1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
2
|
Lamp B, Barth S, Reuscher C, Affeldt S, Cechini A, Netsch A, Lobedank I, Rümenapf T. Essential role of cis-encoded mature NS3 in the genome packaging of classical swine fever virus. J Virol 2024:e0120924. [PMID: 39723819 DOI: 10.1128/jvi.01209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Classical swine fever virus (CSFV) is a member of the genus Pestivirus within the family Flaviviridae. The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle. The release of mature NS3 from the polyprotein is mediated and regulated by the NS2 autoprotease and a cellular co-factor, restricting efficient cleavage to the early phases of infection. NS3 is a multifunctional viral enzyme exhibiting helicase, NTPase, and protease activities pivotal for viral replication. Hence, the release of mature NS3 fuels replication, whereas unprocessed NS2-3 precursors are vital for progeny virus production in later phases of infection. Thus far, no packaging signals have been identified for pestivirus RNA. To explore the prerequisites for particle assembly, trans-packaging experiments were conducted using CSFV subgenomes and coreless CSFV strains. Intriguingly, we discovered a significant role of mature NS3 in genome packaging, effective only when the protein is encoded by the RNA molecule itself. This finding was reinforced by employing artificially engineered CSFV strains with duplicated NS3 genes, separating uncleavable NS2-3 precursors from mature NS3 molecules. The model for NS2-3/NS3 functions in genome packaging of pestiviruses appears to be much more complicated than anticipated, involving distinct functions of the mature NS3 and its precursor molecule NS2-3. Moreover, the reliance of genome packaging on cis-encoded NS3 may act as a downstream quality control mechanism, averting the packaging of defective genomes and coordinating the encapsidation of RNA molecules before membrane acquisition. IMPORTANCE Pestiviruses are economically significant pathogens in livestock. Although genome organization and non-structural protein functions resemble those of other Flaviviridae genera, distinct differences can be observed. Previous studies showed that coreless CSFV strains can produce coreless virions mediated by single compensatory mutations in NS3. In this study, we could show that only RNA molecules encoding these mutations in the mature NS3 are packaged in the absence of the core protein. Unlike this selectivity, a pool of structural proteins in the host cell was readily available for packaging all CSFV genomes. Similarly, the NS2-3-4A precursor molecules required for packaging could also be provided in trans. Consequently, genome packaging in pestiviruses is governed by cis-encoded mature NS3. Reliance on cis-acting proteins restricts the acceptance of defective genomes and establishes packaging specificity regardless of RNA sequence-specific packaging signals. Understanding the role of NS3 in pestiviral genome packaging might uncover new targets for antiviral therapies.
Collapse
Affiliation(s)
- Benjamin Lamp
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Sandra Barth
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Carina Reuscher
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Sebastian Affeldt
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Angelika Cechini
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Anette Netsch
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Irmin Lobedank
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Till Rümenapf
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
3
|
Cousineau SE, Camargo C, Sagan SM. Poly(rC)-Binding Protein 2 Does Not Directly Participate in HCV Translation or Replication, but Rather Modulates Genome Packaging. Viruses 2024; 16:1220. [PMID: 39205194 PMCID: PMC11359930 DOI: 10.3390/v16081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The hepatitis C virus (HCV) co-opts many cellular factors-including proteins and microRNAs-to complete its life cycle. A cellular RNA-binding protein, poly(rC)-binding protein 2 (PCBP2), was previously shown to bind to the hepatitis C virus (HCV) genome; however, its precise role in the viral life cycle remained unclear. Herein, using the HCV cell culture (HCVcc) system and assays that isolate each step of the viral life cycle, we found that PCBP2 does not have a direct role in viral entry, translation, genome stability, or HCV RNA replication. Rather, our data suggest that PCBP2 depletion only impacts viral RNAs that can undergo genome packaging. Taken together, our data suggest that endogenous PCBP2 modulates the early steps of genome packaging, and therefore only has an indirect effect on viral translation and RNA replication, likely by increasing the translating/replicating pool of viral RNAs to the detriment of virion assembly.
Collapse
Affiliation(s)
- Sophie E. Cousineau
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carolina Camargo
- Department of Microbiology & Immunology, University of British Columbia, 2350 Health Science Mall, Room 4.520, Vancouver, BC V6T 1Z3, Canada
| | - Selena M. Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Microbiology & Immunology, University of British Columbia, 2350 Health Science Mall, Room 4.520, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Liu J, Ito M, Liu L, Nakashima K, Satoh S, Konno A, Suzuki T. Involvement of ribosomal protein L17 and Y-box binding protein 1 in the assembly of hepatitis C virus potentially via their interaction with the 3' untranslated region of the viral genome. J Virol 2024; 98:e0052224. [PMID: 38899899 PMCID: PMC11265288 DOI: 10.1128/jvi.00522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The 3' untranslated region (3'UTR) of the hepatitis C virus (HCV) RNA genome, which contains a highly conserved 3' region named the 3'X-tail, plays an essential role in RNA replication and promotes viral IRES-dependent translation. Although our previous work has found a cis-acting element for genome encapsidation within 3'X, there is limited information on the involvement of the 3'UTR in particle formation. In this study, proteomic analyses identified host cell proteins that bind to the 3'UTR containing the 3'X region but not to the sequence lacking the 3'X. Further characterization showed that RNA-binding proteins, ribosomal protein L17 (RPL17), and Y-box binding protein 1 (YBX1) facilitate the efficient production of infectious HCV particles in the virus infection cells. Using small interfering RNA (siRNA)-mediated gene silencing in four assays that distinguish between the various stages of the HCV life cycle, RPL17 and YBX1 were found to be most important for particle assembly in the trans-packaging assay with replication-defective subgenomic RNA. In vitro assays showed that RPL17 and YBX1 bind to the 3'UTR RNA and deletion of the 3'X region attenuates their interaction. Knockdown of RPL17 or YBX1 resulted in reducing the amount of HCV RNA co-precipitating with the viral Core protein by RNA immunoprecipitation and increasing the relative distance in space between Core and double-stranded RNA by confocal imaging, suggesting that RPL17 and YBX1 potentially affect HCV RNA-Core interaction, leading to efficient nucleocapsid assembly. These host factors provide new clues to understanding the molecular mechanisms that regulate HCV particle formation. IMPORTANCE Although basic research on the HCV life cycle has progressed significantly over the past two decades, our understanding of the molecular mechanisms that regulate the process of particle formation, in particular encapsidation of the genome or nucleocapsid assembly, has been limited. We present here, for the first time, that two RNA-binding proteins, RPL17 and YBX1, bind to the 3'X in the 3'UTR of the HCV genome, which potentially acts as a packaging signal, and facilitates the viral particle assembly. Our study revealed that RPL17 and YBX1 exert a positive effect on the interaction between HCV RNA and Core protein, suggesting that the presence of both host factors modulate an RNA structure or conformation suitable for packaging the viral genome. These findings help us to elucidate not only the regulatory mechanism of the particle assembly of HCV but also the function of host RNA-binding proteins during viral infection.
