1
|
Obergfäll D, Wild M, Sommerer M, Barillas Dahm M, Kicuntod J, Tillmanns J, Kögler M, Lösing J, Dhotre K, Müller R, Wangen C, Wagner S, Phan QV, Wiebusch L, Briestenská K, Mistríková J, Kerr-Jones L, Stanton RJ, Voigt S, Hahn F, Marschall M. Cyclin-Dependent Kinase 8 Represents a Positive Regulator of Cytomegalovirus Replication and a Novel Host Target for Antiviral Strategies. Pharmaceutics 2024; 16:1238. [PMID: 39339274 PMCID: PMC11435438 DOI: 10.3390/pharmaceutics16091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Background. Cyclin-dependent kinase 8 (CDK8) is a multifaceted regulator and represents a catalytic component of the transcriptional Mediator complex. CDK8 activity, on the one hand, increases transcriptional elongation by the recruitment of Mediator/super elongation complexes, but, on the other hand, negatively regulates CDK7-controlled transcriptional initiation through inactivating cyclin H phosphorylation. Recently, these combined properties of CDK8 have also suggested its rate-limiting importance for herpesviral replication. Objectives. In this paper, we focused on human cytomegalovirus (HCMV) and addressed the question of whether the pharmacological inhibition or knock-down of CDK8 may affect viral replication efficiency in cell culture models. Methods. A number of human and animal herpesviruses, as well as non-herpesviruses, were used to analyze the importance of CDK8 for viral replication in cell culture models, and to assess the antiviral efficacy of CDK8 inhibitors. Results. Using clinically relevant CDK8 inhibitors (CCT-251921, MSC-2530818, and BI-1347), HCMV replication was found strongly reduced even at nanomolar drug concentrations. The EC50 values were consistent for three different HCMV strains (i.e., AD169, TB40, and Merlin) analyzed in two human cell types (i.e., primary fibroblasts and astrocytoma cells), and the drugs comprised a low level of cytotoxicity. The findings highlighted the following: (i) the pronounced in vitro SI values of anti-HCMV activity obtained with CDK8 inhibitors; (ii) a confirmation of the anti-HCMV efficacy by CDK8-siRNA knock-down; (iii) a CDK8-dependent reduction in viral immediate early, early, and late protein levels; (iv) a main importance of CDK8 for viral late-stage replication; (v) several mechanistic aspects, which point to a strong impact on viral progeny production and release, but a lack of CDK8 relevance for viral entry or nuclear egress; (vi) a significant anti-HCMV drug synergy for combinations of inhibitors against host CDK8 and the viral kinase vCDK/pUL97 (maribavir); (vii) finally, a broad-spectrum antiviral activity, as seen for the comparison of selected α-, β-, γ-, and non-herpesviruses. Conclusions. In summary, these novel data provide evidence for the importance of CDK8 as a positive regulator of herpesviral replication efficiency, and moreover, suggest its exploitability as an antiviral target for novel strategies of host-directed drug development.
Collapse
Affiliation(s)
- Debora Obergfäll
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Mona Sommerer
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Malena Barillas Dahm
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Melanie Kögler
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Kishore Dhotre
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Regina Müller
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Quang V. Phan
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (Q.V.P.); (L.W.)
- Richard Sherwood Laboratory, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Lüder Wiebusch
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; (Q.V.P.); (L.W.)
| | - Katarína Briestenská
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (K.B.); (J.M.)
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia
| | - Jela Mistríková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (K.B.); (J.M.)
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia
| | - Lauren Kerr-Jones
- Division of Infection & Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK; (L.K.-J.); (R.J.S.)
| | - Richard J. Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK; (L.K.-J.); (R.J.S.)
| | - Sebastian Voigt
- University Clinical Center Essen (Universitätsklinikum, AöR), Institute for Virology, Virchowstr. 179, 45147 Essen, Germany;
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (D.O.); (M.W.); (M.S.); (M.B.D.); (J.K.); (J.T.); (M.K.); (J.L.); (K.D.); (R.M.); (C.W.); (S.W.); (F.H.)
| |
Collapse
|
2
|
Marschall M, Schütz M, Wild M, Socher E, Wangen C, Dhotre K, Rawlinson WD, Sticht H. Understanding the Cytomegalovirus Cyclin-Dependent Kinase Ortholog pUL97 as a Multifaceted Regulator and an Antiviral Drug Target. Cells 2024; 13:1338. [PMID: 39195228 PMCID: PMC11352327 DOI: 10.3390/cells13161338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Herpesviral protein kinases, such as the therapy-relevant pUL97 of human cytomegalovirus (HCMV), are important for viral replication efficiency as well as pathogenesis, and represent key antiviral drug targets. HCMV pUL97 is a viral cyclin-dependent kinase (CDK) ortholog, as it shares functional and structural properties with human CDKs. Recently, the formation of vCDK/pUL97-cyclin complexes and the phosphorylation of a variety of viral and cellular substrate proteins has been demonstrated. Genetic mapping and structural modeling approaches helped to define two pUL97 interfaces, IF1 and IF2, responsible for cyclin binding. In particular, the regulatory importance of interactions between vCDK/pUL97 and host cyclins as well as CDKs has been highlighted, both as determinants of virus replication and as a novel drug-targeting option. This aspect was substantiated by the finding that virus replication was impaired upon cyclin type H knock-down, and that such host-directed interference also affected viruses resistant to existing therapies. Beyond the formation of binary interactive complexes, a ternary pUL97-cyclin H-CDK7 complex has also been described, and in light of this, an experimental trans-stimulation of CDK7 activity by pUL97 appeared crucial for virus-host coregulation. In accordance with this understanding, several novel antiviral targeting options have emerged. These include kinase inhibitors directed to pUL97, to host CDKs, and to the pUL97-cyclin H interactive complexes. Importantly, a statistically significant drug synergy has recently been reported for antiviral treatment schemes using combinations of pharmacologically relevant CDK7 and vCDK/pUL97 inhibitors, including maribavir. Combined, such findings provide increased options for anti-HCMV control. This review focuses on regulatory interactions of vCDK/pUL97 with the host cyclin-CDK apparatus, and it addresses the functional relevance of these key effector complexes for viral replication and pathogenesis. On this basis, novel strategies of antiviral drug targeting are defined.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - Kishore Dhotre
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.S.); (M.W.); (C.W.); (K.D.)
| | - William D. Rawlinson
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Biomedical Sciences, Women’s and Children’s Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney 2050, Australia;
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, 91054 Erlangen, Germany;
| |
Collapse
|
3
|
Tillmanns J, Kicuntod J, Lösing J, Marschall M. 'Getting Better'-Is It a Feasible Strategy of Broad Pan-Antiherpesviral Drug Targeting by Using the Nuclear Egress-Directed Mechanism? Int J Mol Sci 2024; 25:2823. [PMID: 38474070 DOI: 10.3390/ijms25052823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Tillmanns J, Häge S, Borst EM, Wardin J, Eickhoff J, Klebl B, Wagner S, Wangen C, Hahn F, Socher E, Marschall M. Assessment of Covalently Binding Warhead Compounds in the Validation of the Cytomegalovirus Nuclear Egress Complex as an Antiviral Target. Cells 2023; 12:cells12081162. [PMID: 37190072 DOI: 10.3390/cells12081162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Herpesviral nuclear egress is a regulated process of viral capsid nucleocytoplasmic release. Due to the large capsid size, a regular transport via the nuclear pores is unfeasible, so that a multistage-regulated export pathway through the nuclear lamina and both leaflets of the nuclear membrane has evolved. This process involves regulatory proteins, which support the local distortion of the nuclear envelope. For human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the pUL50-pUL53 core that initiates multicomponent assembly with NEC-associated proteins and capsids. The transmembrane NEC protein pUL50 serves as a multi-interacting determinant that recruits regulatory proteins by direct and indirect contacts. The nucleoplasmic core NEC component pUL53 is strictly associated with pUL50 in a structurally defined hook-into-groove complex and is considered as the potential capsid-binding factor. Recently, we validated the concept of blocking the pUL50-pUL53 interaction by small molecules as well as cell-penetrating peptides or an overexpression of hook-like constructs, which can lead to a pronounced degree of antiviral activity. In this study, we extended this strategy by utilizing covalently binding warhead compounds, originally designed as binders of distinct cysteine residues in target proteins, such as regulatory kinases. Here, we addressed the possibility that warheads may likewise target viral NEC proteins, building on our previous crystallization-based structural analyses that revealed distinct cysteine residues in positions exposed from the hook-into-groove binding surface. To this end, the antiviral and NEC-binding properties of a selection of 21 warhead compounds were investigated. The combined findings are as follows: (i) warhead compounds exhibited a pronounced anti-HCMV potential in cell-culture-based infection models; (ii) computational analysis of NEC primary sequences and 3D structures revealed cysteine residues exposed to the hook-into-groove interaction surface; (iii) several of the active hit compounds exhibited NEC-blocking activity, as shown at the single-cell level by confocal imaging; (iv) the clinically approved warhead drug ibrutinib exerted a strong inhibitory impact on the pUL50-pUL53 core NEC interaction, as demonstrated by the NanoBiT assay system; and (v) the generation of recombinant HCMV ∆UL50-ΣUL53, allowing the assessment of viral replication under conditional expression of the viral core NEC proteins, was used for characterizing viral replication and a mechanistic evaluation of ibrutinib antiviral efficacy. Combined, the results point to a rate-limiting importance of the HCMV core NEC for viral replication and to the option of exploiting this determinant by the targeting of covalently NEC-binding warhead compounds.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Wardin
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH (LDC), 44227 Dortmund, Germany
- The Norwegian College of Fishery Science UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, FAU, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
5
|
Kicuntod J, Häge S, Lösing J, Kopar S, Muller YA, Marschall M. An antiviral targeting strategy based on the inducible interference with cytomegalovirus nuclear egress complex. Antiviral Res 2023; 212:105557. [PMID: 36796541 DOI: 10.1016/j.antiviral.2023.105557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The nucleocytoplasmic capsid egress of herpesviruses like the human cytomegalovirus (HCMV) is based on a uniquely regulated process. The core nuclear egress complex (NEC) of HCMV, represented by the pUL50-pUL53 heterodimer, is able to oligomerize and thus to build hexameric lattices. Recently, we and others validated the NEC as a novel target for antiviral strategies. So far, the experimental targeting approaches included the development of NEC-directed small molecules, cell-penetrating peptides and NEC-directed mutagenesis. Our postulate states that an interference with the hook-into-groove interaction of pUL50-pUL53 prevents NEC formation and strictly limits viral replication efficiency. Here, we provide an experimental proof-of-concept of the antiviral strategy: the inducible intracellular expression of a NLS-Hook-GFP construct exerted a pronounced level of antiviral activity. The data provide evidence for the following points: (i) generation of a primary fibroblast population with inducible NLS-Hook-GFP expression showed nuclear localization of the construct, (ii) interaction between NLS-Hook-GFP and the viral core NEC was found specific for cytomegaloviruses but not for other herpesviruses, (iii) construct overexpression exerted a strong antiviral activity against three strains of HCMV, (iv) confocal imaging demonstrated the interference with NEC nuclear rim formation in HCMV-infected cells, and (v) quantitative nuclear egress assay confirmed the block of viral nucleocytoplasmic transition and, consequently, an inhibitory effect onto viral cytoplasmic virion assembly complex (cVAC). Combined, data confirmed that the specific interference with protein-protein interaction of the HCMV core NEC represents an efficient antiviral targeting strategy.
