherVac. In both settings, the benefit from vaccination with DBs proved to be strictly epitope-specific. The capacity to protect was lost when DBs included the peptide sequence SIINFEKA lacking immunogenicity and antigenicity due to C-terminal residue point mutation L8A, which prevents efficient proteasomal peptide processing and binding to Kb. Our preclinical research data thus provide an argument for using pre-emptive TherVac to enhance antiviral protection by ACT in HCT recipients with diagnosed CMV reactivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
7
|
Olbrich H, Theobald SJ, Slabik C, Gerasch L, Schneider A, Mach M, Shum T, Mamonkin M, Stripecke R. Adult and Cord Blood-Derived High-Affinity gB-CAR-T Cells Effectively React Against Human Cytomegalovirus Infections. Hum Gene Ther 2021; 31:423-439. [PMID: 32159399 PMCID: PMC7194322 DOI: 10.1089/hum.2019.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) reactivations are associated with lower overall survival after transplantations. Adoptive transfer of HCMV-reactive expanded or selected T cells can be applied as a compassionate use, but requires that the human leukocyte antigen-matched donor provides memory cells against HCMV. To overcome this, we developed engineered T cells expressing chimeric antigen receptors (CARs) targeted against the HCMV glycoprotein B (gB) expressed upon viral reactivation. Single-chain variable fragments (scFvs) derived from a human high-affinity gB-specific neutralizing monoclonal antibody (SM5-1) were fused to CARs with 4-1BB (BBL) or CD28 (28S) costimulatory domains and subcloned into retroviral vectors. CD4+ and CD8+ T cells obtained from HCMV-seronegative adult blood or cord blood (CB) transduced with the vectors efficiently expressed the gB-CARs. The specificity and potency of gB-CAR-T cells were demonstrated and compared in vitro using the following: 293T cells expressing gB, and with mesenchymal stem cells infected with a HCMV TB40 strain expressing Gaussia luciferase (HCMV/GLuc). BBL-gB-CAR-T cells generated with adult or CB demonstrated significantly higher in vitro activation and cytotoxicity performance than 28-gB-CAR-T cells. Nod.Rag.Gamma (NRG) mice transplanted with human CB CD34+ cells with long-term human immune reconstitution were used to model HCMV/GLuc infection in vivo by optical imaging analyses. One week after administration, response to BBL-gB-CAR-T cell therapy was observed for 5/8 mice, defined by significant reduction of the bioluminescent signal in relation to untreated controls. Response to therapy was sporadically associated with CAR detection in spleen. Thus, exploring scFv derived from the high-affinity gB-antibody SM5-1 and the 4-1BB signaling domain for CAR design enabled an in vitro high on-target effect and cytotoxicity and encouraging results in vivo. Therefore, gB-CAR-T cells can be a future clinical option for treatment of HCMV reactivations, particularly when memory T cells from the donors are not available.
Collapse
Affiliation(s)
- Henning Olbrich
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sebastian J Theobald
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Constanze Slabik
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Laura Gerasch
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Andreas Schneider
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Michael Mach
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Shum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Renata Stripecke
- Laboratory of Regenerative Immune Therapies Applied, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
8
|
Müller TR, Jarosch S, Hammel M, Leube J, Grassmann S, Bernard B, Effenberger M, Andrä I, Chaudhry MZ, Käuferle T, Malo A, Cicin-Sain L, Steinberger P, Feuchtinger T, Protzer U, Schumann K, Neuenhahn M, Schober K, Busch DH. Targeted T cell receptor gene editing provides predictable T cell product function for immunotherapy. Cell Rep Med 2021; 2:100374. [PMID: 34467251 PMCID: PMC8385324 DOI: 10.1016/j.xcrm.2021.100374] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/15/2021] [Accepted: 07/20/2021] [Indexed: 01/02/2023]
Abstract
Adoptive transfer of T cells expressing a transgenic T cell receptor (TCR) has the potential to revolutionize immunotherapy of infectious diseases and cancer. However, the generation of defined TCR-transgenic T cell medicinal products with predictable in vivo function still poses a major challenge and limits broader and more successful application of this "living drug." Here, by studying 51 different TCRs, we show that conventional genetic engineering by viral transduction leads to variable TCR expression and functionality as a result of variable transgene copy numbers and untargeted transgene integration. In contrast, CRISPR/Cas9-mediated TCR replacement enables defined, targeted TCR transgene insertion into the TCR gene locus. Thereby, T cell products display more homogeneous TCR expression similar to physiological T cells. Importantly, increased T cell product homogeneity after targeted TCR gene editing correlates with predictable in vivo T cell responses, which represents a crucial aspect for clinical application in adoptive T cell immunotherapy.
Collapse
Affiliation(s)
- Thomas R. Müller
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Justin Leube
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Simon Grassmann
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bettina Bernard
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Manuel Effenberger
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Immanuel Andrä
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Theresa Käuferle
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany
| | - Antje Malo
- Institute of Virology, TUM, Munich, Germany
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tobias Feuchtinger
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Institute of Virology, TUM, Munich, Germany
| | - Kathrin Schumann
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Institute for Advanced Study, TUM, Munich, Germany
| | - Michael Neuenhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Institute for Advanced Study, TUM, Munich, Germany
| |
Collapse
|
9
|
Immunodominant Cytomegalovirus Epitopes Suppress Subdominant Epitopes in the Generation of High-Avidity CD8 T Cells. Pathogens 2021; 10:pathogens10080956. [PMID: 34451420 PMCID: PMC8400798 DOI: 10.3390/pathogens10080956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023] Open
Abstract
CD8+ T-cell responses to pathogens are directed against infected cells that present pathogen-encoded peptides on MHC class-I molecules. Although natural responses are polyclonal, the spectrum of peptides that qualify for epitopes is remarkably small even for pathogens with high coding capacity. Among those few that are successful at all, a hierarchy exists in the magnitude of the response that they elicit in terms of numbers of CD8+ T cells generated. This led to a classification into immunodominant and non-immunodominant or subordinate epitopes, IDEs and non-IDEs, respectively. IDEs are favored in the design of vaccines and are chosen for CD8+ T-cell immunotherapy. Using murine cytomegalovirus as a model, we provide evidence to conclude that epitope hierarchy reflects competition on the level of antigen recognition. Notably, high-avidity cells specific for non-IDEs were found to expand only when IDEs were deleted. This may be a host’s back-up strategy to avoid viral immune escape through antigenic drift caused by IDE mutations. Importantly, our results are relevant for the design of vaccines based on cytomegaloviruses as vectors to generate high-avidity CD8+ T-cell memory specific for unrelated pathogens or tumors. We propose the deletion of vector-encoded IDEs to avoid the suppression of epitopes of the vaccine target.