Collapse
Affiliation(s)
- Jie Liu
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Liang Liu
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kenji Nakashima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shinya Satoh
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Alu Konno
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
5
|
NOX as a Therapeutic Target in Liver Disease. Antioxidants (Basel) 2022; 11:antiox11102038. [PMID: 36290761 PMCID: PMC9598239 DOI: 10.3390/antiox11102038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The nicotinamide adenine dinucleotide phosphate hydrogen oxidase (NADPH oxidase or NOX) plays a critical role in the inflammatory response and fibrosis in several organs such as the lungs, pancreas, kidney, liver, and heart. In the liver, NOXs contribute, through the generation of reactive oxygen species (ROS), to hepatic fibrosis by acting through multiple pathways, including hepatic stellate cell activation, proliferation, survival, and migration of hepatic stellate cells; hepatocyte apoptosis, enhancement of fibrogenic mediators, and mediation of an inflammatory cascade in both Kupffer cells and hepatic stellate cells. ROS are overwhelmingly produced during malignant transformation and hepatic carcinogenesis (HCC), creating an oxidative microenvironment that can cause different and various types of cellular stress, including DNA damage, ER stress, cell death of damaged hepatocytes, and oxidative stress. NOX1, NOX2, and NOX4, members of the NADPH oxidase family, have been linked to the production of ROS in the liver. This review will analyze some diseases related to an increase in oxidative stress and its relationship with the NOX family, as well as discuss some therapies proposed to slow down or control the disease's progression.
Collapse
|
6
|
Characterization of a multipurpose NS3 surface patch coordinating HCV replicase assembly and virion morphogenesis. PLoS Pathog 2022; 18:e1010895. [PMID: 36215335 PMCID: PMC9616216 DOI: 10.1371/journal.ppat.1010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is highly regulated and characterized by a step-wise succession of interactions between viral and host cell proteins resulting in the assembly of macromolecular complexes, which catalyse genome replication and/or virus production. Non-structural (NS) protein 3, comprising a protease and a helicase domain, is involved in orchestrating these processes by undergoing protein interactions in a temporal fashion. Recently, we identified a multifunctional NS3 protease surface patch promoting pivotal protein-protein interactions required for early steps of the HCV life cycle, including NS3-mediated NS2 protease activation and interactions required for replicase assembly. In this work, we extend this knowledge by identifying further NS3 surface determinants important for NS5A hyperphosphorylation, replicase assembly or virion morphogenesis, which map to protease and helicase domain and form a contiguous NS3 surface area. Functional interrogation led to the identification of phylogenetically conserved amino acid positions exerting a critical function in virion production without affecting RNA replication. These findings illustrate that NS3 uses a multipurpose protein surface to orchestrate the step-wise assembly of functionally distinct multiprotein complexes. Taken together, our data provide a basis to dissect the temporal formation of viral multiprotein complexes required for the individual steps of the HCV life cycle.
Collapse
|
7
|
Miyamoto D, Takeuchi K, Chihara K, Fujieda S, Sada K. Protein tyrosine kinase Abl promotes hepatitis C virus particle assembly via interaction with viral substrate activator NS5A. J Biol Chem 2022; 298:101804. [PMID: 35257746 PMCID: PMC8980994 DOI: 10.1016/j.jbc.2022.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Previously, we reported that knockdown of Abl protein tyrosine kinase by shRNA or pharmacological inhibition suppresses particle assembly of J6/JFH1 strain–derived hepatitis C virus (HCV) in Huh-7.5 cells. However, the detailed mechanism by which Abl regulates HCV replication remained unclear. In this study, we established Abl-deficient (Abl−) cells through genome editing and compared HCV production between Abl− cells expressing WT or kinase-dead Abl and parental Huh-7.5 cells. Our findings revealed that Abl expression was not required from the stages of virus attachment and entry to viral gene expression; however, the kinase activity of Abl was necessary for the assembly of HCV particles. Reconstitution experiments using human embryonic kidney 293T cells revealed that phosphorylation of Tyr412 in the activation loop of Abl was enhanced by coexpression with the viral nonstructural protein 5A (NS5A) and was abrogated by the substitution of NS5A Tyr330 with Phe (Y330F), suggesting that NS5A functions as a substrate activator of Abl. Abl–NS5A association was also attenuated by the Y330F mutation of NS5A or the kinase-dead Abl, and Abl Tyr412 phosphorylation was not enhanced by NS5A bearing a mutation disabling homodimerization, although the association of Abl with NS5A was still observed. Taken together, these results demonstrate that Abl forms a phosphorylation-dependent complex with dimeric NS5A necessary for viral particle assembly, but that Abl is capable of complex formation with monomeric NS5A regardless of tyrosine phosphorylation. Our findings provide the foundation of a molecular basis for a new hepatitis C treatment strategy using Abl inhibitors.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kenji Takeuchi
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui, Japan
| | - Kazuyasu Chihara
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui, Japan
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui, Japan.
| |
Collapse
|
8
|
Twu WI, Lee JY, Kim H, Prasad V, Cerikan B, Haselmann U, Tabata K, Bartenschlager R. Contribution of autophagy machinery factors to HCV and SARS-CoV-2 replication organelle formation. Cell Rep 2021; 37:110049. [PMID: 34788596 PMCID: PMC8577994 DOI: 10.1016/j.celrep.2021.110049] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/02/2021] [Accepted: 11/02/2021] [Indexed: 02/09/2023] Open
Abstract
Positive-strand RNA viruses replicate in close association with rearranged intracellular membranes. For hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these rearrangements comprise endoplasmic reticulum (ER)-derived double membrane vesicles (DMVs) serving as RNA replication sites. Cellular factors involved in DMV biogenesis are poorly defined. Here, we show that despite structural similarity of viral DMVs with autophagosomes, conventional macroautophagy is dispensable for HCV and SARS-CoV-2 replication. However, both viruses exploit factors involved in autophagosome formation, most notably class III phosphatidylinositol 3-kinase (PI3K). As revealed with a biosensor, PI3K is activated in cells infected with either virus to produce phosphatidylinositol 3-phosphate (PI3P) while kinase complex inhibition or depletion profoundly reduces replication and viral DMV formation. The PI3P-binding protein DFCP1, recruited to omegasomes in early steps of autophagosome formation, participates in replication and DMV formation of both viruses. These results indicate that phylogenetically unrelated HCV and SARS-CoV-2 exploit similar components of the autophagy machinery to create their replication organelles.