Collapse
Affiliation(s)
- Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Serli Kopar
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, FAU, Erlangen, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
6
|
Saeed U, Piracha ZZ. PIN1 and PIN4 inhibition via parvulin impeders Juglone, PiB, ATRA, 6,7,4'-THIF, KPT6566, and EGCG thwarted hepatitis B virus replication. Front Microbiol 2023; 14:921653. [PMID: 36760500 PMCID: PMC9905731 DOI: 10.3389/fmicb.2023.921653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Human parvulin peptidyl prolyl cis/trans isomerases PIN1 and PIN4 play important roles in cell cycle progression, DNA binding, protein folding and chromatin remodeling, ribosome biogenesis, and tubulin polymerization. In this article, we found that endogenous PIN1 and PIN4 were upregulated in selected hepatocellular carcinoma (HCC) cell lines. Methods In this study, we inhibited PIN1 and PIN4 via parvulin inhibitors (Juglone, PiB, ATRA, 6,7,4'-THIF, KPT6566, and EGCG). The native agarose gel electrophoresis (NAGE) immunoblotting analysis revealed that upon PIN1 and/ or PIN4 inhibition, the HBc protein expression and core particle or capsid synthesis reduced remarkably. The effects of PIN4 inhibition on hepatitis B virus (HBV) replication were more pronounced as compared to that of PIN1. The Northern and Southern blotting revealed reduced HBV RNA and DNA levels. Results During the HBV course of infection, Juglone, PiB, ATRA, 6,7,4'-THIF, KPT6566, and EGCG-mediated inhibition of PIN1 and PIN4 significantly lowered HBV transcriptional activities without affecting total levels of covalently closed circular DNA (cccDNA). Similar to the inhibitory effects of PIN1 and PIN4 on HBV replication, the knockdown of PIN1 and PIN4 in HBV infection cells revealed significantly reduced amounts of intracellular HBc, HBs, HBV pgRNA, SmRNAs, core particles, and HBV DNA synthesis. Similarly, PIN1 and PIN4 KD abrogated extracellular virion release, naked capsid levels, and HBV DNA levels. In comparison with PIN1 KD, the PIN4 KD showed reduced HBc and/or core particle stabilities, indicating that PIN4 is more critically involved in HBV replication. Chromatin immunoprecipitation (ChIP) assays revealed that in contrast to DNA binding PIN4 proteins, the PIN1 did not show binding to cccDNA. Similarly, upon PIN1 KD, the HBc recruitment to cccDNA remained unaffected. However, PIN4 KD significantly abrogated PIN4 binding to cccDNA, followed by HBc recruitment to cccDNA and restricted HBV transcriptional activities. These effects were more pronounced in PIN4 KD cells upon drug treatment in HBV-infected cells. Conclusion The comparative analysis revealed that in contrast to PIN1, PIN4 is more critically involved in enhancing HBV replication. Thus, PIN1 and PIN4 inhibition or knockdown might be novel therapeutic targets to suppress HBV infection. targets to suppress HBV infection.
Collapse
|
7
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Kanna M, Nakatsu Y, Yamamotoya T, Encinas J, Ito H, Okabe T, Asano T, Sakaguchi T. Roles of peptidyl prolyl isomerase Pin1 in viral propagation. Front Cell Dev Biol 2022; 10:1005325. [PMID: 36393854 PMCID: PMC9642847 DOI: 10.3389/fcell.2022.1005325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
Peptidyl-prolyl isomerase (PPIase) is a unique enzyme that promotes cis-trans isomerization of a proline residue of a target protein. Peptidyl-prolyl cis-trans isomerase NIMA (never in mitosis A)-interacting 1 (Pin1) is a PPIase that binds to the pSer/pThr-Pro motif of target proteins and isomerizes their prolines. Pin1 has been reported to be involved in cancer development, obesity, aging, and Alzheimer's disease and has been shown to promote the growth of several viruses including SARS-CoV-2. Pin1 enhances the efficiency of viral infection by promoting uncoating and integration of the human immunodeficiency virus. It has also been shown that Pin1 interacts with hepatitis B virus proteins and participates in viral replication. Furthermore, Pin1 promotes not only viral proliferation but also the progression of virus-induced tumorigenesis. In this review, we focus on the effects of Pin1 on the proliferation of various viruses and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Machi Kanna
- Department of Biomedical Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Japan
| | - Yusuke Nakatsu
- Department of Biomedical Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Japan
| | - Takeshi Yamamotoya
- Department of Biomedical Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Japan
| | | | - Hisanaka Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Tomoichiro Asano
- Department of Biomedical Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Japan
| |
Collapse
|
9
|
‘Come Together’—The Regulatory Interaction of Herpesviral Nuclear Egress Proteins Comprises both Essential and Accessory Functions. Cells 2022; 11:cells11111837. [PMID: 35681532 PMCID: PMC9180862 DOI: 10.3390/cells11111837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Herpesviral nuclear egress is a fine-tuned regulatory process that defines the nucleocytoplasmic release of viral capsids. Nuclear capsids are unable to traverse via nuclear pores due to the fact of their large size; therefore, herpesviruses evolved to develop a vesicular transport pathway mediating the transition across the two leaflets of the nuclear membrane. The entire process involves a number of regulatory proteins, which support the local distortion of the nuclear envelope. In the case of the prototype species of β-Herpesvirinae, the human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the core proteins pUL50 and pUL53 that oligomerize, form capsid docking lattices and mediate multicomponent assembly with NEC-associated viral and cellular proteins. The NEC-binding principle is based on the hook-into-groove interaction through an N-terminal hook-like pUL53 protrusion that embraces an α-helical pUL50 binding groove. Thus far, the function and characteristics of herpesviral core NECs have been well studied and point to the groove proteins, such as pUL50, as the multi-interacting, major determinants of NEC formation and egress. This review provides closer insight into (i) sequence and structure conservation of herpesviral core NEC proteins, (ii) experimentation on cross-viral core NEC interactions, (iii) the essential functional roles of hook and groove proteins for viral replication, (iv) an establishment of assay systems for NEC-directed antiviral research and (v) the validation of NEC as putative antiviral drug targets. Finally, this article provides new insights into the conservation, function and antiviral targeting of herpesviral core NEC proteins and, into the complex regulatory role of hook and groove proteins during the assembly, egress and maturation of infectious virus.
Collapse
|
10
|
Zheng M, Jin G, Zhou Z. Post-Translational Modification of Lamins: Mechanisms and Functions. Front Cell Dev Biol 2022; 10:864191. [PMID: 35656549 PMCID: PMC9152177 DOI: 10.3389/fcell.2022.864191] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Lamins are the ancient type V intermediate filament proteins contributing to diverse biological functions, such as the maintenance of nuclear morphology, stabilization of chromatin architecture, regulation of cell cycle progression, regulation of spatial-temporal gene expressions, and transduction of mechano-signaling. Deregulation of lamins is associated with abnormal nuclear morphology and chromatin disorganization, leading to a variety of diseases such as laminopathy and premature aging, and might also play a role in cancer. Accumulating evidence indicates that lamins are functionally regulated by post-translational modifications (PTMs) including farnesylation, phosphorylation, acetylation, SUMOylation, methylation, ubiquitination, and O-GlcNAcylation that affect protein stabilization and the association with chromatin or associated proteins. The mechanisms by which these PTMs are modified and the relevant functionality become increasingly appreciated as understanding of these changes provides new insights into the molecular mechanisms underlying the laminopathies concerned and novel strategies for the management. In this review, we discussed a range of lamin PTMs and their roles in both physiological and pathological processes, as well as potential therapeutic strategies by targeting lamin PTMs.
Collapse
Affiliation(s)
- Mingyue Zheng
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guoxiang Jin
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
The Oligomeric Assemblies of Cytomegalovirus Core Nuclear Egress Proteins Are Associated with Host Kinases and Show Sensitivity to Antiviral Kinase Inhibitors. Viruses 2022; 14:v14051021. [PMID: 35632762 PMCID: PMC9146606 DOI: 10.3390/v14051021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
The nucleo-cytoplasmic capsid egress of herpesviruses is a unique regulated process that ensures the efficiency of viral replication and release. For human cytomegalovirus (HCMV), the core of the nuclear egress complex (NEC) consists of the pUL50–pUL53 heterodimer that is able to oligomerize and thus to build hexameric lattices. These structures determine capsid binding and multicomponent protein interaction including NEC-associated host factors. The underlying characteristic of the core NEC formation is based on the N-terminal hook structure of pUL53 that binds into an alpha-helical groove of pUL50, and is thus described as a hook-into-groove interaction. This central regulatory element has recently been validated as a target of antiviral strategies, and first NEC-targeted prototypes of inhibitory small molecules were reported by our previous study. Here, we further analyzed the oligomerization properties of the viral NEC through an approach of chemical protein cross-linking. Findings were as follows: (i) a cross-link approach demonstrated the oligomeric state of the HCMV core NEC using material from HCMV-infected or plasmid-transfected cells, (ii) a Western blot-based identification of NEC-associated kinases using the cross-linked multicomponent NECs was successful, and (iii) we demonstrated the NEC-inhibitory and antiviral activity of specific inhibitors directed to these target kinases. Combined, the results strongly underline the functional importance of the oligomerization of the HCMV-specific NEC that is both phosphorylation-dependent and sensitive to antiviral kinase inhibitors.