Collapse
|
10
|
Evasion of the Host Immune Response by Betaherpesviruses. Int J Mol Sci 2021; 22:ijms22147503. [PMID: 34299120 PMCID: PMC8306455 DOI: 10.3390/ijms22147503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
The human immune system boasts a diverse array of strategies for recognizing and eradicating invading pathogens. Human betaherpesviruses, a highly prevalent subfamily of viruses, include human cytomegalovirus (HCMV), human herpesvirus (HHV) 6A, HHV-6B, and HHV-7. These viruses have evolved numerous mechanisms for evading the host response. In this review, we will highlight the complex interplay between betaherpesviruses and the human immune response, focusing on protein function. We will explore methods by which the immune system first responds to betaherpesvirus infection as well as mechanisms by which viruses subvert normal cellular functions to evade the immune system and facilitate viral latency, persistence, and reactivation. Lastly, we will briefly discuss recent advances in vaccine technology targeting betaherpesviruses. This review aims to further elucidate the dynamic interactions between betaherpesviruses and the human immune system.
Collapse
|
11
|
Klobuch S, Hammon K, Vatter-Leising S, Neidlinger E, Zwerger M, Wandel A, Neuber LM, Heilmeier B, Fichtner R, Mirbeth C, Herr W, Thomas S. HLA-DPB1 Reactive T Cell Receptors for Adoptive Immunotherapy in Allogeneic Stem Cell Transplantation. Cells 2020; 9:cells9051264. [PMID: 32443793 PMCID: PMC7290340 DOI: 10.3390/cells9051264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
HLA-DPB1 antigens are mismatched in about 80% of allogeneic hematopoietic stem cell transplantations from HLA 10/10 matched unrelated donors and were shown to be associated with a decreased risk of leukemia relapse. We recently developed a reliable in vitro method to generate HLA-DPB1 mismatch-reactive CD4 T-cell clones from allogeneic donors. Here, we isolated HLA-DPB1 specific T cell receptors (TCR DP) and used them either as wild-type or genetically optimized receptors to analyze in detail the reactivity of transduced CD4 and CD8 T cells toward primary AML blasts. While both CD4 and CD8 T cells showed strong AML reactivity in vitro, only CD4 T cells were able to effectively eliminate leukemia blasts in AML engrafted NOD/SCID/IL2Rγc−/− (NSG) mice. Further analysis showed that optimized TCR DP and under some conditions wild-type TCR DP also mediated reactivity to non-hematopoietic cells like fibroblasts or tumor cell lines after HLA-DP upregulation. In conclusion, T cells engineered with selected allo-HLA-DPB1 specific TCRs might be powerful off-the-shelf reagents in allogeneic T-cell therapy of leukemia. However, because of frequent (common) cross-reactivity to non-hematopoietic cells with optimized TCR DP T cells, safety mechanisms are mandatory.
Collapse
Affiliation(s)
- Sebastian Klobuch
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
- Correspondence: (S.K.); (S.T.); Tel.: +49-941-944-5142 (S.T.)
| | - Kathrin Hammon
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
- Regensburg Center for Interventional Immunology, University of Regensburg, 93042 Regensburg, Germany
| | - Sarah Vatter-Leising
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
| | - Elisabeth Neidlinger
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
| | - Michael Zwerger
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
| | - Annika Wandel
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
| | - Laura Maria Neuber
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
| | - Bernhard Heilmeier
- Department of Oncology and Hematology, Hospital Barmherzige Brueder, 93049 Regensburg, Germany;
| | - Regina Fichtner
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
| | - Carina Mirbeth
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
| | - Simone Thomas
- Department of Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany; (K.H.); (S.V.-L.); (E.N.); (M.Z.); (A.W.); (L.M.N.); (R.F.); (C.M.); (W.H.)
- Regensburg Center for Interventional Immunology, University of Regensburg, 93042 Regensburg, Germany
- Correspondence: (S.K.); (S.T.); Tel.: +49-941-944-5142 (S.T.)