Collapse
Affiliation(s)
- Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Riva L, Spriet C, Barois N, Popescu CI, Dubuisson J, Rouillé Y. Comparative Analysis of Hepatitis C Virus NS5A Dynamics and Localization in Assembly-Deficient Mutants. Pathogens 2021; 10:pathogens10020172. [PMID: 33557275 PMCID: PMC7919264 DOI: 10.3390/pathogens10020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is a tightly regulated process, during which structural and non-structural proteins cooperate. However, the interplay between HCV proteins during genomic RNA replication and progeny virion assembly is not completely understood. Here, we studied the dynamics and intracellular localization of non-structural 5A protein (NS5A), which is a protein involved both in genome replication and encapsidation. An NS5A-eGFP (enhanced green fluorescent protein) tagged version of the strain JFH-1-derived wild-type HCV was compared to the corresponding assembly-deficient viruses Δcore, NS5A basic cluster 352–533 mutant (BCM), and serine cluster 451 + 454 + 457 mutant (SC). These analyses highlighted an increase of NS5A motility when the viral protein core was lacking. Although to a lesser extent, NS5A motility was also increased in the BCM virus, which is characterized by a lack of interaction of NS5A with the viral RNA, impairing HCV genome encapsidation. This observation suggests that the more static NS5A population is mainly involved in viral assembly rather than in RNA replication. Finally, NS4B exhibited a reduced co-localization with NS5A and lipid droplets for both Δcore and SC mutants, which is characterized by the absence of interaction of NS5A with core. This observation strongly suggests that NS5A is involved in targeting NS4B to lipid droplets (LDs). In summary, this work contributes to a better understanding of the interplay between HCV proteins during the viral life cycle.
Collapse
Affiliation(s)
- Laura Riva
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
| | - Corentin Spriet
- University of Lille, CNRS, UMR 8576-UGSF-Department of Functional and Structural Glycobiology, 59000 Lille, France;
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, US 41-UMS 2014-PLBS, 59000 Lille, France
| | - Nicolas Barois
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, US 41-UMS 2014-PLBS, 59000 Lille, France
| | - Costin-Ioan Popescu
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania;
| | - Jean Dubuisson
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
| | - Yves Rouillé
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
- Correspondence:
| |
Collapse
|
10
|
Dimitriadis A, Foka P, Kyratzopoulou E, Karamichali E, Petroulia S, Tsitoura P, Kakkanas A, Eliadis P, Georgopoulou U, Mamalaki A. The Hepatitis C virus NS5A and core proteins exert antagonistic effects on HAMP gene expression: the hidden interplay with the MTF-1/MRE pathway. FEBS Open Bio 2021; 11:237-250. [PMID: 33247551 PMCID: PMC7780115 DOI: 10.1002/2211-5463.13048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022] Open
Abstract
Hepcidin, a 25-amino acid peptide encoded by the HAMP gene and produced mainly by hepatocytes and macrophages, is a mediator of innate immunity and the central iron-regulatory hormone. Circulating hepcidin controls iron efflux by inducing degradation of the cellular iron exporter ferroportin. HCV infection is associated with hepatic iron overload and elevated serum iron, which correlate with poor antiviral responses. The HCV nonstructural NS5A protein is known to function in multiple aspects of the HCV life cycle, probably exerting its activity in concert with cellular factor(s). In this study, we attempted to delineate the effect of HCV NS5A on HAMP gene expression. We observed that transient transfection of hepatoma cell lines with HCV NS5A resulted in down-regulation of HAMP promoter activity. A similar effect was evident after transduction of Huh7 cells with a recombinant baculovirus vector expressing NS5A protein. We proceeded to construct an NS5A-expressing stable cell line, which also exhibited down-regulation of HAMP gene promoter activity and significant reduction of HAMP mRNA and hepcidin protein levels. Concurrent expression of HCV core protein, a well-characterized hepcidin inducer, revealed antagonism between those two proteins for hepcidin regulation. In attempting to identify the pathways involved in NS5A-driven reduction of hepcidin levels, we ruled out any NS5A-induced alterations in the expression of the well-known hepcidin inducers SMAD4 and STAT3. Further analysis linked the abundance of intracellular zinc ions and the deregulation of the MTF-1/MRE/hepcidin axis with the observed phenomenon. This effect could be associated with distinct phases in HCV life cycle.
Collapse
Affiliation(s)
- Alexios Dimitriadis
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | - Pelagia Foka
- Laboratory of Molecular VirologyHellenic Pasteur InstituteAthensGreece
| | - Eleni Kyratzopoulou
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | | | | | - Panagiota Tsitoura
- Laboratory of Molecular VirologyHellenic Pasteur InstituteAthensGreece
- Present address:
Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | | | - Petros Eliadis
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | | | - Avgi Mamalaki
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| |
Collapse
|
11
|
Alzahrani N, Wu MJ, Shanmugam S, Yi M. Delayed by Design: Role of Suboptimal Signal Peptidase Processing of Viral Structural Protein Precursors in Flaviviridae Virus Assembly. Viruses 2020; 12:v12101090. [PMID: 32993149 PMCID: PMC7601889 DOI: 10.3390/v12101090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Flaviviridae virus family is classified into four different genera, including flavivirus, hepacivirus, pegivirus, and pestivirus, which cause significant morbidity and mortality in humans and other mammals, including ruminants and pigs. These are enveloped, single-stranded RNA viruses sharing a similar genome organization and replication scheme with certain unique features that differentiate them. All viruses in this family express a single polyprotein that encodes structural and nonstructural proteins at the N- and C-terminal regions, respectively. In general, the host signal peptidase cleaves the structural protein junction sites, while virus-encoded proteases process the nonstructural polyprotein region. It is known that signal peptidase processing is a rapid, co-translational event. Interestingly, certain signal peptidase processing site(s) in different Flaviviridae viral structural protein precursors display suboptimal cleavage kinetics. This review focuses on the recent progress regarding the Flaviviridae virus genus-specific mechanisms to downregulate signal peptidase-mediated processing at particular viral polyprotein junction sites and the role of delayed processing at these sites in infectious virus particle assembly.
Collapse
|
12
|
Lee JY, Cortese M, Haselmann U, Tabata K, Romero-Brey I, Funaya C, Schieber NL, Qiang Y, Bartenschlager M, Kallis S, Ritter C, Rohr K, Schwab Y, Ruggieri A, Bartenschlager R. Spatiotemporal Coupling of the Hepatitis C Virus Replication Cycle by Creating a Lipid Droplet- Proximal Membranous Replication Compartment. Cell Rep 2020; 27:3602-3617.e5. [PMID: 31216478 DOI: 10.1016/j.celrep.2019.05.063] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/05/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023] Open
Abstract
The hepatitis C virus (HCV) is a major cause of chronic liver disease, affecting around 71 million people worldwide. Viral RNA replication occurs in a membranous compartment composed of double-membrane vesicles (DMVs), whereas virus particles are thought to form by budding into the endoplasmic reticulum (ER). It is unknown how these steps are orchestrated in space and time. Here, we established an imaging system to visualize HCV structural and replicase proteins in live cells and with high resolution. We determined the conditions for the recruitment of viral proteins to putative assembly sites and studied the dynamics of this event and the underlying ultrastructure. Most notable was the selective recruitment of ER membranes around lipid droplets where structural proteins and the viral replicase colocalize. Moreover, ER membranes wrapping lipid droplets were decorated with double membrane vesicles, providing a topological map of how HCV might coordinate the steps of viral replication and virion assembly.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, 69120 Heidelberg, Germany
| | - Nicole L Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yu Qiang
- Biomedical Computer Vision Group, Heidelberg University, BIOQUANT, IPMB, and DKFZ Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Marie Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Stephanie Kallis
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Christian Ritter
- Biomedical Computer Vision Group, Heidelberg University, BIOQUANT, IPMB, and DKFZ Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group, Heidelberg University, BIOQUANT, IPMB, and DKFZ Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, Heidelberg, Germany.