Collapse
|
12
|
Horníková L, Bruštíková K, Huérfano S, Forstová J. Nuclear Cytoskeleton in Virus Infection. Int J Mol Sci 2022; 23:ijms23010578. [PMID: 35009004 PMCID: PMC8745530 DOI: 10.3390/ijms23010578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
The nuclear lamina is the main component of the nuclear cytoskeleton that maintains the integrity of the nucleus. However, it represents a natural barrier for viruses replicating in the cell nucleus. The lamina blocks viruses from being trafficked to the nucleus for replication, but it also impedes the nuclear egress of the progeny of viral particles. Thus, viruses have evolved mechanisms to overcome this obstacle. Large viruses induce the assembly of multiprotein complexes that are anchored to the inner nuclear membrane. Important components of these complexes are the viral and cellular kinases phosphorylating the lamina and promoting its disaggregation, therefore allowing virus egress. Small viruses also use cellular kinases to induce lamina phosphorylation and the subsequent disruption in order to facilitate the import of viral particles during the early stages of infection or during their nuclear egress. Another component of the nuclear cytoskeleton, nuclear actin, is exploited by viruses for the intranuclear movement of their particles from the replication sites to the nuclear periphery. This study focuses on exploitation of the nuclear cytoskeleton by viruses, although this is just the beginning for many viruses, and promises to reveal the mechanisms and dynamic of physiological and pathological processes in the nucleus.
Collapse
|
13
|
Sanchez V, Britt W. Human Cytomegalovirus Egress: Overcoming Barriers and Co-Opting Cellular Functions. Viruses 2021; 14:v14010015. [PMID: 35062219 PMCID: PMC8778548 DOI: 10.3390/v14010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
The assembly of human cytomegalovirus (HCMV) and other herpesviruses includes both nuclear and cytoplasmic phases. During the prolonged replication cycle of HCMV, the cell undergoes remarkable changes in cellular architecture that include marked increases in nuclear size and structure as well as the reorganization of membranes in cytoplasm. Similarly, significant changes occur in cellular metabolism, protein trafficking, and cellular homeostatic functions. These cellular modifications are considered integral in the efficient assembly of infectious progeny in productively infected cells. Nuclear egress of HCMV nucleocapsids is thought to follow a pathway similar to that proposed for other members of the herpesvirus family. During this process, viral nucleocapsids must overcome structural barriers in the nucleus that limit transit and, ultimately, their delivery to the cytoplasm for final assembly of progeny virions. HCMV, similar to other herpesviruses, encodes viral functions that co-opt cellular functions to overcome these barriers and to bridge the bilaminar nuclear membrane. In this brief review, we will highlight some of the mechanisms that define our current understanding of HCMV egress, relying heavily on the current understanding of egress of the more well-studied α-herpesviruses, HSV-1 and PRV.
Collapse
Affiliation(s)
- Veronica Sanchez
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35294, USA;
- Correspondence:
| | - William Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35294, USA;
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Häge S, Büscher N, Pakulska V, Hahn F, Adrait A, Krauter S, Borst EM, Schlötzer-Schrehardt U, Couté Y, Plachter B, Marschall M. The Complex Regulatory Role of Cytomegalovirus Nuclear Egress Protein pUL50 in the Production of Infectious Virus. Cells 2021; 10:3119. [PMID: 34831342 PMCID: PMC8625744 DOI: 10.3390/cells10113119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
The regulation of the nucleocytoplasmic release of herpesviral capsids is defined by the process of nuclear egress. Due to their large size, nuclear capsids are unable to traverse via nuclear pores, so that herpesviruses evolved to develop a vesicular transport pathway mediating their transition through both leaflets of the nuclear membrane. This process involves regulatory proteins, which support the local distortion of the nuclear envelope. For human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the pUL50-pUL53 core that initiates multicomponent assembly with NEC-associated proteins and capsids. Hereby, pUL50 serves as a multi-interacting determinant that recruits several viral and cellular factors by direct and indirect contacts. Recently, we generated an ORF-UL50-deleted recombinant HCMV in pUL50-complementing cells and obtained first indications of putative additional functions of pUL50. In this study, we produced purified ΔUL50 particles under both complementing (ΔUL50C) and non-complementing (ΔUL50N) conditions and performed a phenotypical characterization. Findings were as follows: (i) ΔUL50N particle preparations exhibited a clear replicative defect in qPCR-based infection kinetics compared to ΔUL50C particles; (ii) immuno-EM analysis of ΔUL50C did not reveal major changes in nuclear distribution of pUL53 and lamin A/C; (iii) mass spectrometry-based quantitative proteomics showed a large concordance of protein contents in the NIEP fractions of ΔUL50C and ΔUL50N particles, but virion fraction was close to the detection limit for ΔUL50N; (iv) confocal imaging of viral marker proteins of immediate early (IE) and later phases of ΔUL50N infection indicated a very low number of cells showing an onset of viral lytic protein expression; and, finally (v) quantitative measurements of encapsidated genomes provided evidence for a substantial reduction in the DNA contents in ΔUL50N compared to ΔUL50C particles. In summary, the results point to a complex and important regulatory role of the HCMV nuclear egress protein pUL50 in the maturation of infectious virus.
Collapse
Affiliation(s)
- Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Nicole Büscher
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (N.B.); (S.K.); (B.P.)
| | - Victoria Pakulska
- Institut National de la Santé et de la Recherche Médicale (INSERM), University Grenoble Alpes, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (V.P.); (A.A.); (Y.C.)
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Annie Adrait
- Institut National de la Santé et de la Recherche Médicale (INSERM), University Grenoble Alpes, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (V.P.); (A.A.); (Y.C.)
| | - Steffi Krauter
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (N.B.); (S.K.); (B.P.)
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School (MHH), 30625 Hannover, Germany;
| | | | - Yohann Couté
- Institut National de la Santé et de la Recherche Médicale (INSERM), University Grenoble Alpes, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (V.P.); (A.A.); (Y.C.)
| | - Bodo Plachter
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (N.B.); (S.K.); (B.P.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| |
Collapse
|
15
|
Napoletano F, Ferrari Bravo G, Voto IAP, Santin A, Celora L, Campaner E, Dezi C, Bertossi A, Valentino E, Santorsola M, Rustighi A, Fajner V, Maspero E, Ansaloni F, Cancila V, Valenti CF, Santo M, Artimagnella OB, Finaurini S, Gioia U, Polo S, Sanges R, Tripodo C, Mallamaci A, Gustincich S, d'Adda di Fagagna F, Mantovani F, Specchia V, Del Sal G. The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress. Cell Rep 2021; 36:109694. [PMID: 34525372 DOI: 10.1016/j.celrep.2021.109694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 01/24/2023] Open
Abstract
Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer's disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood. Here we show that PIN1, the only phosphorylation-specific cis/trans prolyl isomerase, whose loss is associated with premature aging and AD, is essential to preserve heterochromatin. We demonstrate that this PIN1 function is conserved from Drosophila to humans and prevents TE mobilization-dependent neurodegeneration and cognitive defects. Mechanistically, PIN1 maintains nuclear type-B Lamin structure and anchoring function for heterochromatin protein 1α (HP1α). This mechanism prevents nuclear envelope alterations and heterochromatin relaxation under mechanical stress, which is a key contributor to aging-related pathologies.
Collapse
Affiliation(s)
- Francesco Napoletano
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy.
| | - Gloria Ferrari Bravo
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Ilaria Anna Pia Voto
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Aurora Santin
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Lucia Celora
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Elena Campaner
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Clara Dezi
- Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Arianna Bertossi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Elena Valentino
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Mariangela Santorsola
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | | | - Elena Maspero
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Federico Ansaloni
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Cesare Fabio Valenti
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Manuela Santo
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | | | - Sara Finaurini
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Ubaldo Gioia
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Simona Polo
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Remo Sanges
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Claudio Tripodo
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Antonello Mallamaci
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Stefano Gustincich
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy; Central RNA Laboratory, Italian Institute of Technology, 16163 Genova, Italy
| | - Fabrizio d'Adda di Fagagna
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; Institute of Molecular Genetics, National Research Institute (CNR), Pavia, Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy; FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy.
| |
Collapse
|
16
|
Functional Relevance of the Interaction between Human Cyclins and the Cytomegalovirus-Encoded CDK-Like Protein Kinase pUL97. Viruses 2021; 13:v13071248. [PMID: 34198986 PMCID: PMC8310212 DOI: 10.3390/v13071248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The replication of human cytomegalovirus (HCMV) is characterized by a complex network of virus–host interaction. This involves the regulatory viral protein kinase pUL97, which represents a viral cyclin-dependent kinase ortholog (vCDK) combining typical structural and functional features of host CDKs. Notably, pUL97 interacts with the three human cyclin types T1, H and B1, whereby the binding region of cyclin T1 and the region conferring oligomerization of pUL97 were both assigned to amino acids 231–280. Here, we addressed the question of whether recombinant HCMVs harboring deletions in this region were impaired in cyclin interaction, kinase functionality or viral replication. To this end, recombinant HCMVs were generated by traceless BACmid mutagenesis and were phenotypically characterized using a methodological platform based on qPCR, coimmunoprecipitation, in vitro kinase assay (IVKA), Phos-tag Western blot and confocal imaging analysis. Combined data illustrate the following: (i) infection kinetics of all three recombinant HCMVs, i.e., ORF-UL97 ∆231–255, ∆256–280 and ∆231–280, showed impaired replication efficiency compared to the wild type, amongst which the largest deletion exhibited the most pronounced defect; (ii) specifically, this mutant ∆231–280 showed a loss of interaction with cyclin T1, as demonstrated by CoIP and confocal imaging; (iii) IVKA and Phos-tag analyses revealed strongly affected kinase activity for ∆231–280, with strong impairment of both autophosphorylation and substrate phosphorylation, but less pronounced impairments for ∆231–255 and ∆256–280; and (iv) a bioinformatic assessment of the pUL97–cyclin T1 complex led to the refinement of our current binding model. Thus, the results provide initial evidence for the functional importance of the pUL97–cyclin interaction concerning kinase activity and viral replication fitness.