| |
Collapse
|
12
|
Lim EY, Jackson SE, Wills MR. The CD4+ T Cell Response to Human Cytomegalovirus in Healthy and Immunocompromised People. Front Cell Infect Microbiol 2020; 10:202. [PMID: 32509591 PMCID: PMC7248300 DOI: 10.3389/fcimb.2020.00202] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
While CD8+ T cells specific for human cytomegalovirus (HCMV) have been extensively studied in both healthy HCMV seropositive carriers and patients undergoing immunosuppression, studies on the CD4+ T cell response to HCMV had lagged behind. However, over the last few years there has been a significant advance in our understanding of the importance and contribution that CMV-specific CD4+ T cells make, not only to anti-viral immunity but also in the potential maintenance of latently infected cells. During primary infection with HCMV in adults, CD4+ T cells are important for the resolution of symptomatic disease, while persistent shedding of HCMV into urine and saliva is associated with a lack of HCMV specific CD4+ T cell response in young children. In immunosuppressed solid organ transplant recipients, a delayed appearance of HCMV-specific CD4+ T cells is associated with prolonged viremia and more severe clinical disease, while in haematopoietic stem cell transplant recipients, it has been suggested that HCMV-specific CD4+ T cells are required for HCMV-specific CD8+ T cells to exert their anti-viral effects. In addition, adoptive T-cell immunotherapy in transplant patients has shown that the presence of HCMV-specific CD4+ T cells is required for the maintenance of HCMV-specific CD8+ T cells. HCMV is a paradigm for immune evasion. The presence of viral genes that down-regulate MHC class II molecules and the expression of viral IL-10 both limit antigen presentation to CD4+ T cells, underlining the important role that this T cell subset has in antiviral immunity. This review will discuss the antigen specificity, effector function, phenotype and direct anti-viral properties of HCMV specific CD4+ T cells, as well as reviewing our understanding of the importance of this T cell subset in primary infection and long-term carriage in healthy individuals. In addition, their role and importance in congenital HCMV infection and during immunosuppression in both solid organ and haemopoietic stem cell transplantation is considered.
Collapse
Affiliation(s)
| | | | - Mark R. Wills
- Division of Infectious Diseases, Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Holtappels R, Schader SI, Oettel O, Podlech J, Seckert CK, Reddehase MJ, Lemmermann NAW. Insufficient Antigen Presentation Due to Viral Immune Evasion Explains Lethal Cytomegalovirus Organ Disease After Allogeneic Hematopoietic Cell Transplantation. Front Cell Infect Microbiol 2020; 10:157. [PMID: 32351904 PMCID: PMC7174590 DOI: 10.3389/fcimb.2020.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/24/2020] [Indexed: 01/21/2023] Open
Abstract
Reactivation of latent cytomegalovirus (CMV) poses a clinical problem in transiently immunocompromised recipients of hematopoietic cell (HC) transplantation (HCT) by viral histopathology that results in multiple organ manifestations. Compared to autologous HCT and to syngeneic HCT performed with identical twins as HC donor and recipient, lethal outcome of CMV infection is more frequent in allogeneic HCT with MHC/HLA or minor histocompatibility loci mismatch between donor and recipient. It is an open question if a graft-vs.-host (GvH) reaction exacerbates CMV disease, or if CMV exacerbates GvH disease (GvHD), or if interference is mutual. Here we have used a mouse model of experimental HCT and murine CMV (mCMV) infection with an MHC class-I mismatch by gene deletion, so that either HCT donor or recipient lack a single MHC class-I molecule, specifically H-2 Ld. This particular immunogenetic disparity has the additional advantage that it allows to experimentally separate GvH reaction of donor-derived T cells against recipient's tissues from host-vs.-graft (HvG) reaction of residual recipient-derived T cells against the transplanted HC and their progeny. While in HvG-HCT with Ld-plus donors and Ld-minus recipients almost all infected recipients were found to control the infection and survived, almost all infected recipients died of uncontrolled virus replication and consequent multiple-organ viral histopathology in case of GvH-HCT with Ld-minus donors and Ld-plus recipients. Unexpectedly, although anti-Ld-reactive CD8+ T cells were detected, mortality was not found to be associated with GvHD histopathology. By comparing HvG-HCT and GvH-HCT, investigation into the mechanism revealed an inefficient reconstitution of antiviral high-avidity CD8+ T cells, associated with lack of formation of protective nodular inflammatory foci (NIF) in host tissue, selectively in GvH-HCT. Most notably, mice infected with an immune evasion gene deletion mutant of mCMV survived under otherwise identical GvH-HCT conditions. Survival was associated with enhanced antigen presentation and formation of protective NIF by antiviral CD8+ T cells that control the infection and prevent viral histopathology. This is an impressive example of lethal viral disease in HCT recipients based on a failure of the immune control of CMV infection due to viral immune evasion in concert with an MHC class-I mismatch.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
14
|
Reddehase MJ, Lemmermann NAW. Mouse Model of Cytomegalovirus Disease and Immunotherapy in the Immunocompromised Host: Predictions for Medical Translation that Survived the "Test of Time". Viruses 2018; 10:v10120693. [PMID: 30563202 PMCID: PMC6315540 DOI: 10.3390/v10120693] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Human Cytomegalovirus (hCMV), which is the prototype member of the β-subfamily of the herpesvirus family, is a pathogen of high clinical relevance in recipients of hematopoietic cell transplantation (HCT). hCMV causes multiple-organ disease and interstitial pneumonia in particular upon infection during the immunocompromised period before hematopoietic reconstitution restores antiviral immunity. Clinical investigation of pathomechanisms and of strategies for an immune intervention aimed at restoring antiviral immunity earlier than by hematopoietic reconstitution are limited in patients to observational studies mainly because of ethical issues including the imperative medical indication for chemotherapy with antivirals. Aimed experimental studies into mechanisms, thus, require animal models that match the human disease as close as possible. Any model for hCMV disease is, however, constrained by the strict host-species specificity of CMVs that prevents the study of hCMV in any animal model including non-human primates. During eons of co-speciation, CMVs each have evolved a set of "private genes" in adaptation to their specific mammalian host including genes that have no homolog in the CMV virus species of any other host species. With a focus on the mouse model of CD8 T cell-based immunotherapy of CMV disease after experimental HCT and infection with murine CMV (mCMV), we review data in support of the phenomenon of "biological convergence" in virus-host adaptation. This includes shared fundamental principles of immune control and immune evasion, which allows us to at least make reasoned predictions from the animal model as an experimental "proof of concept." The aim of a model primarily is to define questions to be addressed by clinical investigation for verification, falsification, or modification and the results can then give feedback to refine the experimental model for research from "bedside to bench".