| |
Collapse
|
13
|
The Host Factor Erlin-1 is Required for Efficient Hepatitis C Virus Infection. Cells 2019; 8:cells8121555. [PMID: 31810281 PMCID: PMC6953030 DOI: 10.3390/cells8121555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Development of hepatitis C virus (HCV) infection cell culture systems has permitted the identification of cellular factors that regulate the HCV life cycle. Some of these cellular factors affect steps in the viral life cycle that are tightly associated with intracellular membranes derived from the endoplasmic reticulum (ER). Here, we describe the discovery of erlin-1 protein as a cellular factor that regulates HCV infection. Erlin-1 is a cholesterol-binding protein located in detergent-resistant membranes within the ER. It is implicated in cholesterol homeostasis and the ER-associated degradation pathway. Silencing of erlin-1 protein expression by siRNA led to decreased infection efficiency characterized by reduction in intracellular RNA accumulation, HCV protein expression and virus production. Mechanistic studies revealed that erlin-1 protein is required early in the infection, downstream of cell entry and primary translation, specifically to initiate RNA replication, and later in the infection to support infectious virus production. This study identifies erlin-1 protein as an important cellular factor regulating HCV infection.
Collapse
|
14
|
Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol 2019; 16:125-142. [PMID: 29430005 PMCID: PMC7097628 DOI: 10.1038/nrmicro.2017.170] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Flaviviridae virus family comprise a large group of enveloped viruses with a single-strand RNA genome of positive polarity. Several genera belong to this family, including the Hepacivirus genus, of which hepatitis C virus (HCV) is the prototype member, and the Flavivirus genus, which contains both dengue virus and Zika virus. Viruses of these genera differ in many respects, such as the mode of transmission or the course of infection, which is either predominantly persistent in the case of HCV or acutely self-limiting in the case of flaviviruses. Although the fundamental replication strategy of Flaviviridae members is similar, during the past few years, important differences have been discovered, including the way in which these viruses exploit cellular resources to facilitate viral propagation. These differences might be responsible, at least in part, for the various biological properties of these viruses, thus offering the possibility to learn from comparisons. In this Review, we discuss the current understanding of how Flaviviridae viruses manipulate and usurp cellular pathways in infected cells. Specifically, we focus on comparing strategies employed by flaviviruses with those employed by hepaciviruses, and we discuss the importance of these interactions in the context of viral replication and antiviral therapies.
Collapse
Affiliation(s)
- Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Eliana G Acosta
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Wang M, Wang Y, Liu Y, Wang H, Xin X, Li J, Hao Y, Han L, Yu F, Zheng C, Shen C. SPSB2 inhibits hepatitis C virus replication by targeting NS5A for ubiquitination and degradation. PLoS One 2019; 14:e0219989. [PMID: 31344133 PMCID: PMC6657855 DOI: 10.1371/journal.pone.0219989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) replication involves many viral and host factors. Host factor SPRY domain- and SOCS box-containing protein 2(SPSB2) belongs to SPSB family, and it recruits target proteins by the SPRY domain and forms E3 ubiquitin ligase complexes by the SOCS box. As an adaptor protein, it can regulate the host’s response to infection, but little is known about whether SPSB2 plays a role in HCV replication. In the present study, we found that HCV infection significantly upregulated the mRNA and protein levels of SPSB2 in HCVcc-infected cells. Exogenous expression of SPSB2 in hepatoma cells decreased HCV RNA and protein levels which depended on the SOCS box, while knockdown of endogenous SPSB2 increased HCV RNA and protein levels. Additionally, we demonstrated that SPSB2 interacted with HCV structural protein E1 and nonstructural protein protein 5A (NS5A) via the C-terminal portion of the SPSB2 SPRY domain. Furthermore, SPSB2 induced NS5A ubiquitination and mediated NS5A degradation. Collectively, this study discovered host factor SPSB2 significantly inhibits HCV replication by interacting and degrading NS5A.
Collapse
Affiliation(s)
- Mingzhen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuehong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hailong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiu Xin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiadai Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yao Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingling Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Chao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
16
|
Lassen S, Grüttner C, Nguyen-Dinh V, Herker E. Perilipin-2 is critical for efficient lipoprotein and hepatitis C virus particle production. J Cell Sci 2019; 132:jcs.217042. [PMID: 30559250 DOI: 10.1242/jcs.217042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
In hepatocytes, PLIN2 is the major protein coating lipid droplets (LDs), an organelle the hepatitis C virus (HCV) hijacks for virion morphogenesis. We investigated the consequences of PLIN2 deficiency on LDs and on HCV infection. Knockdown of PLIN2 did not affect LD homeostasis, likely due to compensation by PLIN3, but severely impaired HCV particle production. PLIN2-knockdown cells had slightly larger LDs with altered protein composition, enhanced local lipase activity and higher β-oxidation capacity. Electron micrographs showed that, after PLIN2 knockdown, LDs and HCV-induced vesicular structures were tightly surrounded by ER-derived double-membrane sacs. Strikingly, the LD access for HCV core and NS5A proteins was restricted in PLIN2-deficient cells, which correlated with reduced formation of intracellular HCV particles that were less infectious and of higher density, indicating defects in maturation. PLIN2 depletion also reduced protein levels and secretion of ApoE due to lysosomal degradation, but did not affect the density of ApoE-containing lipoproteins. However, ApoE overexpression in PLIN2-deficient cells did not restore HCV spreading. Thus, PLIN2 expression is required for trafficking of core and NS5A proteins to LDs, and for formation of functional low-density HCV particles prior to ApoE incorporation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Susan Lassen
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Cordula Grüttner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Van Nguyen-Dinh
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany .,Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
17
|
Alazard-Dany N, Denolly S, Boson B, Cosset FL. Overview of HCV Life Cycle with a Special Focus on Current and Possible Future Antiviral Targets. Viruses 2019; 11:v11010030. [PMID: 30621318 PMCID: PMC6356578 DOI: 10.3390/v11010030] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C infection is the leading cause of liver diseases worldwide and a major health concern that affects an estimated 3% of the global population. Novel therapies available since 2014 and 2017 are very efficient and the WHO considers HCV eradication possible by the year 2030. These treatments are based on the so-called direct acting antivirals (DAAs) that have been developed through research efforts by academia and industry since the 1990s. After a brief overview of the HCV life cycle, we describe here the functions of the different targets of current DAAs, the mode of action of these DAAs and potential future inhibitors.