Collapse
|
17
|
Murray-Nerger LA, Cristea IM. Lamin post-translational modifications: emerging toggles of nuclear organization and function. Trends Biochem Sci 2021; 46:832-847. [PMID: 34148760 DOI: 10.1016/j.tibs.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
Nuclear lamins are ancient type V intermediate filaments with diverse functions that include maintaining nuclear shape, mechanosignaling, tethering and stabilizing chromatin, regulating gene expression, and contributing to cell cycle progression. Despite these numerous roles, an outstanding question has been how lamins are regulated. Accumulating work indicates that a range of lamin post-translational modifications (PTMs) control their functions both in homeostatic cells and in disease states such as progeria, muscular dystrophy, and viral infection. Here, we review the current knowledge of the diverse types of PTMs that regulate lamins in a site-specific manner. We highlight methods that can be used to characterize lamin PTMs whose functions are currently unknown and provide a perspective on the future of the lamin PTM field.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Abstract
Decades of studies have established that nuclear lamin polymers form the nuclear lamina, a protein meshwork that supports the nuclear envelope structure and tethers heterochromatin to the nuclear periphery. Much less is known about unpolymerized nuclear lamins in the nuclear interior, some of which are now known to undergo specific phosphorylation. A recent finding that phosphorylated lamins bind gene enhancer regions offers a new hypothesis that lamin phosphorylation may influence transcriptional regulation in the nuclear interior. In this review, we discuss the regulation, localization, and functions of phosphorylated lamins. We summarize kinases that phosphorylate lamins in a variety of biological contexts. Our discussion extends to laminopathies, a spectrum of degenerative disorders caused by lamin gene mutations, such as cardiomyopathies and progeria. We compare the prevailing hypothesis for laminopathy pathogenesis based on lamins’ function at the nuclear lamina with an emerging hypothesis based on phosphorylated lamins’ function in the nuclear interior.
Collapse
Affiliation(s)
- Sunny Yang Liu
- Department of Pediatrics, The University of Chicago , Chicago, Illinois, USA
| | - Kohta Ikegami
- Department of Pediatrics, The University of Chicago , Chicago, Illinois, USA.,Division of Molecular and Cardiovascular Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio, USA
| |
Collapse
|
19
|
Properties of Oligomeric Interaction of the Cytomegalovirus Core Nuclear Egress Complex (NEC) and Its Sensitivity to an NEC Inhibitory Small Molecule. Viruses 2021; 13:v13030462. [PMID: 33799898 PMCID: PMC8002134 DOI: 10.3390/v13030462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Herpesviral nuclear egress is a regulated process shared by all family members, ensuring the efficient cytoplasmic release of viral capsids. In the case of human cytomegalovirus (HCMV), the core of the nuclear egress complex (NEC) consists of the pUL50-pUL53 heterodimer that builds hexameric lattices for capsid binding and multicomponent interaction, including NEC-associated host factors. A characteristic feature of NEC interaction is the N-terminal hook structure of pUL53 that binds to an alpha-helical groove of pUL50, thus termed as hook-into-groove interaction. This central regulatory element is essential for viral replication and shows structural–functional conservation, which has been postulated as a next-generation target of antiviral strategies. However, a solid validation of this concept has been missing. In the present study, we focused on the properties of oligomeric HCMV core NEC interaction and the antiviral activity of specifically targeted prototype inhibitors. Our data suggest the following: (i) transiently expressed, variably tagged versions of HCMV NEC proteins exert hook-into-groove complexes, putatively in oligomeric assemblies that are distinguishable from heterodimers, as shown by in vitro assembly and coimmunoprecipitation approaches; (ii) this postulated oligomeric binding pattern was further supported by the use of a pUL50::pUL53 fusion construct also showing a pronounced multi-interaction potency; (iii) using confocal imaging cellular NEC-associated proteins were found partly colocalized with the tagged core NECs; (iv) a small inhibitory molecule, recently identified by an in vitro binding inhibition assay, was likewise active in blocking pUL50–pUL53 oligomeric assembly and in exerting antiviral activity in HCMV-infected fibroblasts. In summary, the findings refine the previous concept of HCMV core NEC formation and nominate this drug-accessible complex as a validated antiviral drug target.
Collapse
|
20
|
Häge S, Sonntag E, Svrlanska A, Borst EM, Stilp AC, Horsch D, Müller R, Kropff B, Milbradt J, Stamminger T, Schlötzer-Schrehardt U, Marschall M. Phenotypical Characterization of the Nuclear Egress of Recombinant Cytomegaloviruses Reveals Defective Replication upon ORF-UL50 Deletion but Not pUL50 Phosphosite Mutation. Viruses 2021; 13:v13020165. [PMID: 33499341 PMCID: PMC7911381 DOI: 10.3390/v13020165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
Nuclear egress is a common herpesviral process regulating nucleocytoplasmic capsid release. For human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the pUL50-pUL53 core that regulates multicomponent assembly with NEC-associated proteins and capsids. Recently, NEC crystal structures were resolved for α-, β- and γ-herpesviruses, revealing profound structural conservation, which was not mirrored, however, by primary sequence and binding properties. The NEC binding principle is based on hook-into-groove interaction through an N-terminal hook-like pUL53 protrusion that embraces an α-helical pUL50 binding groove. So far, pUL50 has been considered as the major kinase-interacting determinant and massive phosphorylation of pUL50-pUL53 was assigned to NEC formation and functionality. Here, we addressed the question of phenotypical changes of ORF-UL50-mutated HCMVs. Surprisingly, our analyses did not detect a predominant replication defect for most of these viral mutants, concerning parameters of replication kinetics (qPCR), viral protein production (Western blot/CoIP) and capsid egress (confocal imaging/EM). Specifically, only the ORF-UL50 deletion rescue virus showed a block of genome synthesis during late stages of infection, whereas all phosphosite mutants exhibited marginal differences compared to wild-type or revertants. These results (i) emphasize a rate-limiting function of pUL50 for nuclear egress, and (ii) demonstrate that mutations in all mapped pUL50 phosphosites may be largely compensated. A refined mechanistic concept points to a multifaceted nuclear egress regulation, for which the dependence on the expression and phosphorylation of pUL50 is discussed.
Collapse
Affiliation(s)
- Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (E.S.); (A.S.); (D.H.); (R.M.); (B.K.); (J.M.)
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (E.S.); (A.S.); (D.H.); (R.M.); (B.K.); (J.M.)
| | - Adriana Svrlanska
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (E.S.); (A.S.); (D.H.); (R.M.); (B.K.); (J.M.)
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School (MHH), 30625 Hannover, Germany;
| | - Anne-Charlotte Stilp
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany; (A.-C.S.); (T.S.)
| | - Deborah Horsch
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (E.S.); (A.S.); (D.H.); (R.M.); (B.K.); (J.M.)
| | - Regina Müller
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (E.S.); (A.S.); (D.H.); (R.M.); (B.K.); (J.M.)
| | - Barbara Kropff
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (E.S.); (A.S.); (D.H.); (R.M.); (B.K.); (J.M.)
| | - Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (E.S.); (A.S.); (D.H.); (R.M.); (B.K.); (J.M.)
| | - Thomas Stamminger
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany; (A.-C.S.); (T.S.)
| | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (E.S.); (A.S.); (D.H.); (R.M.); (B.K.); (J.M.)
- Correspondence: ; Tel.: +49-9131-8526089
| |
Collapse
|
21
|
Cross-regulation of viral kinases with cyclin A secures shutoff of host DNA synthesis. Nat Commun 2020; 11:4845. [PMID: 32973148 PMCID: PMC7518283 DOI: 10.1038/s41467-020-18542-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2019] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Herpesviruses encode conserved protein kinases (CHPKs) to stimulate phosphorylation-sensitive processes during infection. How CHPKs bind to cellular factors and how this impacts their regulatory functions is poorly understood. Here, we use quantitative proteomics to determine cellular interaction partners of human herpesvirus (HHV) CHPKs. We find that CHPKs can target key regulators of transcription and replication. The interaction with Cyclin A and associated factors is identified as a signature of β-herpesvirus kinases. Cyclin A is recruited via RXL motifs that overlap with nuclear localization signals (NLS) in the non-catalytic N termini. This architecture is conserved in HHV6, HHV7 and rodent cytomegaloviruses. Cyclin A binding competes with NLS function, enabling dynamic changes in CHPK localization and substrate phosphorylation. The cytomegalovirus kinase M97 sequesters Cyclin A in the cytosol, which is essential for viral inhibition of cellular replication. Our data highlight a fine-tuned and physiologically important interplay between a cellular cyclin and viral kinases.