Collapse
Affiliation(s)
- Matthias J Reddehase
- Institute for Virology, University Medical Center and Center for Immunotherapy of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Niels A W Lemmermann
- Institute for Virology, University Medical Center and Center for Immunotherapy of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
15
|
Laboratory diagnostics of murine blood for detection of mouse cytomegalovirus (MCMV)-induced hepatitis. Sci Rep 2018; 8:14823. [PMID: 30287927 PMCID: PMC6172243 DOI: 10.1038/s41598-018-33167-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Mouse models are important and versatile tools to study mechanisms and novel therapies of human disease in vivo. Both, the number and the complexity of murine models are constantly increasing and modification of genes of interest as well as any exogenous challenge may lead to unanticipated biological effects. Laboratory diagnostics of blood samples provide a comprehensive and rapid screening for multiple organ function and are fundamental to detect human disease. Here, we adapt an array of laboratory medicine-based tests commonly used in humans to establish a platform for standardized, multi-parametric, and quality-controlled diagnostics of murine blood samples. We determined sex-dependent reference intervals of 51 commonly used laboratory medicine tests for samples obtained from the C57BL/6J mouse strain. As a proof of principle, we applied these diagnostic tests in a mouse cytomegalovirus (MCMV) infection model to screen for organ damage. Consistent with histopathological findings, plasma concentrations of liver-specific enzymes were elevated, supporting the diagnosis of a virus-induced hepatitis. Plasma activities of aminotransferases correlated with viral loads in livers at various days after MCMV infection and discriminated infected from non-infected animals. This study provides murine blood reference intervals of common laboratory medicine parameters and illustrates the use of these tests for diagnosis of infectious disease in experimental animals.
Collapse
|
16
|
Wagar LE, DiFazio RM, Davis MM. Advanced model systems and tools for basic and translational human immunology. Genome Med 2018; 10:73. [PMID: 30266097 PMCID: PMC6162943 DOI: 10.1186/s13073-018-0584-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
There are fundamental differences between humans and the animals we typically use to study the immune system. We have learned much from genetically manipulated and inbred animal models, but instances in which these findings have been successfully translated to human immunity have been rare. Embracing the genetic and environmental diversity of humans can tell us about the fundamental biology of immune cell types and the elasticity of the immune system. Although people are much more immunologically diverse than conventionally housed animal models, tools and technologies are now available that permit high-throughput analysis of human samples, including both blood and tissues, which will give us deep insights into human immunity in health and disease. As we gain a more detailed picture of the human immune system, we can build more sophisticated models to better reflect this complexity, both enabling the discovery of new immunological mechanisms and facilitating translation into the clinic.
Collapse
Affiliation(s)
- Lisa E Wagar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert M DiFazio
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Efficient Delivery of Human Cytomegalovirus T Cell Antigens by Attenuated Sendai Virus Vectors. J Virol 2018; 92:JVI.00569-18. [PMID: 29769344 DOI: 10.1128/jvi.00569-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) represents a major cause of clinical complications during pregnancy as well as immunosuppression, and the licensing of a protective HCMV vaccine remains an unmet global need. Here, we designed and validated novel Sendai virus (SeV) vectors delivering the T cell immunogens IE-1 and pp65. To enhance vector safety, we used a replication-deficient strain (rdSeV) that infects target cells in a nonproductive manner while retaining viral gene expression. In this study, we explored the impact that transduction with rdSeV has on human dendritic cells (DCs) by comparing it to the parental, replication-competent Sendai virus strain (rcSeV) as well as the poxvirus strain modified vaccinia Ankara (MVA). We found that wild-type SeV is capable of replicating to high titers in DCs while rdSeV infects cells abortively. Due to the higher degree of attenuation, IE-1 and pp65 protein levels mediated by rdSeV after infection of DCs were markedly reduced compared to those of the parental Sendai virus recombinants, but antigen-specific restimulation of T cell clones was not negatively affected by this. Importantly, rdSeV showed reduced cytotoxic effects compared to rcSeV and MVA and was capable of mediating DC maturation as well as secretion of alpha interferon and interleukin-6. Finally, in a challenge model with a murine cytomegalovirus (MCMV) strain carrying an HCMV pp65 peptide, we found that viral replication was restricted if mice were previously vaccinated with rdSeV-pp65. Taken together, these data demonstrate that rdSeV has great potential as a vector system for the delivery of HCMV immunogens.IMPORTANCE HCMV is a highly prevalent betaherpesvirus that establishes lifelong latency after primary infection. Congenital HCMV infection is the most common viral complication in newborns, causing a number of late sequelae ranging from impaired hearing to mental retardation. At the same time, managing HCMV reactivation during immunosuppression remains a major hurdle in posttransplant care. Since options for the treatment of HCMV infection are still limited, the development of a vaccine to confine HCMV-related morbidities is urgently needed. We generated new vaccine candidates in which the main targets of T cell immunity during natural HCMV infection, IE-1 and pp65, are delivered by a replication-deficient, Sendai virus-based vector system. In addition to classical prophylactic vaccine concepts, these vectors could also be used for therapeutic applications, thereby expanding preexisting immunity in high-risk groups such as transplant recipients or for immunotherapy of glioblastomas expressing HCMV antigens.