Collapse
Affiliation(s)
- Nathalie Alazard-Dany
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - Solène Denolly
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
18
|
Elgner F, Hildt E, Bender D. Relevance of Rab Proteins for the Life Cycle of Hepatitis C Virus. Front Cell Dev Biol 2018; 6:166. [PMID: 30564577 PMCID: PMC6288913 DOI: 10.3389/fcell.2018.00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Although potent direct-acting antiviral drugs for the treatment of chronic hepatitis C virus (HCV) infection are licensed, there are more than 70 million individuals suffering from chronic HCV infection. In light of the limited access to these drugs, high costs, and a lot of undiagnosed cases, it is expected that the number of HCV cases will not decrease worldwide in the next years. Therefore, and due to the paradigmatic character of HCV for deciphering the crosstalk between viral pathogens and the host cell, characterization of HCV life cycle remains a challenge. HCV belongs to the family of Flaviviridae. As an enveloped virus HCV life cycle depends in many steps on intracellular trafficking. Rab GTPases, a large family of small GTPases, play a central role in intracellular trafficking processes controlling fusion, uncoating, vesicle budding, motility by recruiting specific effector proteins. This review describes the relevance of various Rab proteins for the different steps of the HCV life cycle.
Collapse
Affiliation(s)
- Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
19
|
Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Med Microbiol Immunol 2018; 208:3-24. [PMID: 30298360 DOI: 10.1007/s00430-018-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis C virus (HCV) infections affect 71 million people worldwide, often resulting in severe liver damage. Since 2014 highly efficient therapies based on directly acting antivirals (DAAs) are available, offering cure rates of almost 100%, if the infection is diagnosed in time. It took more than a decade to discover HCV in 1989 and another decade to establish a cell culture model. This review provides a personal view on the importance of HCV cell culture models, particularly the replicon system, in the process of therapy development, from drug screening to understanding of mode of action and resistance, with a special emphasis on the contributions of Ralf Bartenschlager's group. It summarizes the tremendous efforts of scientists in academia and industry required to achieve efficient DAAs, focusing on the main targets, protease, polymerase and NS5A. It furthermore underpins the importance of strong basic research laying the ground for translational medicine.
Collapse
|
20
|
Visualisation and analysis of hepatitis C virus non-structural proteins using super-resolution microscopy. Sci Rep 2018; 8:13604. [PMID: 30206266 PMCID: PMC6134135 DOI: 10.1038/s41598-018-31861-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 08/29/2018] [Indexed: 01/17/2023] Open
Abstract
Hepatitis C virus (HCV) RNA replication occurs in the cytosol of infected cells within a specialised membranous compartment. How the viral non-structural (NS) proteins are associated and organised within these structures remains poorly defined. We employed a super-resolution microscopy approach to visualise NS3 and NS5A in HCV infected cells. Using single molecule localisation microscopy, both NS proteins were resolved as clusters of localisations smaller than the diffraction-limited volume observed by wide-field. Analysis of the protein clusters identified a significant difference in size between the NS proteins. We also observed a reduction in NS5A cluster size following inhibition of RNA replication using daclatasvir, a phenotype which was maintained in the presence of the Y93H resistance associated substitution and not observed for NS3 clusters. These results provide insight into the NS protein organisation within hepatitis C virus RNA replication complexes and the mode of action of NS5A inhibitors.
Collapse
|
21
|
Shanmugam S, Nichols AK, Saravanabalaji D, Welsch C, Yi M. HCV NS5A dimer interface residues regulate HCV replication by controlling its self-interaction, hyperphosphorylation, subcellular localization and interaction with cyclophilin A. PLoS Pathog 2018; 14:e1007177. [PMID: 30036383 PMCID: PMC6072203 DOI: 10.1371/journal.ppat.1007177] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/02/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
The HCV NS5A protein plays multiple roles during viral replication, including viral genome replication and virus particle assembly. The crystal structures of the NS5A N-terminal domain indicated the potential existence of the NS5A dimers formed via at least two or more distinct dimeric interfaces. However, it is unknown whether these different forms of NS5A dimers are involved in its numerous functions. To address this question, we mutated the residues lining the two different NS5A dimer interfaces and determined their effects on NS5A self-interaction, NS5A-cyclophilin A (CypA) interaction, HCV RNA replication and infectious virus production. We found that the mutations targeting either of two dimeric interfaces disrupted the NS5A self-interaction in cells. The NS5A dimer-interrupting mutations also inhibited both viral RNA replication and infectious virus production with some genotypic differences. We also determined that reduced NS5A self-interaction was associated with altered NS5A-CypA interaction, NS5A hyperphosphorylation and NS5A subcellular localization, providing the mechanistic bases for the role of NS5A self-interaction in multiple steps of HCV replication. The NS5A oligomers formed via different interfaces are likely its functional form, since the residues at two different dimeric interfaces played similar roles in different aspects of NS5A functions and, consequently, HCV replication. In conclusion, this study provides novel insight into the functional significance of NS5A self-interaction in different steps of the HCV replication, potentially, in the form of oligomers formed via multiple dimeric interfaces. HCV NS5A is a multifunctional protein involved in both viral RNA replication and infectious virus production, and is a target of one of the most potent antivirals available to date. However, the mode of action of NS5A inhibitors is still unclear due to the lack of mechanistic detail regarding NS5A functions during HCV life cycles. In this study, we have provided evidence that surface-exposed NS5A residues involved in two different dimeric interactions in crystal structures are indeed involved in NS5A self-interactions in cells. We also showed that these NS5A residues play critical role in HCV RNA replication and infectious virus production by regulating NS5A hyperphosphorylation, its subcellular localization and its interaction with host protein CypA. Overall, our data support the functional significance of “NS5A oligomers” formed via multiple interfaces in HCV replication. We speculate that the NS5A inhibitors exploited the NS5A oligomer-dependent functions during HCV replication, rather than targeting individual NS5A, which consequently resulted in their high potency.