Collapse
|
22
|
Marschall M, Strojan H, Kiener R, Wangen C, Sonntag E, Müller R, Zeitträger I, Wagner S, Stamminger T, Milbradt J, Behrends U, Körber N, Bauer T, Schrödel S, Thirion C, Wagner R, Hutterer C. Differential upregulation of host cell protein kinases by the replication of α-, β- and γ-herpesviruses provides a signature of virus-specific signalling. J Gen Virol 2020; 101:284-289. [PMID: 31958050 DOI: 10.1099/jgv.0.001370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
Infections with human herpesviruses share several molecular characteristics, but the diversified medical outcomes are distinct to viral subfamilies and species. Notably, both clinical and molecular correlates of infection are a challenging field and distinct patterns of virus-host interaction have rarely been defined; this study therefore focuses on the search for virus-specific molecular indicators. As previous studies have demonstrated the impact of herpesvirus infections on changes in host signalling pathways, we illustrate virus-modulated expression levels of individual cellular protein kinases. Current data reveal (i) α-, β- and γ-herpesvirus-specific patterns of kinase modulation as well as (ii) differential levels of up-/downregulated kinase expression and phosphorylation, which collectively suggest (iii) defined signalling patterns specific for the various viruses (VSS) that may prove useful for defining molecular indicators. Combined, the study confirms the correlation between herpesviral replication and modulation of signalling kinases, possibly exploitable for the in vitro characterization of viral infections.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hanife Strojan
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Richard Kiener
- Institute for Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Regina Müller
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Isabel Zeitträger
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Uta Behrends
- German Center for Infection Research (DZIF), Munich, Germany
- Research Unit Gene Vectors, Helmholtz Zentrum München/TUM, Munich, Germany
- Children's Hospital Schwabing, Technische Universität München (TUM), Munich, Germany
| | - Nina Körber
- Institute of Virology, Helmholtz Zentrum München/TUM, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Helmholtz Zentrum München/TUM, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | | | | | - Ralf Wagner
- Institute for Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Corina Hutterer
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
23
|
Structural and Mechanical Aberrations of the Nuclear Lamina in Disease. Cells 2020; 9:cells9081884. [PMID: 32796718 PMCID: PMC7464082 DOI: 10.3390/cells9081884] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear lamins are the major components of the nuclear lamina in the nuclear envelope. Lamins are involved in numerous functions, including a role in providing structural support to the cell and the mechanosensing of the cell. Mutations in the genes encoding for lamins lead to the rare diseases termed laminopathies. However, not only laminopathies show alterations in the nuclear lamina. Deregulation of lamin expression is reported in multiple cancers and several viral infections lead to a disrupted nuclear lamina. The structural and mechanical effects of alterations in the nuclear lamina can partly explain the phenotypes seen in disease, such as muscular weakness in certain laminopathies and transmigration of cancer cells. However, a lot of answers to questions about the relation between changes in the nuclear lamina and disease development remain elusive. Here, we review the current understandings of the contribution of the nuclear lamina in the structural support and mechanosensing of healthy and diseased cells.
Collapse
|
24
|
Marschall M, Häge S, Conrad M, Alkhashrom S, Kicuntod J, Schweininger J, Kriegel M, Lösing J, Tillmanns J, Neipel F, Eichler J, Muller YA, Sticht H. Nuclear Egress Complexes of HCMV and Other Herpesviruses: Solving the Puzzle of Sequence Coevolution, Conserved Structures and Subfamily-Spanning Binding Properties. Viruses 2020; 12:v12060683. [PMID: 32599939 PMCID: PMC7354485 DOI: 10.3390/v12060683] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric nuclear egress complex (core NEC). These core NECs serve as hexameric lattice-structured platforms for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina as well as membrane-rearranging functions (multicomponent NEC). The regulation of nuclear egress has been profoundly analyzed for murine and human cytomegaloviruses (CMVs) on a mechanistic basis, followed by the description of core NEC crystal structures, first for HCMV, then HSV-1, PRV and EBV. Interestingly, the highly conserved structural domains of these proteins stand in contrast to a very limited sequence conservation of the key amino acids within core NEC-binding interfaces. Even more surprising, although a high functional consistency was found when regarding the basic role of NECs in nuclear egress, a clear specification was identified regarding the limited, subfamily-spanning binding properties of core NEC pairs and NEC multicomponent proteins. This review summarizes the evolving picture of the relationship between sequence coevolution, structural conservation and properties of NEC interaction, comparing HCMV to α-, β- and γ-herpesviruses. Since NECs represent substantially important elements of herpesviral replication that are considered as drug-accessible targets, their putative translational use for antiviral strategies is discussed.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
- Correspondence: ; Tel.: +49-9131-85-26089
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Marcus Conrad
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.C.); (H.S.)
| | - Sewar Alkhashrom
- Division of Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany; (S.A.); (J.E.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Johannes Schweininger
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Mark Kriegel
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Frank Neipel
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Jutta Eichler
- Division of Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany; (S.A.); (J.E.)
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.C.); (H.S.)
| |
Collapse
|
25
|
A quantitative nuclear egress assay to investigate the nucleocytoplasmic capsid release of human cytomegalovirus. J Virol Methods 2020; 283:113909. [PMID: 32544419 DOI: 10.1016/j.jviromet.2020.113909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/21/2022]
Abstract
Nuclear egress is a rate-limiting step of herpesviral replication, restricting the nucleocytoplasmic transport of viral capsids. The process is regulated by two viral nuclear egress proteins (core NEC pUL50-pUL53), which recruit additional cellular and viral proteins. The multicomponent NEC mediates disassembly of the nuclear lamina barrier and the docking of nuclear capsids. The quantitation of nuclear egress has been accomplished by electron microscopic analysis, but is generally hampered by the low number of detectable cytoplasmic capsids. A newly established method for the quantitation of viral nuclear egress improves the characterization of viral mutants, host cell permissiveness and antiviral drug efficacy. In this study, various strains of human cytomegalovirus (HCMV) were used to measure the replication efficiencies in primary human fibroblasts, applying methods of cell fractionation, DNase digestion, sucrose cushions and quantitative PCR. Several stages of optimization led to a reliable quantitative assay that allowed the characterization of viral nuclear egress efficacy. Using this assay, recovery of the nuclear egress of a NEC-defective HCMV mutant was quantitatively assessed by applying an inducible NEC-expressing fibroblast culture for trans-complementation. This novel assay system can be further used to accurately quantitate and characterize the functionality of nuclear egress of HCMV or other herpesviruses.
Collapse
|
26
|
Couté Y, Kraut A, Zimmermann C, Büscher N, Hesse AM, Bruley C, De Andrea M, Wangen C, Hahn F, Marschall M, Plachter B. Mass Spectrometry-Based Characterization of the Virion Proteome, Phosphoproteome, and Associated Kinase Activity of Human Cytomegalovirus. Microorganisms 2020; 8:microorganisms8060820. [PMID: 32486127 PMCID: PMC7357008 DOI: 10.3390/microorganisms8060820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
The assembly of human cytomegalovirus (HCMV) virions is an orchestrated process that requires, as an essential prerequisite, the complex crosstalk between viral structural proteins. Currently, however, the mechanisms governing the successive steps in the constitution of virion protein complexes remain elusive. Protein phosphorylation is a key regulator determining the sequential changes in the conformation, binding, dynamics, and stability of proteins in the course of multiprotein assembly. In this review, we present a comprehensive map of the HCMV virion proteome, including a refined view on the virion phosphoproteome, based on previous publications supplemented by new results. Thus, a novel dataset of viral and cellular proteins contained in HCMV virions is generated, providing a basis for future analyses of individual phosphorylation steps and sites involved in the orchestrated assembly of HCMV virion-specific multiprotein complexes. Finally, we present the current knowledge on the activity of pUL97, the HCMV-encoded and virion-associated kinase, in phosphorylating viral and host proteins.
Collapse
Affiliation(s)
- Yohann Couté
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
- Correspondence: (Y.C.); (B.P.); Tel.: +33-4-38789461 (Y.C.); +49-6131-179232 (B.P.)
| | - Alexandra Kraut
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
| | - Christine Zimmermann
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany; (C.Z.); (N.B.)
| | - Nicole Büscher
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany; (C.Z.); (N.B.)
| | - Anne-Marie Hesse
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
| | - Christophe Bruley
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France; (A.K.); (A.-M.H.); (C.B.)
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, Turin Medical School, University of Turin, 10126 Turin, and CAAD – Center for Translational Research on Autoimmune and Allergic Disease, Novara Medical School, 28100 Novara, Italy;
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (F.H.); (M.M.)
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (F.H.); (M.M.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.W.); (F.H.); (M.M.)
| | - Bodo Plachter
- Institute for Virology and Forschungszentrum für Immuntherapie, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany; (C.Z.); (N.B.)
- Correspondence: (Y.C.); (B.P.); Tel.: +33-4-38789461 (Y.C.); +49-6131-179232 (B.P.)
| |
Collapse
|
27
|
Schütz M, Thomas M, Wangen C, Wagner S, Rauschert L, Errerd T, Kießling M, Sticht H, Milbradt J, Marschall M. The peptidyl-prolyl cis/trans isomerase Pin1 interacts with three early regulatory proteins of human cytomegalovirus. Virus Res 2020; 285:198023. [PMID: 32428517 DOI: 10.1016/j.virusres.2020.198023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2019] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen of high clinical relevance. Despite intensive research of virus-host interaction, crucial details still remain unknown. In this study, the role of the cellular peptidyl-prolyl cis/trans isomerase Pin1 during HCMV infection was investigated. Pin1 is able to recognize phosphorylated serine/threonine-proline motifs and regulates the structural conformation, stability and function of its substrates. Concerning HCMV replication, our recent studies revealed that Pin1 plays an important role in viral nuclear egress by contributing to the depletion of the nuclear lamina at distinct sites through the cis/trans conversion of lamin proteins. Here, novel data illustrate the HCMV-induced upregulation of Pin1 including various cell types being permissive, semi-permissive or non-permissive for productive HCMV replication. Addressing the question of functional impact, Pin1 knock-out (KO) did not show a measurable effect on viral protein expression, at least when assessed by Western blot analysis. Applying highly sensitive methods of qPCR and plaque titration, a pharmacological inhibition of Pin1 activity, however, led to a significant decrease of viral genome equivalents and production of infectious virus, respectively. When focusing on the identification of viral proteins interacting with Pin1 by various coimmunoprecipitation (CoIP) settings, we obtained positive signals for (i) the core nuclear egress complex protein pUL50, (ii) the viral mRNA export factor pUL69 and (iii) the viral DNA polymerase processivity factor pUL44. Confocal immunofluorescence analysis focusing on partial colocalization between Pin1 and the coexpressed viral proteins pUL50, pUL69 or pUL44, respectively, was consistent with the CoIP experiments. Mapping experiments, using transient expression constructs for a series of truncated protein versions and specific replacement mutants, revealed a complex pattern of Pin1 interaction with these three early regulatory HCMV proteins. Data suggest a combination of different modes of Pin1 interactions, involving both classical phosphorylation-dependent Pin1 binding motifs and additional phosphorylation-independent binding sites. Combined, these results support the concept that Pin1 may play an important role in several stages of HCMV infection, thus determining viral replicative efficiency.
