1
|
Rezaei H, Martin D, Herzog L, Reine F, Marín Moreno A, Moudjou M, Aron N, Igel A, Klute H, Youssafi S, Moog JB, Sibille P, Andréoletti O, Torrent J, Béringue V. Species barrier as molecular basis for adaptation of synthetic prions with N-terminally truncated PrP. FEBS J 2024; 291:5051-5076. [PMID: 39396118 DOI: 10.1111/febs.17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
Mammalian prions are neurotropic pathogens formed from PrPSc assemblies, a misfolded variant of the host-encoded prion protein PrPC. Multiple PrPSc conformations or strains self-propagate in host populations or mouse models of prion diseases, exhibiting distinct biological and biochemical phenotypes. Constrained interactions between PrPSc and PrPC conformations confer species specificity and regulate cross-species transmission. The pathogenicity of fibrillar assemblies derived from bacterially expressed recombinant PrP (rPrP) has been instrumental in demonstrating the protein-only nature of prions. Yet, their ability to encode different strains and transmit between species remains poorly studied, hampering their use in exploring structure-to-strain relationships. Fibrillar assemblies from rPrP with hamster, mouse, human, and bovine primary structures were generated and tested for transmission and adaptation in tg7 transgenic mice expressing hamster PrPC. All assemblies, except the bovine ones, were fully pathogenic on the primary passage, causing clinical disease, PrPSc brain deposition, and spongiform degeneration. They exhibited divergent adaptation processes and strain properties upon subsequent passage. Assemblies of hamster origin propagated without apparent need for adaptation, those of mouse origin adapted abruptly, and those of human origin required serial passages for optimal fitness. Molecular analyses revealed the presence of endogenously truncated PrPSc species in the resulting synthetic strains that lack the 90-140 amino acid region considered crucial for infectivity. In conclusion, rPrP assemblies provide a facile means of generating novel prion strains with adaptative/evolutive properties mimicking genuine prions. The PrP amino acid backbone is sufficient to encode different strains with specific adaptative properties, offering insights into prion transmission and strain diversity.
Collapse
Affiliation(s)
- Human Rezaei
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Davy Martin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Mohammed Moudjou
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Angélique Igel
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Hannah Klute
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Stella Youssafi
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Pierre Sibille
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Joan Torrent
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
- INM, Univ Montpellier, INSERM, CNRS, France
| | - Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
2
|
Bruno R, Riccardi G, Iacobone F, Chiarotti F, Pirisinu L, Vanni I, Marcon S, D'Agostino C, Giovannelli M, Parchi P, Agrimi U, Nonno R, Di Bari MA. Strain-Dependent Morphology of Reactive Astrocytes in Human- and Animal-Vole-Adapted Prions. Biomolecules 2023; 13:biom13050757. [PMID: 37238627 DOI: 10.3390/biom13050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Reactive astrogliosis is one of the pathological hallmarks of prion diseases. Recent studies highlighted the influence of several factors on the astrocyte phenotype in prion diseases, including the brain region involved, the genotype backgrounds of the host, and the prion strain. Elucidating the influence of prion strains on the astrocyte phenotype may provide crucial insights for developing therapeutic strategies. Here, we investigated the relationship between prion strains and astrocyte phenotype in six human- and animal-vole-adapted strains characterized by distinctive neuropathological features. In particular, we compared astrocyte morphology and astrocyte-associated PrPSc deposition among strains in the same brain region, the mediodorsal thalamic nucleus (MDTN). Astrogliosis was detected to some extent in the MDTN of all analyzed voles. However, we observed variability in the morphological appearance of astrocytes depending on the strain. Astrocytes displayed variability in thickness and length of cellular processes and cellular body size, suggesting strain-specific phenotypes of reactive astrocytes. Remarkably, four out of six strains displayed astrocyte-associated PrPSc deposition, which correlated with the size of astrocytes. Overall, these data show that the heterogeneous reactivity of astrocytes in prion diseases depends at least in part on the infecting prion strains and their specific interaction with astrocytes.
Collapse
Affiliation(s)
- Rosalia Bruno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Floriana Iacobone
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Flavia Chiarotti
- Reference Center for the Behavioral Sciences and Mental Health, Italian National Institute of Health, 00161 Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Matteo Giovannelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
3
|
Ma J, Zhang J, Yan R. Recombinant Mammalian Prions: The “Correctly” Misfolded Prion Protein Conformers. Viruses 2022; 14:v14091940. [PMID: 36146746 PMCID: PMC9504972 DOI: 10.3390/v14091940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Generating a prion with exogenously produced recombinant prion protein is widely accepted as the ultimate proof of the prion hypothesis. Over the years, a plethora of misfolded recPrP conformers have been generated, but despite their seeding capability, many of them have failed to elicit a fatal neurodegenerative disorder in wild-type animals like a naturally occurring prion. The application of the protein misfolding cyclic amplification technique and the inclusion of non-protein cofactors in the reaction mixture have led to the generation of authentic recombinant prions that fully recapitulate the characteristics of native prions. Together, these studies reveal that recPrP can stably exist in a variety of misfolded conformations and when inoculated into wild-type animals, misfolded recPrP conformers cause a wide range of outcomes, from being completely innocuous to lethal. Since all these recPrP conformers possess seeding capabilities, these results clearly suggest that seeding activity alone is not equivalent to prion activity. Instead, authentic prions are those PrP conformers that are not only heritable (the ability to seed the conversion of normal PrP) but also pathogenic (the ability to cause fatal neurodegeneration). The knowledge gained from the studies of the recombinant prion is important for us to understand the pathogenesis of prion disease and the roles of misfolded proteins in other neurodegenerative disorders.