Collapse
Affiliation(s)
- Saravanabalaji Shanmugam
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Alyssa K. Nichols
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Dhanaranjani Saravanabalaji
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Christoph Welsch
- Department of Internal Medicine I, Goethe University, Frankfurt/Main, Germany
| | - MinKyung Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
van Buuren N, Tellinghuisen TL, Richardson CD, Kirkegaard K. Transmission genetics of drug-resistant hepatitis C virus. eLife 2018; 7:32579. [PMID: 29589830 PMCID: PMC5916564 DOI: 10.7554/elife.32579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/22/2018] [Indexed: 12/11/2022] Open
Abstract
Antiviral development is plagued by drug resistance and genetic barriers to resistance are needed. For HIV and hepatitis C virus (HCV), combination therapy has proved life-saving. The targets of direct-acting antivirals for HCV infection are NS3/4A protease, NS5A phosphoprotein and NS5B polymerase. Differential visualization of drug-resistant and -susceptible RNA genomes within cells revealed that resistant variants of NS3/4A protease and NS5A phosphoprotein are cis-dominant, ensuring their direct selection from complex environments. Confocal microscopy revealed that RNA replication complexes are genome-specific, rationalizing the non-interaction of wild-type and variant products. No HCV antivirals yet display the dominance of drug susceptibility shown for capsid proteins of other viruses. However, effective inhibitors of HCV polymerase exact such high fitness costs for drug resistance that stable genome selection is not observed. Barriers to drug resistance vary with target biochemistry and detailed analysis of these barriers should lead to the use of fewer drugs. Viruses are simple organisms that consist of genetic information and a few types of proteins. They cannot replicate on their own, and instead hijack the molecular machinery of a host cell to produce more of themselves. Inside an infected cell, the genetic information of the virus is replicated and ‘read’ to create viral proteins. These components are then assembled to form a new generation of viruses. During this process, genetic errors may occur that lead to modifications in the viral proteins, and help the virus become resistant to treatment. For instance, a viral protein that used to be targeted by a drug can change slightly and not be recognized anymore. Currently, the most efficient way to fight drug resistance is to use combination therapy, where several drugs are given at the same time. This strategy is successful, for example to treat infections with the hepatitis C virus, but it is also expensive, especially for developing countries. An alternative approach is dominant-drug targeting, which exploits the fact that both drug-resistant and drug-susceptible viruses are ‘born’ in the same cell. There, the susceptible viruses can overwhelm and ‘mask’ the benefits of the resistant ones. For example, proteins from resistant strains, which are no longer detected by a treatment, can bind to proteins from susceptible viruses; drugs will still be able to recognize these resulting viral structures. The proteins that operate in such ways are potential dominant-drug targets. However, resistant and susceptible strains can also cohabit without any contacts if their proteins do not interact with each other. Now, van Buuren et al. screen several viral proteins, including one called NS5A, to test whether a dominant drug target exists for the hepatitis C virus. Only a few molecules of a drug that targets NS5A can stop the virus from growing. In theory, drug-bound NS5A proteins could block their non-drug-bound neighbors, but when these drugs have been used on their own, resistance quickly emerged. Experiments showed that NS5A is not a dominant drug target because the drug-resistant and drug-susceptible proteins do not mix. Unless ‘forced’ in the laboratory, NS5A proteins only bind to the ones produced by the same strain of virus. This explains why resistant viruses quickly take over when NS5A drugs are the sole treatment. However, other hepatitis C proteins, such as the HCV core protein, are known to mix during the assembly of the virus, and thus are likely be dominant drug targets.
Collapse
Affiliation(s)
- Nicholas van Buuren
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | | | | | - Karla Kirkegaard
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
23
|
A role for domain I of the hepatitis C virus NS5A protein in virus assembly. PLoS Pathog 2018; 14:e1006834. [PMID: 29352312 PMCID: PMC5792032 DOI: 10.1371/journal.ppat.1006834] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/31/2018] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
The NS5A protein of hepatitis C virus (HCV) plays roles in both virus genome replication and assembly. NS5A comprises three domains, of these domain I is believed to be involved exclusively in genome replication. In contrast, domains II and III are required for the production of infectious virus particles and are largely dispensable for genome replication. Domain I is highly conserved between HCV and related hepaciviruses, and is highly structured, exhibiting different dimeric conformations. To investigate the functions of domain I in more detail, we conducted a mutagenic study of 12 absolutely conserved and surface-exposed residues within the context of a JFH-1-derived sub-genomic replicon and infectious virus. Whilst most of these abrogated genome replication, three mutants (P35A, V67A and P145A) retained the ability to replicate but showed defects in virus assembly. P35A exhibited a modest reduction in infectivity, however V67A and P145A produced no infectious virus. Using a combination of density gradient fractionation, biochemical analysis and high resolution confocal microscopy we demonstrate that V67A and P145A disrupted the localisation of NS5A to lipid droplets. In addition, the localisation and size of lipid droplets in cells infected with these two mutants were perturbed compared to wildtype HCV. Biophysical analysis revealed that V67A and P145A abrogated the ability of purified domain I to dimerize and resulted in an increased affinity of binding to HCV 3’UTR RNA. Taken together, we propose that domain I of NS5A plays multiple roles in assembly, binding nascent genomic RNA and transporting it to lipid droplets where it is transferred to Core. Domain I also contributes to a change in lipid droplet morphology, increasing their size. This study reveals novel functions of NS5A domain I in assembly of infectious HCV and provides new perspectives on the virus lifecycle. Hepatitis C virus infects 170 million people worldwide, causing long term liver disease. Recently new therapies comprising direct-acting antivirals (DAAs), small molecule inhibitors of virus proteins, have revolutionised treatment for infected patients. Despite this, we have a limited understanding of how the virus replicates in infected liver cells. Here we identify a previously uncharacterised function of the NS5A protein–a target for one class of DAAs. NS5A is comprised of three domains–we show that the first of these (domain I) plays a role in the production of new, infectious virus particles. Previously it was thought that domain I was only involved in replicating the virus genome. Mutations in domain I perturb dimer formation, enhanced binding to the 3’ end of the virus RNA genome and prevented NS5A from interacting with lipid droplets, cellular lipid storage organelles that are required for assembly of new viruses. We propose that domain I of NS5A plays multiple roles in virus assembly. As domain I is the putative target for one class of DAAs, our observations may have implications for the as yet undefined mode of action of these compounds.
Collapse
|
24
|
Sugiyama R, Murayama A, Nitta S, Yamada N, Tasaka-Fujita M, Masaki T, Aly HH, Shiina M, Ryo A, Ishii K, Wakita T, Kato T. Interferon sensitivity-determining region of hepatitis C virus influences virus production and interferon signaling. Oncotarget 2017; 9:5627-5640. [PMID: 29464023 PMCID: PMC5814163 DOI: 10.18632/oncotarget.23562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
The number of amino acid substitutions in the interferon (IFN) sensitivity-determining region (ISDR) of hepatitis C virus (HCV) NS5A is a strong predictor for the outcome of IFN-based treatment. To assess the involvement of ISDR in the HCV life cycle and to clarify the molecular mechanisms influencing IFN susceptibility, we used recombinant JFH-1 viruses with NS5A of the genotype 1b Con1 strain (JFH1/5ACon1) and with NS5A ISDR containing 7 amino acid substitutions (JFH1/5ACon1/i-7mut), and compared the virus propagation and the induction of interferon-stimulated genes (ISGs). By transfecting RNAs of these strains into HuH-7-derived cells, we found that the efficiency of infectious virus production of JFH1/5ACon1/i-7mut was attenuated compared with JFH1/5ACon1. After transfecting full-length HCV RNA into HepaRG cells, the mRNA expression of ISGs was sufficiently induced by IFN treatment in JFH1/5ACon1/i-7mut-transfected but not in JFH1/5ACon1-transfected cells. These data suggested that the NS5A-mediated inhibition of ISG induction was deteriorated by amino acid substitutions in the ISDR. In conclusion, using recombinant JFH-1 viruses, we demonstrated that HCV NS5A is associated with infectious virus production and the inhibition of IFN signaling, and amino acid substitutions in the NS5A ISDR deteriorate these functions. These observations explain the strain-specific evasion of IFN signaling by HCV.