Collapse
Affiliation(s)
- Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Marco Thomas
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Luisa Rauschert
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Theresa Errerd
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Melissa Kießling
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany.
| | - Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
28
|
The Cytomegalovirus Protein Kinase pUL97:Host Interactions, Regulatory Mechanisms and Antiviral Drug Targeting. Microorganisms 2020; 8:microorganisms8040515. [PMID: 32260430 PMCID: PMC7232230 DOI: 10.3390/microorganisms8040515] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) expresses a variety of viral regulatory proteins that undergo close interaction with host factors including viral-cellular multiprotein complexes. The HCMV protein kinase pUL97 represents a viral cyclin-dependent kinase ortholog (vCDK) that determines the efficiency of HCMV replication via phosphorylation of viral and cellular substrates. A hierarchy of functional importance of individual pUL97-mediated phosphorylation events has been discussed; however, the most pronounced pUL97-dependent phenotype could be assigned to viral nuclear egress, as illustrated by deletion of the UL97 gene or pharmacological pUL97 inhibition. Despite earlier data pointing to a cyclin-independent functionality, experimental evidence increasingly emphasized the role of pUL97-cyclin complexes. Consequently, the knowledge about pUL97 involvement in host interaction, viral nuclear egress and additional replicative steps led to the postulation of pUL97 as an antiviral target. Indeed, validation experiments in vitro and in vivo confirmed the sustainability of this approach. Consequently, current investigations of pUL97 in antiviral treatment go beyond the known pUL97-mediated ganciclovir prodrug activation and henceforward include pUL97-specific kinase inhibitors. Among a number of interesting small molecules analyzed in experimental and preclinical stages, maribavir is presently investigated in clinical studies and, in the near future, might represent a first kinase inhibitor applied in the field of antiviral therapy.
Collapse
|
29
|
Phosphosite Analysis of the Cytomegaloviral mRNA Export Factor pUL69 Reveals Serines with Critical Importance for Recruitment of Cellular Proteins Pin1 and UAP56/URH49. J Virol 2020; 94:JVI.02151-19. [PMID: 31969433 DOI: 10.1128/jvi.02151-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) encodes the viral mRNA export factor pUL69, which facilitates the cytoplasmic accumulation of mRNA via interaction with the cellular RNA helicase UAP56 or URH49. We reported previously that pUL69 is phosphorylated by cellular CDKs and the viral CDK-like kinase pUL97. Here, we set out to identify phosphorylation sites within pUL69 and to characterize their importance. Mass spectrometry-based phosphosite mapping of pUL69 identified 10 serine/threonine residues as phosphoacceptors. Surprisingly, only a few of these sites localized to the N terminus of pUL69, which could be due to the presence of additional posttranslational modifications, like arginine methylation. As an alternative approach, pUL69 mutants with substitutions of putative phosphosites were analyzed by Phos-tag SDS-PAGE. This demonstrated that serines S46 and S49 serve as targets for phosphorylation by pUL97. Furthermore, we provide evidence that phosphorylation of these serines mediates cis/trans isomerization by the prolyl isomerase Pin1, thus forming a functional Pin1 binding motif. Surprisingly, while abrogation of the Pin1 motif did not affect the replication of recombinant cytomegaloviruses, mutation of serines next to the interaction site for UAP56/URH49 strongly decreased viral replication. This was correlated with a loss of UAP56/URH49 recruitment. Intriguingly, the critical serines S13 and S15 were located within a sequence resembling the UAP56 binding motif (UBM) of cellular mRNA adaptor proteins like REF and UIF. We propose that betaherpesviral mRNA export factors have evolved an extended UAP56/URH49 recognition sequence harboring phosphorylation sites to increase their binding affinities. This may serve as a strategy to successfully compete with cellular mRNA adaptor proteins for binding to UAP56/URH49.IMPORTANCE The multifunctional regulatory protein pUL69 of human cytomegalovirus acts as a viral RNA export factor with a critical role in efficient replication. Here, we identify serine/threonine phosphorylation sites for cellular and viral kinases within pUL69. We demonstrate that the pUL97/CDK phosphosites within alpha-helix 2 of pUL69 are crucial for its cis/trans isomerization by the cellular protein Pin1. Thus, we identified pUL69 as the first HCMV-encoded protein that is phosphorylated by cellular and viral serine/threonine kinases in order to serve as a substrate for Pin1. Furthermore, our study revealed that betaherpesviral mRNA export proteins contain extended binding motifs for the cellular mRNA adaptor proteins UAP56/URH49 harboring phosphorylated serines that are critical for efficient viral replication. Knowledge of the phosphorylation sites of pUL69 and the processes regulated by these posttranslational modifications is important in order to develop antiviral strategies based on a specific interference with pUL69 phosphorylation.
Collapse
|
30
|
Patterns of Autologous and Nonautologous Interactions Between Core Nuclear Egress Complex (NEC) Proteins of α-, β- and γ-Herpesviruses. Viruses 2020; 12:v12030303. [PMID: 32168891 PMCID: PMC7150769 DOI: 10.3390/v12030303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nuclear egress is a regulated process shared by α-, β- and γ-herpesviruses. The core nuclear egress complex (NEC) is composed of the membrane-anchored protein homologs of human cytomegalovirus (HCMV) pUL50, murine cytomegalovirus (MCMV) pM50, Epstein-Barr virus (EBV) BFRF1 or varicella zoster virus (VZV) Orf24, which interact with the autologous NEC partners pUL53, pM53, BFLF2 or Orf27, respectively. Their recruitment of additional proteins leads to the assembly of a multicomponent NEC, coordinately regulating viral nucleocytoplasmic capsid egress. Here, the functionality of VZV, HCMV, MCMV and EBV core NECs was investigated by coimmunoprecipitation and confocal imaging analyses. Furthermore, a recombinant MCMV, harboring a replacement of ORF M50 by UL50, was analyzed both in vitro and in vivo. In essence, core NEC interactions were strictly limited to autologous NEC pairs and only included one measurable nonautologous interaction between the homologs of HCMV and MCMV. A comparative analysis of MCMV-WT versus MCMV-UL50-infected murine fibroblasts revealed almost identical phenotypes on the levels of protein and genomic replication kinetics. In infected BALB/c mice, virus spread to lung and other organs was found comparable between these viruses, thus stating functional complementarity. In conclusion, our study underlines that herpesviral core NEC proteins are functionally conserved regarding complementarity of core NEC interactions, which were found either virus-specific or restricted within subfamilies.
Collapse
|
31
|
Wang T, Du Q, Niu Y, Zhang X, Wang Z, Wu X, Yang X, Zhao X, Liu SL, Tong D, Huang Y. Cellular p32 Is a Critical Regulator of Porcine Circovirus Type 2 Nuclear Egress. J Virol 2019; 93:e00979-19. [PMID: 31511386 PMCID: PMC6854514 DOI: 10.1128/jvi.00979-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022] Open
Abstract
Circoviruses are the smallest DNA viruses known to infect mammalian and avian species. Although circoviruses are known to be associated with a range of clinical diseases, the details of circovirus DNA release still remain unknown. Here, we identified p32 as a key regulator for porcine circoviral nuclear egress. Upon porcine circovirus type 2 (PCV2) infection, p32 was recruited into the nucleus by the viral capsid (Cap) protein; simultaneously, protein kinase C isoform δ (PKC-δ) was phosphorylated at threonine 505 by phospholipase C (PLC)-mediated signaling at the early stage of infection, which was further amplified by Jun N-terminal protein kinase (JNK) and extracellular signal-regulated kinase (ERK) signaling at the late infection phase. p32 functioned as an adaptor to recruit phosphorylated PKC-δ and Cap to the nuclear membrane to phosphorylate lamin A/C, resulting in a rearrangement of nuclear lamina and thus facilitating viral nuclear egress. Consistent with these findings, knockout (KO) of p32 in PCV2-infected cells markedly reduced the phosphorylation of PKC-δ and impeded the recruitment of p-PKC-δ and Cap to the nuclear membrane, hence abolishing the phosphorylation of lamin A/C and the rearrangement of nuclear lamina. As a result, p32 depletion profoundly impaired the production of cell-free viruses during PCV2 infection. We further identified the N-terminal 24RRR26 of Cap to be crucial for binding to p32, and mutation of these three arginine residues significantly weakened the replication and pathogenesis of PCV2 in vivo In summary, our findings highlight a critical role of p32 in the activation and recruitment of PKC-δ to phosphorylate lamin A/C and facilitate porcine circoviral nuclear egress, and they certainly help understanding of the mechanism of PCV2 replication.IMPORTANCE Circovirus infections are highly prevalent in mammalian and avian species. Circoviral capsid protein is the only structural protein of the virion that plays an essential role in viral assembly. However, the machinery of circovirus nuclear egress is currently unknown. In this work, we identified p32 as a key regulator of porcine circovirus type 2 (PCV2) nuclear egress that forms a complex with the viral capsid (Cap) protein to enhance protein kinase C isoform δ (PKC-δ) activity; this resulted in a recruitment of phosphorylated PKC-δ to the nuclear membrane, which further phosphorylates lamin A/C to promote the rearrangement of nuclear lamina and facilitate viral nuclear egress. Notably, we found that the N-terminal 24RRR26 of Cap, a highly conserved motif among circovirus species, was required for interacting with p32, and that mutation of this motif markedly impeded PCV2 nuclear egress. These data indicate that p32 is a critical regulator of PCV2 nuclear egress and reveal the importance of this finding in circovirus replication.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingying Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaohua Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhenyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - XueFeng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Steingruber M, Keller L, Socher E, Ferre S, Hesse AM, Couté Y, Hahn F, Büscher N, Plachter B, Sticht H, Marschall M. Cyclins B1, T1, and H differ in their molecular mode of interaction with cytomegalovirus protein kinase pUL97. J Biol Chem 2019; 294:6188-6203. [PMID: 30782840 DOI: 10.1074/jbc.ra118.007049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2018] [Revised: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a common β-herpesvirus causing life-long latent infections. HCMV replication interferes with cell cycle regulation in host cells because the HCMV-encoded cyclin-dependent kinase (CDK) ortholog pUL97 extensively phosphorylates the checkpoint regulator retinoblastoma protein. pUL97 also interacts with cyclins B1, T1, and H, and recent findings have strongly suggested that these interactions influence pUL97 substrate recognition. Interestingly, here we detected profound mechanistic differences among these pUL97-cyclin interactions. Our study revealed the following. (i) pUL97 interacts with cyclins B1 and H in a manner dependent on pUL97 activity and HCMV-specific cyclin modulation, respectively. (ii) The phosphorylated state of both proteins is an important determinant of the pUL97-cyclin B1 interaction. (iii) Activated phospho-Thr-315 cyclin H is up-regulated during HCMV replication. (iv) Thr-315 phosphorylation is independent of intracellular pUL97 or CDK7 activity. (v) pUL97-mediated in vitro phosphorylation is detectable for cyclin B1 but not H. (vi) Mutual transphosphorylation between pUL97 and CDK7 is not detectable, and an MS-based phosphosite analysis indicated that pUL97 might unexpectedly not be phosphorylated in its T-loop. (vii) The binary complexes pUL97-cyclin H and CDK7-cyclin H as well as the ternary complex pUL97-cyclin-H-CDK7 are detectable in an assembly-based CoIP approach. (viii) pUL97 self-interaction can be bridged by the transcriptional cyclins T1 or H but not by the classical cell cycle-regulating B1 cyclin. Combined, our findings unravel a number of cyclin type-specific differences in pUL97 interactions and suggest a multifaceted regulatory impact of cyclins on HCMV replication.