Collapse
|
18
|
STAT2-Dependent Immune Responses Ensure Host Survival despite the Presence of a Potent Viral Antagonist. J Virol 2018; 92:JVI.00296-18. [PMID: 29743368 PMCID: PMC6026732 DOI: 10.1128/jvi.00296-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/04/2018] [Indexed: 01/12/2023] Open
Abstract
A pathogen encounter induces interferons, which signal via Janus kinases and STAT transcription factors to establish an antiviral state. However, the host and pathogens are situated in a continuous arms race which shapes host evolution toward optimized immune responses and the pathogens toward enhanced immune-evasive properties. Mouse cytomegalovirus (MCMV) counteracts interferon responses by pM27-mediated degradation of STAT2, which directly affects the signaling of type I as well as type III interferons. Using MCMV mutants lacking M27 and mice lacking STAT2, we studied the opposing relationship between antiviral activities and viral antagonism in a natural host-pathogen pair in vitro and in vivo In contrast to wild-type (wt) MCMV, ΔM27 mutant MCMV was efficiently cleared from all organs within a few days in BALB/c, C57BL/6, and 129 mice, highlighting the general importance of STAT2 antagonism for MCMV replication. Despite this effective and relevant STAT2 antagonism, wt and STAT2-deficient mice exhibited fundamentally different susceptibilities to MCMV infections. MCMV replication was increased in all assessed organs (e.g., liver, spleen, lungs, and salivary glands) of STAT2-deficient mice, resulting in mortality during the first week after infection. Taken together, the results of our study reveal the importance of cytomegaloviral interferon antagonism for viral replication as well as a pivotal role of the remaining STAT2 activity for host survival. This mutual influence establishes a stable evolutionary standoff situation with fatal consequences when the equilibrium is disturbed.IMPORTANCE The host limits viral replication by the use of interferons (IFNs), which signal via STAT proteins. Several viruses evolved antagonists targeting STATs to antagonize IFNs (e.g., cytomegaloviruses, Zika virus, dengue virus, and several paramyxoviruses). We analyzed infections caused by MCMV expressing or lacking the STAT2 antagonist pM27 in STAT2-deficient and control mice to evaluate its importance for the host and the virus in vitro and in vivo The inability to counteract STAT2 directly translates into exaggerated IFN susceptibility in vitro and pronounced attenuation in vivo Thus, the antiviral activity mediated by IFNs via STAT2-dependent signaling drove the development of a potent MCMV-encoded STAT2 antagonist which became indispensable for efficient virus replication and spread to organs required for dissemination. Despite this clear impact of viral STAT2 antagonism, the host critically required the remaining STAT2 activity to prevent overt disease and mortality upon MCMV infection. Our findings highlight a remarkably delicate balance between host and virus.
Collapse
|
19
|
Doerr HW. Editorship for Medical Microbiology and Immunology: the baton has been passed on. Med Microbiol Immunol 2018; 207:1-2. [PMID: 29313096 DOI: 10.1007/s00430-017-0533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- H W Doerr
- Institute of Medical Virology, Goethe University Hospital, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany.
| |
Collapse
|
20
|
Vatter S, Schmid M, Gebhard C, Mirbeth C, Klobuch S, Rehli M, Herr W, Thomas S. In-vitro blockade of the CD4 receptor co-signal in antigen-specific T-cell stimulation cultures induces the outgrowth of potent CD4 independent T-cell effectors. J Immunol Methods 2017; 454:80-85. [PMID: 29154771 DOI: 10.1016/j.jim.2017.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
T-cell receptor (TCR) redirected T cells are promising tools for adoptive cancer immunotherapy. Since not only CD8 but also CD4 T cells are key players for efficient antitumor responses, the targeted redirection of both subsets with the same antigen-specific TCR comes more and more into focus. Although rapidly evolving technologies enable the reliable genetic re-programming of T cells, the limited availability of TCRs that induce T-cell activation in both T-cell subsets without CD4/CD8 co-receptor contribution hampers the broad application of this approach. We developed a novel stimulation approach, which drives the activation and proliferation of CD4 T-cell populations capable of inducing effector functions in a CD4-independent manner. Naive-enriched CD4 T cells were stimulated against dendritic cells (DC) expressing allogeneic HLA-DP antigens upon RNA transfection and CD4/HLA interactions were blocked by the addition of CD4 binding antibody. Evolving CD4 T-cell populations were specifically activated independent of the CD4 co-signal and induced strong TCR-mediated IFN-γ secretion as well as cytolysis upon recognition of leukemia cells expressing HLA-DP antigen. Our novel stimulation approach may facilitate the generation of CD4 T cells as source for co-receptor independent TCRs for future immunotherapies.
Collapse
Affiliation(s)
- Sarah Vatter
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Germany
| | - Maximilian Schmid
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Germany
| | - Claudia Gebhard
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Germany; Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Carina Mirbeth
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Germany; Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Germany
| | - Michael Rehli
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Germany; Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Germany; Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Germany; Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
21
|
Grover A, Troy A, Rowe J, Troudt JM, Creissen E, McLean J, Banerjee P, Feuer G, Izzo AA. Humanized NOG mice as a model for tuberculosis vaccine-induced immunity: a comparative analysis with the mouse and guinea pig models of tuberculosis. Immunology 2017; 152:150-162. [PMID: 28502122 DOI: 10.1111/imm.12756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/09/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022] Open
Abstract
The humanized mouse model has been developed as a model to identify and characterize human immune responses to human pathogens and has been used to better identify vaccine candidates. In the current studies, the humanized mouse was used to determine the ability of a vaccine to affect the immune response to infection with Mycobacterium tuberculosis. Both human CD4+ and CD8+ T cells responded to infection in humanized mice as a result of infection. In humanized mice vaccinated with either BCG or with CpG-C, a liposome-based formulation containing the M. tuberculosis antigen ESAT-6, both CD4 and CD8 T cells secreted cytokines that are known to be required for induction of protective immunity. In comparison to the C57BL/6 mouse model and Hartley guinea pig model of tuberculosis, data obtained from humanized mice complemented the data observed in the former models and provided further evidence that a vaccine can induce a human T-cell response. Humanized mice provide a crucial pre-clinical platform for evaluating human T-cell immune responses in vaccine development against M. tuberculosis.