Collapse
Affiliation(s)
- Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayuri Nitta
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Norie Yamada
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Megumi Tasaka-Fujita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Masaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Present address: Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Hussein Hassan Aly
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaaki Shiina
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Gastroenterology and Hepatology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
25
|
Denolly S, Mialon C, Bourlet T, Amirache F, Penin F, Lindenbach B, Boson B, Cosset FL. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types. PLoS Pathog 2017; 13:e1006774. [PMID: 29253880 PMCID: PMC5749900 DOI: 10.1371/journal.ppat.1006774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/02/2018] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.
Collapse
Affiliation(s)
- Solène Denolly
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Chloé Mialon
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Thomas Bourlet
- GIMAP, EA 3064, Faculté de Médecine, Université de Saint-Etienne, Univ Lyon, Saint Etienne, France
| | - Fouzia Amirache
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François Penin
- IBCP—Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Univ Lyon, Lyon, France
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
| | - Bertrand Boson
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
26
|
Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis. J Virol 2017; 92:JVI.01196-17. [PMID: 29046459 DOI: 10.1128/jvi.01196-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/28/2017] [Indexed: 01/16/2023] Open
Abstract
Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality.IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell endomembrane system to produce a membranous replication organelle (RO). The underlying mechanisms are far from being elucidated fully. In this report, we provide evidence that HCV RNA replication depends on functional lipid transport along the endosomal-lysosomal pathway that is mediated by several lipid transfer proteins, such as the Niemann-Pick type C1 (NPC1) protein. Pharmacological inhibition of NPC1 function reduced viral replication, impaired the transport of cholesterol to the viral replication organelle, and altered organelle morphology. Besides NPC1, our study reports the importance of additional endosomal and lysosomal lipid transfer proteins required for viral replication, thus contributing to our understanding of how HCV manipulates their function in order to generate a membranous replication organelle. These results might have implications for the biogenesis of replication organelles of other positive-strand RNA viruses.
Collapse
|
27
|
Spengler U. Direct antiviral agents (DAAs) - A new age in the treatment of hepatitis C virus infection. Pharmacol Ther 2017; 183:118-126. [PMID: 29024739 DOI: 10.1016/j.pharmthera.2017.10.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is a global health problem, because infection frequently leads to chronic hepatitis C eventually progressing to liver cirrhosis and liver cancer. Improved insights into the HCV replication cycle and the role of HCV non-structural proteins have recently enabled to identify drugs directly acting on specific HCV target structures. Agents from three drug classes have been developed and approved by the health authorities. Combinations of two or more drugs from different classes achieve high (>90%) HCV clearance rates and are well tolerated. This interferon-free DAA (direct antiviral agent) therapy has revolutionized antiviral therapy in hepatitis C so that successful hepatitis C treatment can be offered to virtually all patients irrespective of their co-morbidity. This review provides an overview over currently approved regimens and outlines their use in clinical practice. In addition potential short-comings of the current therapeutic options such as drug-drug interactions and selection of viral resistance are addressed. DAA combination therapy has the potential to obtain global control over hepatitis C. However, easy access to DAAs, availability of reliable HCV diagnostics, and affordable costs remain still important goals, which must be reached to globally eliminate hepatitis C.
Collapse
Affiliation(s)
- Ulrich Spengler
- Department of Internal Medicine 1, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany.
| |
Collapse
|
28
|
Hepatitis C Virus Exploits Death Receptor 6-mediated Signaling Pathway to Facilitate Viral Propagation. Sci Rep 2017; 7:6445. [PMID: 28743875 PMCID: PMC5527075 DOI: 10.1038/s41598-017-06740-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
The life cycle of hepatitis C virus (HCV) is highly dependent on host proteins for virus propagation. By transcriptome sequencing analysis, we identified host genes that were highly differentially expressed in HCV-infected cells. Of these candidates, we selected Death receptor 6 (DR6) for further characterization. DR6 is an orphan member of the tumor necrosis factor receptor superfamily. In the present study, we demonstrated that both mRNA and protein levels of DR6 were increased in the context of HCV replication. We further showed that promoter activity of DR6 was increased by HCV infection. By employing promoter-linked reporter assay, we showed that HCV upregulated DR6 via ROS-mediated NF-κB pathway. Both mRNA and protein levels of DR6 were increased by NS4B or NS5A. However, NS5A but not NS4B specifically interacted with DR6. We showed that HCV modulated JNK, p38 MAPK, STAT3, and Akt signaling pathways in a DR6-dependent manner. Interestingly, Akt signaling cascade was regulated by protein interplay between DR6 and NS5A. Silencing of DR6 expression resulted in decrease of infectious HCV production without affecting viral entry, replication, and translation. Together, these data indicate that HCV modulates DR6 signaling pathway for viral propagation and may contribute to HCV-mediated pathogenesis.
Collapse
|
29
|
Badillo A, Receveur-Brechot V, Sarrazin S, Cantrelle FX, Delolme F, Fogeron ML, Molle J, Montserret R, Bockmann A, Bartenschlager R, Lohmann V, Lippens G, Ricard-Blum S, Hanoulle X, Penin F. Overall Structural Model of NS5A Protein from Hepatitis C Virus and Modulation by Mutations Confering Resistance of Virus Replication to Cyclosporin A. Biochemistry 2017; 56:3029-3048. [PMID: 28535337 DOI: 10.1021/acs.biochem.7b00212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a RNA-binding phosphoprotein composed of a N-terminal membrane anchor (AH), a structured domain 1 (D1), and two intrinsically disordered domains (D2 and D3). The knowledge of the functional architecture of this multifunctional protein remains limited. We report here that NS5A-D1D2D3 produced in a wheat germ cell-free system is obtained under a highly phosphorylated state. Its NMR analysis revealed that these phosphorylations do not change the disordered nature of D2 and D3 domains but increase the number of conformers due to partial phosphorylations. By combining NMR and small angle X-ray scattering, we performed a comparative structural characterization of unphosphorylated recombinant D2 domains of JFH1 (genotype 2a) and the Con1 (genotype 1b) strains produced in Escherichia coli. These analyses highlighted a higher intrinsic folding of the latter, revealing the variability of intrinsic conformations in HCV genotypes. We also investigated the effect of D2 mutations conferring resistance of HCV replication to cyclophilin A (CypA) inhibitors on the structure of the recombinant D2 Con1 mutants and their binding to CypA. Although resistance mutations D320E and R318W could induce some local and/or global folding perturbation, which could thus affect the kinetics of conformer interconversions, they do not significantly affect the kinetics of CypA/D2 interaction measured by surface plasmon resonance (SPR). The combination of all our data led us to build a model of the overall structure of NS5A, which provides a useful template for further investigations of the structural and functional features of this enigmatic protein.