Collapse
Affiliation(s)
- Mirjam Steingruber
- From the Institute for Clinical and Molecular Virology, 91054 Erlangen, Germany.
| | - Lena Keller
- From the Institute for Clinical and Molecular Virology, 91054 Erlangen, Germany
| | - Eileen Socher
- Division of Bioinformatics, Institute of Biochemistry Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabrina Ferre
- the Université Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Anne-Marie Hesse
- the Université Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Yohann Couté
- the Université Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Friedrich Hahn
- From the Institute for Clinical and Molecular Virology, 91054 Erlangen, Germany
| | - Nicole Büscher
- the Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Bodo Plachter
- the Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Manfred Marschall
- From the Institute for Clinical and Molecular Virology, 91054 Erlangen, Germany.
| |
Collapse
|
33
|
Novel cytomegalovirus-inhibitory compounds of the class pyrrolopyridines show a complex pattern of target binding that suggests an unusual mechanism of antiviral activity. Antiviral Res 2018; 159:84-94. [PMID: 30268914 DOI: 10.1016/j.antiviral.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 01/04/2023]
Abstract
Human cytomegalovirus (HCMV) is a major human pathogen with seropositivity rates in the adult population ranging between 40% and 95%. HCMV infection is associated with severe pathology, such as life-threatening courses of infection in immunocompromised individuals and neonates. Current standard therapy with valganciclovir has the disadvantage of adverse side effects and viral drug resistance. A novel anti-HCMV drug, letermovir, has been approved recently, so that improved therapy options are available. Nevertheless, even more so far unexploited classes of compounds and molecular modes of action will be required for a next generation of antiherpesviral treatment strategies. In this study, we focused on the analysis of the antiviral potency of a novel class of compounds, i.e. pyrrolopyridine analogs, and identified both hit compounds and their target protein candidates. In essence, we provide novel evidence as follows: (i) screening hit SC88941 is highly active in inhibiting HCMV replication in primary human fibroblasts with an EC50 value of 0.20 ± 0.01 μM in the absence of cytotoxicity, (ii) inhibition occurs at the early-late stage of viral protein production and shows reinforcing effects upon LMV cotreatment, (iii) among the viruses analyzed, antiviral activity was most pronounced against β-herpesviruses (HCMV, HHV-6A) and intermediate against adenovirus (HAdV-2), (iv) induction of SC88941 resistance was not detectable, thus differed from the induction of ganciclovir resistance, (v) a linker-coupled model compound was used for mass spectrometry-based target identification, thus yielding several drug-binding target proteins and (vi) a first confocal imaging approach used for addressing intracellular effects of SC88941 indicated qualitative and quantitative alteration of viral protein expression and localization. Thus, our findings suggest a multifaceted pattern of compound-target binding in connection with an unusual mode of action, opening up further opportunities of antiviral drug development.
Collapse
|
34
|
Lv Y, Zhou S, Gao S, Deng H. Remodeling of host membranes during herpesvirus assembly and egress. Protein Cell 2018; 10:315-326. [PMID: 30242641 PMCID: PMC6468031 DOI: 10.1007/s13238-018-0577-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2018] [Accepted: 08/21/2018] [Indexed: 02/04/2023] Open
Abstract
Many viruses, enveloped or non-enveloped, remodel host membrane structures for their replication, assembly and escape from host cells. Herpesviruses are important human pathogens and cause many diseases. As large enveloped DNA viruses, herpesviruses undergo several complex steps to complete their life cycles and produce infectious progenies. Firstly, herpesvirus assembly initiates in the nucleus, producing nucleocapsids that are too large to cross through the nuclear pores. Nascent nucleocapsids instead bud at the inner nuclear membrane to form primary enveloped virions in the perinuclear space followed by fusion of the primary envelopes with the outer nuclear membrane, to translocate the nucleocapsids into the cytoplasm. Secondly, nucleocapsids obtain a series of tegument proteins in the cytoplasm and bud into vesicles derived from host organelles to acquire viral envelopes. The vesicles are then transported to and fuse with the plasma membrane to release the mature virions to the extracellular space. Therefore, at least two budding and fusion events take place at cellular membrane structures during herpesviruses assembly and egress, which induce membrane deformations. In this review, we describe and discuss how herpesviruses exploit and remodel host membrane structures to assemble and escape from the host cell.
Collapse
Affiliation(s)
- Ying Lv
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Zhou
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengyan Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
35
|
Transmembrane Protein pUL50 of Human Cytomegalovirus Inhibits ISGylation by Downregulating UBE1L. J Virol 2018; 92:JVI.00462-18. [PMID: 29743376 DOI: 10.1128/jvi.00462-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023] Open
Abstract
Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that can be conjugated to proteins via an enzymatic cascade involving the E1, E2, and E3 enzymes. ISG15 expression and protein ISGylation modulate viral infection; however, the viral mechanisms regulating the function of ISG15 and ISGylation are not well understood. We recently showed that ISGylation suppresses the growth of human cytomegalovirus (HCMV) at multiple steps of the virus life cycle and that the virus-encoded pUL26 protein inhibits protein ISGylation. In this study, we demonstrate that the HCMV UL50-encoded transmembrane protein, a component of the nuclear egress complex, also inhibits ISGylation. pUL50 interacted with UBE1L, an E1-activating enzyme for ISGylation, and (to a lesser extent) with ISG15, as did pUL26. However, unlike pUL26, pUL50 caused proteasomal degradation of UBE1L. The UBE1L level induced in human fibroblast cells by interferon beta treatment or virus infection was reduced by pUL50 expression. This activity of pUL50 involved the transmembrane (TM) domain within its C-terminal region, although pUL50 could interact with UBE1L in a manner independent of the TM domain. Consistently, colocalization of pUL50 with UBE1L was observed in cells treated with a proteasome inhibitor. Furthermore, we found that RNF170, an endoplasmic reticulum (ER)-associated ubiquitin E3 ligase, interacted with pUL50 and promoted pUL50-mediated UBE1L degradation via ubiquitination. Our results demonstrate a novel role for the pUL50 transmembrane protein of HCMV in the regulation of protein ISGylation.IMPORTANCE Proteins can be conjugated covalently by ubiquitin or ubiquitin-like proteins, such as SUMO and ISG15. ISG15 is highly induced in viral infection, and ISG15 conjugation, termed ISGylation, plays important regulatory roles in viral growth. Although ISGylation has been shown to negatively affect many viruses, including human cytomegalovirus (HCMV), viral countermeasures that might modulate ISGylation are not well understood. In the present study, we show that the transmembrane protein encoded by HCMV UL50 inhibits ISGylation by causing proteasomal degradation of UBE1L, an E1-activating enzyme for ISGylation. This pUL50 activity requires membrane targeting. In support of this finding, RNF170, an ER-associated ubiquitin E3 ligase, interacts with pUL50 and promotes UL50-mediated UBE1L ubiquitination and degradation. Our results provide the first evidence, to our knowledge, that viruses can regulate ISGylation by directly targeting the ISGylation E1 enzyme.
Collapse
|
36
|
Milbradt J, Sonntag E, Wagner S, Strojan H, Wangen C, Lenac Rovis T, Lisnic B, Jonjic S, Sticht H, Britt WJ, Schlötzer-Schrehardt U, Marschall M. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97. Viruses 2018; 10:v10010035. [PMID: 29342872 PMCID: PMC5795448 DOI: 10.3390/v10010035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.
Collapse
Affiliation(s)
- Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Hanife Strojan
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Tihana Lenac Rovis
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Berislav Lisnic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - William J Britt
- Departments of Pediatrics and Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| |
Collapse
|
37
|
Parchure A, Munson M, Budnik V. Getting mRNA-Containing Ribonucleoprotein Granules Out of a Nuclear Back Door. Neuron 2017; 96:604-615. [PMID: 29096075 DOI: 10.1016/j.neuron.2017.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
A pivotal feature of long-lasting synaptic plasticity is the localization of RNAs and the protein synthesis machinery at synaptic sites. How and where ribonucleoprotein (RNP) transport granules that support this synthetic activity are formed is of fundamental importance. The prevailing model poses that the nuclear pore complex (NPC) is the sole gatekeeper for transit of cellular material in and out of the nucleus. However, insights from the nuclear assembly of large viral capsids highlight a back door route for nuclear escape, a process referred to nuclear envelope (NE) budding. Recent studies indicate that NE budding might be an endogenous cellular process for the nuclear export of very large RNPs and protein aggregates. In Drosophila, this mechanism is required for synaptic plasticity, but its role may extend beyond the nervous system, in tissues where local changes in translation are required. Here we discuss these recent findings and a potential relationship between NE budding and the NPC.