Collapse
Affiliation(s)
- Ajay Grover
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amber Troy
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jenny Rowe
- HuMurine Technologies, La Verne, CA, USA
| | - JoLynn M Troudt
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth Creissen
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer McLean
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Angelo A Izzo
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
22
|
The murine cytomegalovirus M35 protein antagonizes type I IFN induction downstream of pattern recognition receptors by targeting NF-κB mediated transcription. PLoS Pathog 2017; 13:e1006382. [PMID: 28542326 PMCID: PMC5444856 DOI: 10.1371/journal.ppat.1006382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022] Open
Abstract
The type I interferon (IFN) response is imperative for the establishment of the early antiviral immune response. Here we report the identification of the first type I IFN antagonist encoded by murine cytomegalovirus (MCMV) that shuts down signaling following pattern recognition receptor (PRR) sensing. Screening of an MCMV open reading frame (ORF) library identified M35 as a novel and strong negative modulator of IFNβ promoter induction following activation of both RNA and DNA cytoplasmic PRR. Additionally, M35 inhibits the proinflammatory cytokine response downstream of Toll-like receptors (TLR). Using a series of luciferase-based reporters with specific transcription factor binding sites, we determined that M35 targets NF-κB-, but not IRF-mediated, transcription. Expression of M35 upon retroviral transduction of immortalized bone marrow-derived macrophages (iBMDM) led to reduced IFNβ transcription and secretion upon activation of stimulator of IFN genes (STING)-dependent signaling. On the other hand, M35 does not antagonize interferon-stimulated gene (ISG) 56 promoter induction or ISG transcription upon exogenous stimulation of the type I IFN receptor (IFNAR). M35 is present in the viral particle and, upon MCMV infection of fibroblasts, is immediately shuttled to the nucleus where it exerts its immunomodulatory effects. Deletion of M35 from the MCMV genome and hence from the viral particle resulted in elevated type I IFN transcription and secretion in vitro and in vivo. In the absence of M35, lower viral titers are observed during acute infection of the host, and productive infection in the salivary glands was not detected. In conclusion, the M35 protein is released by MCMV immediately upon infection in order to deftly inhibit the antiviral type I IFN response by targeting NF-κB-mediated transcription. The identification of this novel viral protein reinforces the importance of timely countermeasures in the complex relationship between virus and host. The herpesvirus cytomegalovirus can cause severe morbidity in immunosuppressed people and poses a much greater global problem in the context of congenital infections than the Zika virus. To establish infection, cytomegalovirus needs to modulate the antiviral immune response of its host. One of the first lines of defense against viral infections is the type I interferon response which is activated by cellular sensors called pattern recognition receptors. These receptors sense viral entry and rapidly induce the transcription of type I interferons, which are instrumental for the induction of an antiviral state in infected and surrounding cells. We have identified the first viral protein encoded by murine cytomegalovirus, the M35 protein, that counteracts type I interferon transcription downstream of multiple pattern recognition receptors. We found that this viral countermeasure occurs shortly after viral entry into the host cell, as M35 is delivered with the viral particle. M35 then localizes to the nucleus where it modulates NF-κB-mediated transcription. In vivo, murine cytomegalovirus deficient of the M35 protein replicates to lower levels in spleen and liver and cannot establish a productive infection in the salivary glands, which is a key site of viral transmission, highlighting the important role of M35 for the establishment of infection. Our study provides novel insights into the complex interaction between cytomegalovirus and the innate immune response of its host.
Collapse
|
23
|
Refining human T-cell immunotherapy of cytomegalovirus disease: a mouse model with 'humanized' antigen presentation as a new preclinical study tool. Med Microbiol Immunol 2016; 205:549-561. [PMID: 27539576 DOI: 10.1007/s00430-016-0471-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
With the cover headline 'T cells on the attack,' the journal Science celebrated individualized cancer immunotherapy by adoptive transfer of T cells as the 'Breakthrough of the Year' 2013 (J. Couzin-Frankel in Science 342:1432-1433, 2013). It is less well recognized and appreciated that individualized T cell immunotherapy of cytomegalovirus (CMV) infection is approaching clinical application for preventing CMV organ manifestations, interstitial CMV pneumonia in particular. This coincident medical development is particularly interesting as reactivated CMV infection is a major viral complication in the state of transient immunodeficiency after the therapy of hematopoietic malignancies by hematopoietic cell transplantation (HCT). It may thus be attractive to combine T cell immunotherapy of 'minimal residual disease/leukemia (MRD)' and CMV-specific T cell immunotherapy to combat both risks in HCT recipients simultaneously, and ideally with T cells derived from the respective HLA-matched HCT donor. Although clinical trials of human CMV-specific T cell immunotherapy were promising in that the incidence of virus reactivation and disease was found to be reduced with statistical significance, animal models are still instrumental for providing 'proof of concept' by directly documenting the prevention of viral multiple-organ histopathology and organ failure under controlled conditions of the absence versus presence of the therapy, which obviously is not feasible in an individual human patient. Further, animal models can make predictions regarding parameters that determine the efficacy of T cell immunotherapy for improved study design in clinical investigations, and they allow for manipulating host and virus genetics. The latter is of particular value as it opens the possibility for epitope specificity controls that are inherently missing in clinical trials. Here, we review a recently developed new mouse model that is more approximated to human CMV-specific T cell immunotherapy by 'humanizing' antigen presentation using antigenically chimeric CMV and HLA-transgenic mice to allow for an in vivo testing of the antiviral function of human CMV-specific T cells. As an important new message, this model predicts that T cell immunotherapy is most efficient if CD4 T cells are equipped with a transduced TCR directed against an epitope presented by MHC/HLA class-I for local delivery of 'cognate' help to CD8 effector T cells at infected MHC/HLA class-II-negative host tissue cells.