Collapse
Affiliation(s)
- Aurelie Badillo
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | | | - Stéphane Sarrazin
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - François-Xavier Cantrelle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - Frédéric Delolme
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Jennifer Molle
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Anja Bockmann
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg , Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg , Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Guy Lippens
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| |
Collapse
|
30
|
Boson B, Denolly S, Turlure F, Chamot C, Dreux M, Cosset FL. Daclatasvir Prevents Hepatitis C Virus Infectivity by Blocking Transfer of the Viral Genome to Assembly Sites. Gastroenterology 2017; 152:895-907.e14. [PMID: 27932311 DOI: 10.1053/j.gastro.2016.11.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Daclatasvir is a direct-acting antiviral agent and potent inhibitor of NS5A, which is involved in replication of the hepatitis C virus (HCV) genome, presumably via membranous web shaping, and assembly of new virions, likely via transfer of the HCV RNA genome to viral particle assembly sites. Daclatasvir inhibits the formation of new membranous web structures and, ultimately, of replication complex vesicles, but also inhibits an early assembly step. We investigated the relationship between daclatasvir-induced clustering of HCV proteins, intracellular localization of viral RNAs, and inhibition of viral particle assembly. METHODS Cell-culture-derived HCV particles were produced from Huh7.5 hepatocarcinoma cells in presence of daclatasvir for short time periods. Infectivity and production of physical particles were quantified and producer cells were subjected to subcellular fractionation. Intracellular colocalization between core, E2, NS5A, NS4B proteins, and viral RNAs was quantitatively analyzed by confocal microscopy and by structured illumination microscopy. RESULTS Short exposure of HCV-infected cells to daclatasvir reduced viral assembly and induced clustering of structural proteins with non-structural HCV proteins, including core, E2, NS4B, and NS5A. These clustered structures appeared to be inactive assembly platforms, likely owing to loss of functional connection with replication complexes. Daclatasvir greatly reduced delivery of viral genomes to these core clusters without altering HCV RNA colocalization with NS5A. In contrast, daclatasvir neither induced clustered structures nor inhibited HCV assembly in cells infected with a daclatasvir-resistant mutant (NS5A-Y93H), indicating that daclatasvir targets a mutual, specific function of NS5A inhibiting both processes. CONCLUSIONS In addition to inhibiting replication complex biogenesis, daclatasvir prevents viral assembly by blocking transfer of the viral genome to assembly sites. This leads to clustering of HCV proteins because viral particles and replication complex vesicles cannot form or egress. This dual mode of action of daclatasvir could explain its efficacy in blocking HCV replication in cultured cells and in treatment of patients with HCV infection.
Collapse
Affiliation(s)
- Bertrand Boson
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Solène Denolly
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Fanny Turlure
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Christophe Chamot
- Plateau Technique Imagerie/Microcopie, Lyon Bio Image, SFR-BioSciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL, France
| | - Marlène Dreux
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France.
| |
Collapse
|
31
|
Falcón V, Acosta-Rivero N, González S, Dueñas-Carrera S, Martinez-Donato G, Menéndez I, Garateix R, Silva JA, Acosta E, Kourı J. Ultrastructural and biochemical basis for hepatitis C virus morphogenesis. Virus Genes 2017; 53:151-164. [PMID: 28233195 DOI: 10.1007/s11262-017-1426-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/06/2017] [Indexed: 12/16/2022]
Abstract
Chronic infection with HCV is a leading cause of cirrhosis, hepatocellular carcinoma and liver failure. One of the least understood steps in the HCV life cycle is the morphogenesis of new viral particles. HCV infection alters the lipid metabolism and generates a variety of microenvironments in the cell cytoplasm that protect viral proteins and RNA promoting viral replication and assembly. Lipid droplets (LDs) have been proposed to link viral RNA synthesis and virion assembly by physically associating these viral processes. HCV assembly, envelopment, and maturation have been shown to take place at specialized detergent-resistant membranes in the ER, rich in cholesterol and sphingolipids, supporting the synthesis of luminal LDs-containing ApoE. HCV assembly involves a regulated allocation of viral and host factors to viral assembly sites. Then, virus budding takes place through encapsidation of the HCV genome and viral envelopment in the ER. Interaction of ApoE with envelope proteins supports the viral particle acquisition of lipids and maturation. HCV secretion has been suggested to entail the ion channel activity of viral p7, several components of the classical trafficking and autophagy pathways, ESCRT, and exosome-mediated export of viral RNA. Here, we review the most recent advances in virus morphogenesis and the interplay between viral and host factors required for the formation of HCV virions.
Collapse
Affiliation(s)
- Viviana Falcón
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba.
| | - Nelson Acosta-Rivero
- National Center for Scientific Research, P.O. Box 6414, 10600, Havana, Cuba. .,Centre for Protein Studies, Faculty of Biology, University of Havana, 10400, Havana, Cuba.
| | | | | | | | - Ivon Menéndez
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Rocio Garateix
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - José A Silva
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | | | | |
Collapse
|
32
|
Bukh J. The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol 2016; 65:S2-S21. [PMID: 27641985 DOI: 10.1016/j.jhep.2016.07.035] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
Abstract
The discovery of hepatitis C virus (HCV) in 1989 permitted basic research to unravel critical components of a complex life cycle for this important human pathogen. HCV is a highly divergent group of viruses classified in 7 major genotypes and a great number of subtypes, and circulating in infected individuals as a continuously evolving quasispecies destined to escape host immune responses and applied antivirals. Despite the inability to culture patient viruses directly in the laboratory, efforts to define the infectious genome of HCV resulted in development of experimental recombinant in vivo and in vitro systems, including replicons and infectious cultures in human hepatoma cell lines. And HCV has become a model virus defining new paradigms in virology, immunology and biology. For example, HCV research discovered that a virus could be completely dependent on microRNA for its replication since microRNA-122 is critical for the HCV life cycle. A number of other host molecules critical for HCV entry and replication have been identified. Thus, basic HCV research revealed important molecules for development of host targeting agents (HTA). The identification and characterization of HCV encoded proteins and their functional units contributed to the development of highly effective direct acting antivirals (DAA) against the NS3 protease, NS5A and the NS5B polymerase. In combination, these inhibitors have since 2014 permitted interferon-free therapy with cure rates above 90% among patients with chronic HCV infection; however, viral resistance represents a challenge. Worldwide control of HCV will most likely require the development of a prophylactic vaccine, and numerous candidates have been pursued. Research characterizing features critical for antibody-based virus neutralization and T cell based virus elimination from infected cells is essential for this effort. If the world community promotes an ambitious approach by applying current DAA broadly, continues to develop alternative viral- and host- targeted antivirals to combat resistant variants, and invests in the development of a vaccine, it would be possible to eradicate HCV. This would prevent about 500 thousand deaths annually. However, given the nature of HCV, the millions of new infections annually, a high chronicity rate, and with over 150 million individuals with chronic infection (which are frequently unidentified), this effort remains a major challenge for basic researchers, clinicians and communities.
Collapse
Affiliation(s)
- Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|