Collapse
Affiliation(s)
- Anup Parchure
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
38
|
Krapp S, Schuy C, Greiner E, Stephan I, Alberter B, Funk C, Marschall M, Wege C, Bailer SM, Kleinow T, Krenz B. Begomoviral Movement Protein Effects in Human and Plant Cells: Towards New Potential Interaction Partners. Viruses 2017; 9:E334. [PMID: 29120369 PMCID: PMC5707541 DOI: 10.3390/v9110334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
Geminiviral single-stranded circular DNA genomes replicate in nuclei so that the progeny DNA has to cross both the nuclear envelope and the plasmodesmata for systemic spread within plant tissues. For intra- and intercellular transport, two proteins are required: a nuclear shuttle protein (NSP) and a movement protein (MP). New characteristics of ectopically produced Abutilon mosaic virus (AbMV) MP (MPAbMV), either authentically expressed or fused to a yellow fluorescent protein or epitope tags, respectively, were determined by localization studies in mammalian cell lines in comparison to plant cells. Wild-type MPAbMV and the distinct MPAbMV: reporter protein fusions appeared as curled threads throughout mammalian cells. Co-staining with cytoskeleton markers for actin, intermediate filaments, or microtubules identified these threads as re-organized microtubules. These were, however, not stabilized by the viral MP, as demonstrated by nocodazole treatment. The MP of a related bipartite New World begomovirus, Cleome leaf crumple virus (ClLCrV), resulted in the same intensified microtubule bundling, whereas that of a nanovirus did not. The C-terminal section of MPAbMV, i.e., the protein's oligomerization domain, was dispensable for the effect. However, MP expression in plant cells did not affect the microtubules network. Since plant epidermal cells are quiescent whilst mammalian cells are proliferating, the replication-associated protein RepAbMV protein was then co-expressed with MPAbMV to induce cell progression into S-phase, thereby inducing distinct microtubule bundling without MP recruitment to the newly formed threads. Co-immunoprecipitation of MPAbMV in the presence of RepAbMV, followed by mass spectrometry identified potential novel MPAbMV-host interaction partners: the peptidyl-prolyl cis-trans isomerase NIMA-interacting 4 (Pin4) and stomatal cytokinesis defective 2 (SCD2) proteins. Possible roles of these putative interaction partners in the begomoviral life cycle and cytoskeletal association modes are discussed.
Collapse
Affiliation(s)
- Susanna Krapp
- Department Biologie, Lehrstuhl Biochemie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Christian Schuy
- Department Biologie, Lehrstuhl Biochemie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Eva Greiner
- Department Biologie, Lehrstuhl Biochemie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Irina Stephan
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Barbara Alberter
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, Universität Stuttgart, Nobelstrasse 12, 70569 Stuttgart, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Christina Wege
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Susanne M Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, Universität Stuttgart, Nobelstrasse 12, 70569 Stuttgart, Germany.
| | - Tatjana Kleinow
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Björn Krenz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7 B, 38124 Braunschweig, Germany.
| |
Collapse
|
39
|
König P, Büscher N, Steingruber M, Socher E, Sticht H, Tenzer S, Plachter B, Marschall M. Dynamic regulatory interaction between cytomegalovirus major tegument protein pp65 and protein kinase pUL97 in intracellular compartments, dense bodies and virions. J Gen Virol 2017; 98:2850-2863. [PMID: 29022869 DOI: 10.1099/jgv.0.000939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen of considerable clinical importance. Understanding the processes that are important for viral replication is essential for the development of therapeutic strategies against HCMV infection. The HCMV-encoded protein kinase pUL97 is an important multifunctional regulator of viral replication. Several viral and cellular proteins are phosphorylated by pUL97. The phosphoprotein pp65 is one important substrate of pUL97. It is the most abundant tegument protein of HCMV virions, mediating the upload of other virion constituents and contributing to particle integrity. Further to that, it interferes with host innate immune defences, thereby enabling efficient viral replication. By applying different approaches, we characterized the pp65-pUL97 interaction in various compartments. Specifically, the pUL97 interaction domain of pp65 was defined (282-415). A putative cyclin bridge that enhances pUL97-pp65 interaction was identified. The impact of pUL97 mutation on virion and dense body morphogenesis was addressed using pUL97 mutant viruses. Alterations in the proteome of viral particles were seen, especially with mutant viruses expressing cytoplasmic variants of pUL97. On the basis of these data we postulate a so far poorly recognized functional relationship between pp65 and pUL97, and present a refined model of pp65-pUL97 interaction.
Collapse
Affiliation(s)
- Patrick König
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mirjam Steingruber
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Eileen Socher
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bodo Plachter
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
40
|
Sonntag E, Milbradt J, Svrlanska A, Strojan H, Häge S, Kraut A, Hesse AM, Amin B, Sonnewald U, Couté Y, Marschall M. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus. J Gen Virol 2017; 98:2569-2581. [PMID: 28949903 DOI: 10.1099/jgv.0.000931] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023] Open
Abstract
Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.
Collapse
Affiliation(s)
- Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Adriana Svrlanska
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hanife Strojan
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexandra Kraut
- Université Grenoble Alpes, CEA, INSERM, BIG-BGE, F-38000 Grenoble, France
| | - Anne-Marie Hesse
- Université Grenoble Alpes, CEA, INSERM, BIG-BGE, F-38000 Grenoble, France
| | - Bushra Amin
- Department of Biology, Institute for Biochemistry, FAU, Erlangen, Germany
- Present address: Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, PA, USA
| | - Uwe Sonnewald
- Department of Biology, Institute for Biochemistry, FAU, Erlangen, Germany
| | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, BIG-BGE, F-38000 Grenoble, France
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
41
|
Marschall M, Muller YA, Diewald B, Sticht H, Milbradt J. The human cytomegalovirus nuclear egress complex unites multiple functions: Recruitment of effectors, nuclear envelope rearrangement, and docking to nuclear capsids. Rev Med Virol 2017; 27. [PMID: 28664574 DOI: 10.1002/rmv.1934] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Nuclear replication represents a common hallmark of herpesviruses achieved by a number of sequentially unrolled regulatory processes. A rate-limiting step is provided by nucleo-cytoplasmic capsid export, for which a defined multiregulatory protein complex, namely, the nuclear egress complex (NEC), is assembled comprising both viral and cellular components. The NEC regulates at least 3 aspects of herpesviral nuclear replication: (1) multimeric recruitment of NEC-associated effector proteins, (2) reorganization of the nuclear lamina and membranes, and (3) the docking to nuclear capsids. Here, we review published data and own experimental work that characterizes the NEC of HCMV and other herpesviruses. METHODS A systematic review of information on nuclear egress of HCMV compared to selected alpha-, beta-, and gamma-herpesviruses: proteomics-based approaches, high-resolution imaging techniques, and functional investigations. RESULTS A large number of reports on herpesviral NECs have been published during the last two decades, focusing on protein-protein interactions, nuclear localization, regulatory phosphorylation, and functional validation. The emerging picture provides an illustrated example of well-balanced and sophisticated protein networking in virus-host interaction. CONCLUSIONS Current evidence refined the view about herpesviral NECs. Datasets published for HCMV, murine CMV, herpes simplex virus, and Epstein-Barr virus illustrate the marked functional consistency in the way herpesviruses achieve nuclear egress. However, this compares with only limited sequence conservation of core NEC proteins and a structural conservation restricted to individual domains. The translational use of this information might help to define a novel antiviral strategy on the basis of NEC-directed small molecules.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, FAU, Erlangen, Germany
| | - Benedikt Diewald
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany
| | - Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
42
|
Held FE, Guryev AA, Fröhlich T, Hampel F, Kahnt A, Hutterer C, Steingruber M, Bahsi H, von Bojničić-Kninski C, Mattes DS, Foertsch TC, Nesterov-Mueller A, Marschall M, Tsogoeva SB. Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions. Nat Commun 2017; 8:15071. [PMID: 28462939 PMCID: PMC5418574 DOI: 10.1038/ncomms15071] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2016] [Accepted: 02/27/2017] [Indexed: 11/30/2022] Open
Abstract
Most of the known approved drugs comprise functionalized heterocyclic compounds as subunits. Among them, non-fluorescent quinazolines with four different substitution patterns are found in a variety of clinically used pharmaceuticals, while 4,5,7,8-substituted quinazolines and those displaying their own specific fluorescence, favourable for cellular uptake visualization, have not been described so far. Here we report the development of a one-pot synthetic strategy to access these 4,5,7,8-substituted quinazolines, which are fluorescent and feature strong antiviral properties (EC50 down to 0.6±0.1 μM) against human cytomegalovirus (HCMV). Merging multistep domino processes in one-pot under fully metal-free conditions leads to sustainable, maximum efficient and high-yielding organic synthesis. Furthermore, generation of artesunic acid–quinazoline hybrids and their application against HCMV (EC50 down to 0.1±0.0 μM) is demonstrated. Fluorescence of new antiviral hybrids and quinazolines has potential applications in molecular imaging in drug development and mechanistic studies, avoiding requirement of linkage to external fluorescent markers. Heterocycles are ubiquitous in bioactive compounds and routes to different substitution patterns are important to access the full substrate space. Here the authors report a route to 4,5,7,8-substituted antiviral fluorescent quinazolines, to allow cellular uptake visualization without external marker.
Collapse
Affiliation(s)
- Felix E Held
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University of Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany
| | - Anton A Guryev
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University of Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany
| | - Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University of Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany
| | - Frank Hampel
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University of Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany
| | - Axel Kahnt
- Physical Chemistry Chair I, Friedrich-Alexander University of Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Corina Hutterer
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Mirjam Steingruber
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Hanife Bahsi
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Clemens von Bojničić-Kninski
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Daniela S Mattes
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tobias C Foertsch
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Nesterov-Mueller
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University of Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany
| |
Collapse
|