Collapse
|
24
|
Ma Y, Cheng L, Yuan B, Zhang Y, Zhang C, Zhang Y, Tang K, Zhuang R, Chen L, Yang K, Zhang F, Jin B. Structure and Function of HLA-A*02-Restricted Hantaan Virus Cytotoxic T-Cell Epitope That Mediates Effective Protective Responses in HLA-A2.1/K(b) Transgenic Mice. Front Immunol 2016; 7:298. [PMID: 27551282 PMCID: PMC4976285 DOI: 10.3389/fimmu.2016.00298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Hantavirus infections cause severe emerging diseases in humans and are associated with high mortality rates; therefore, they have become a global public health concern. Our previous study showed that the CD8(+) T-cell epitope aa129-aa137 (FVVPILLKA, FA9) of the Hantaan virus (HTNV) nucleoprotein (NP), restricted by human leukocyte antigen (HLA)-A*02, induced specific CD8(+) T-cell responses that controlled HTNV infection in humans. However, the in vivo immunogenicity of peptide FA9 and the effect of FA9-specific CD8(+) T-cell immunity remain unclear. Here, based on a detailed structural analysis of the peptide FA9/HLA-A*0201 complex and functional investigations using HLA-A2.1/K(b) transgenic (Tg) mice, we found that the overall structure of the peptide FA9/HLA-A*0201 complex displayed a typical MHC class I fold with Val2 and Ala9 as primary anchor residues and Val3 and Leu7 as secondary anchor residues that allow peptide FA9 to bind tightly with an HLA-A*0201 molecule. Residues in the middle portion of peptide FA9 extruding out of the binding groove may be the sites that allow for recognition by T-cell receptors. Immunization with peptide FA9 in HLA-A2.1/K(b) Tg mice induced FA9-specific cytotoxic T-cell responses characterized by the induction of high expression levels of interferon-γ, tumor necrosis factor-α, granzyme B, and CD107a. In an HTNV challenge trial, significant reductions in the levels of both the antigens and the HTNV RNA loads were observed in the liver, spleen, and kidneys of Tg mice pre-vaccinated with peptide FA9. Thus, our findings highlight the ability of HTNV epitope-specific CD8(+) T-cell immunity to control HTNV and support the possibility that the HTNV-NP FA9 peptide, naturally processed in vivo in an HLA-A*02-restriction manner, may be a good candidate for the development HTNV peptide vaccines.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Linfeng Cheng
- Department of Microbiology, The Fourth Military Medical University , Xi'an , China
| | - Bin Yuan
- Institute of Orthopaedics of Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Fanglin Zhang
- Department of Microbiology, The Fourth Military Medical University , Xi'an , China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| |
Collapse
|
25
|
Reddehase MJ. Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation. Front Immunol 2016; 7:294. [PMID: 27540380 PMCID: PMC4972816 DOI: 10.3389/fimmu.2016.00294] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic cell transplantation (HCT) is a therapy option for aggressive forms of hematopoietic malignancies that are resistant to standard antitumoral therapies. Hematoablative treatment preceding HCT, however, opens a “window of opportunity” for latent Cytomegalovirus (CMV) by releasing it from immune control with the consequence of reactivation of productive viral gene expression and recurrence of infectious virus. A “window of opportunity” for the virus represents a “window of risk” for the patient. In the interim between HCT and reconstitution of antiviral immunity, primarily mediated by CD8+ T cells, initially low amounts of reactivated virus can expand exponentially, disseminate to essentially all organs, and cause multiple organ CMV disease, with interstitial pneumonia (CMV-IP) representing the most severe clinical manifestation. Here, I will review predictions originally made in the mouse model of experimental HCT and murine CMV infection, some of which have already paved the way to translational preclinical research and promising clinical trials of a preemptive cytoimmunotherapy of human CMV disease. Specifically, the mouse model has been pivotal in providing “proof of concept” for preventing CMV disease after HCT by adoptive transfer of preselected, virus epitope-specific effector and memory CD8+ T cells bridging the critical interim. However, CMV is not a “passive antigen” but is a pathogen that actively interferes with the reconstitution of protective immunity by infecting bone marrow (BM) stromal cells that otherwise form niches for hematopoiesis by providing the structural microenvironment and by producing hematopoietically active cytokines, the hemopoietins. Depending on the precise conditions of HCT, reduced homing of transplanted hematopoietic stem- and progenitor cells to infected BM stroma and impaired colony growth and lineage differentiation can lead to “graft failure.” In consequence, uncontrolled virus spread causes morbidity and mortality. In the race between viral BM pathology and reconstitution of antiviral immunity following HCT, exogenous reconstitution of virus-specific CD8+ T cells by adoptive cell transfer as an interventional strategy can turn the balance toward control of CMV.
Collapse
Affiliation(s)
- Matthias J Reddehase
- Research Center for Immunotherapy (FZI), Institute for Virology, University Medical Center, Johannes Gutenberg-University of Mainz , Mainz , Germany
| |
Collapse
|
26
|
Schupp AK, Trilling M, Rattay S, Le-Trilling VTK, Haselow K, Stindt J, Zimmermann A, Häussinger D, Hengel H, Graf D. Bile Acids Act as Soluble Host Restriction Factors Limiting Cytomegalovirus Replication in Hepatocytes. J Virol 2016; 90:6686-6698. [PMID: 27170759 PMCID: PMC4944301 DOI: 10.1128/jvi.00299-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The liver constitutes a prime site of cytomegalovirus (CMV) replication and latency. Hepatocytes produce, secrete, and recycle a chemically diverse set of bile acids, with the result that interactions between bile acids and cytomegalovirus inevitably occur. Here we determined the impact of naturally occurring bile acids on mouse CMV (MCMV) replication. In primary mouse hepatocytes, physiological concentrations of taurochenodeoxycholic acid (TCDC), glycochenodeoxycholic acid, and to a lesser extent taurocholic acid significantly reduced MCMV-induced gene expression and diminished the generation of virus progeny, while several other bile acids did not exert antiviral effects. The anticytomegalovirus activity required active import of bile acids via the sodium-taurocholate-cotransporting polypeptide (NTCP) and was consistently observed in hepatocytes but not in fibroblasts. Under conditions in which alpha interferon (IFN-α) lacks antiviral activity, physiological TCDC concentrations were similarly effective as IFN-γ. A detailed investigation of distinct steps of the viral life cycle revealed that TCDC deregulates viral transcription and diminishes global translation in infected cells. IMPORTANCE Cytomegaloviruses are members of the Betaherpesvirinae subfamily. Primary infection leads to latency, from which cytomegaloviruses can reactivate under immunocompromised conditions and cause severe disease manifestations, including hepatitis. The present study describes an unanticipated antiviral activity of conjugated bile acids on MCMV replication in hepatocytes. Bile acids negatively influence viral transcription and exhibit a global effect on translation. Our data identify bile acids as site-specific soluble host restriction factors against MCMV, which may allow rational design of anticytomegalovirus drugs using bile acids as lead compounds.
Collapse
Affiliation(s)
- Anna-Kathrin Schupp
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mirko Trilling
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephanie Rattay
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vu Thuy Khanh Le-Trilling
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katrin Haselow
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Albert Zimmermann
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hartmut Hengel
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- Department for Medical Microbiology and Hygiene, Institute of Virology, Albert-Ludwigs-University, Freiburg, Germany
| | - Dirk Graf
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
27
|
Holtappels R, Lemmermann NAW, Podlech J, Ebert S, Reddehase MJ. Reconstitution of CD8 T Cells Protective against Cytomegalovirus in a Mouse Model of Hematopoietic Cell Transplantation: Dynamics and Inessentiality of Epitope Immunodominance. Front Immunol 2016; 7:232. [PMID: 27379095 PMCID: PMC4905951 DOI: 10.3389/fimmu.2016.00232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/30/2016] [Indexed: 12/02/2022] Open
Abstract
Successful reconstitution of cytomegalovirus (CMV)-specific CD8+ T cells by hematopoietic cell transplantation (HCT) gives a favorable prognosis for the control of CMV reactivation and prevention of CMV disease after hematoablative therapy of hematopoietic malignancies. In the transient immunocompromised state after HCT, pre-emptive cytoimmunotherapy with viral epitope-specific effector or memory CD8+ T cells is a promising option to speed up antiviral control. Despite high-coding capacity of CMVs and a broad CD8+ T-cell response on the population level, which reflects polymorphism in major histocompatibility complex class-I (MHC-I) glycoproteins, the response in terms of quantity of CD8+ T cells in any individual is directed against a limited set of CMV-encoded epitopes selected for presentation by the private repertoire of MHC-I molecules. Such epitopes are known as “immunodominant” epitopes (IDEs). Besides host immunogenetics, genetic variance in CMV strains harbored as latent viruses by an individual HCT recipient can also determine the set of IDEs, which complicates a “personalized immunotherapy.” It is, therefore, an important question if IDE-specific CD8+ T-cell reconstitution after HCT is critical or dispensable for antiviral control. As viruses with targeted mutations of IDEs cannot be experimentally tested in HCT patients, we employed the well-established mouse model of HCT. Notably, control of murine CMV (mCMV) after HCT was comparably efficient for IDE-deletion mutant mCMV-Δ4IDE and the corresponding IDE-expressing revertant virus mCMV-Δ4IDE-rev. Thus, antigenicity-loss mutations in IDEs do not result in loss-of-function of a polyclonal CD8+ T-cell population. Although IDE deletion was not associated with global changes in the response to non-IDE epitopes, the collective of non-IDE-specific CD8+ T-cells infiltrates infected tissue and confines infection within nodular inflammatory foci. We conclude from the model, and predict also for human CMV, that there is no need to exclusively aim for IDE-specific immunoreconstitution.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Stefan Ebert
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
28
|
Holtappels R, Podlech J, Lemmermann NAW, Schmitt E, Reddehase MJ. Non-cognate bystander cytolysis by clonal epitope-specific CTL lines through CD28-CD80 interaction inhibits antibody production: A potential caveat to CD8 T-cell immunotherapy. Cell Immunol 2016; 308:44-56. [PMID: 26717854 DOI: 10.1016/j.cellimm.2015.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Adoptive transfer of virus epitope-specific CD8 T cells is an immunotherapy option to control cytomegalovirus (CMV) infection and prevent CMV organ disease in immunocompromised solid organ transplantation (SOT) and hematopoietic cell transplantation (HCT) recipients. The therapy aims at an early, selective recognition and cytolysis of infected cells for preventing viral spread in tissues with no adverse immunopathogenic side-effects by attack of uninfected bystander cells. Here we describe that virus epitope-specific, cloned T-cell lines lyse target cells that present the cognate antigenic peptide to the TCR, but simultaneously have the potential to lyse uninfected cells expressing the CD28 ligand CD80 (B7-1). While TCR-mediated cytolysis requires co-receptor CD8 and depends on perforin, the TCR-independent and viral epitope-independent cytolysis through CD28-CD80 signaling does not require CD8 on the effector cells and is perforin-independent. Importantly, this non-cognate cytolysis pathway leads to bystander cytolysis of CD80-expressing B-cell blasts and thereby inhibits pan-specific antibody production.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Edgar Schmitt
- Institute for Immunology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| |
Collapse
|