Collapse
|
4
|
Pirisinu L, Di Bari MA, D’Agostino C, Vanni I, Riccardi G, Marcon S, Vaccari G, Chiappini B, Benestad SL, Agrimi U, Nonno R. A single amino acid residue in bank vole prion protein drives permissiveness to Nor98/atypical scrapie and the emergence of multiple strain variants. PLoS Pathog 2022; 18:e1010646. [PMID: 35731839 PMCID: PMC9255773 DOI: 10.1371/journal.ppat.1010646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
Prions are infectious agents that replicate through the autocatalytic misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc) causing fatal neurodegenerative diseases in humans and animals. Prions exist as strains, which are encoded by conformational variants of PrPSc. The transmissibility of prions depends on the PrPC sequence of the recipient host and on the incoming prion strain, so that some animal prion strains are more contagious than others or are transmissible to new species, including humans. Nor98/atypical scrapie (AS) is a prion disease of sheep and goats reported in several countries worldwide. At variance with classical scrapie (CS), AS is considered poorly contagious and is supposed to be spontaneous in origin. The zoonotic potential of AS, its strain variability and the relationships with the more contagious CS strains remain largely unknown. We characterized AS isolates from sheep and goats by transmission in ovinised transgenic mice (tg338) and in two genetic lines of bank voles, carrying either methionine (BvM) or isoleucine (BvI) at PrP residue 109. All AS isolates induced the same pathological phenotype in tg338 mice, thus proving that they encoded the same strain, irrespective of their geographical origin or source species. In bank voles, we found that the M109I polymorphism dictates the susceptibility to AS. BvI were susceptible and faithfully reproduced the AS strain, while the transmission in BvM was highly inefficient and was characterized by a conformational change towards a CS-like prion strain. Sub-passaging experiments revealed that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible animals. These findings add new clues for a better comprehension of strain selection dynamics in prion infections and have wider implications for understanding the origin of contagious prion strains, such as CS. Prions are transmissible agents responsible for fatal neurodegenerative diseases in humans and animals. Prions exist as strains, exhibiting distinct disease phenotypes and transmission properties. Some prion diseases occur sporadically with a supposedly spontaneous origin, while others are contagious and give rise to epidemics, mainly in animals. We investigated the strain properties of Nor98/atypical scrapie (AS), a sporadic prion disease of small ruminants. We found that AS was faithfully reproduced not only in a homologous context, i.e. ovinised transgenic mice, but also in an unrelated animal species, the bank vole. A natural polymorphism of the bank vole prion protein, coding for methionine (BvM) or for isoleucine (BvI) at codon 109, dictated the susceptibility of voles to AS, with BvI being highly susceptible to AS and BvM rather resistant. Most importantly, the M109I polymorphism mediated the emergence of AS-derived mutant prion strains resembling classical scrapie (CS), a contagious prion disease. Finally, by sub-passages in bank voles, we found that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible vole lines. These findings allow a better understanding of strain selection dynamics and suggest a link between sporadic and contagious prion diseases.
Collapse
Affiliation(s)
- Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
5
|
Marín-Moreno A, Espinosa JC, Aguilar-Calvo P, Fernández-Borges N, Pitarch JL, González L, Torres JM. Canine D 163-PrP polymorphic variant does not provide complete protection against prion infection in small ruminant PrP context. Sci Rep 2021; 11:14309. [PMID: 34253783 PMCID: PMC8275588 DOI: 10.1038/s41598-021-93594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022] Open
Abstract
E/D163 polymorphism of dog prion protein (PrP) has been recently proposed as the variant responsible for canid prion resistance. To further investigate the protective role of this variant against prion replication, the transgenic mouse model OvPrP-Tg532 expressing sheep/goat PrP carrying the substitution D162 (equivalent to D163 position of dog PrP) was generated and intracranially inoculated with a broad collection of small ruminant prion strains. OvPrP-Tg532 mice showed resistance to classical bovine spongiform encephalopathy (BSE) from sheep and some classical scrapie isolates from sheep and goat but were susceptible to ovine atypical L-BSE and numerous classical scrapie isolates. Strikingly, some of these classical scrapie isolates showed a shift in their prion strain properties. These results suggest that other PrP residues apart from E/D163 variant of dog PrP or factors distinct than PrP may participate in prion resistance of canids and that different factors may be required for D162 sheep PrP to provide effective protection to sheep against ruminant prions.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid, Spain
| | | | | | | | - José Luis Pitarch
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid, Spain
| | - Lorenzo González
- Animal Health and Veterinary Laboratories Agency (AHVLA), Penicuik, Midlothian, UK
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid, Spain.
| |
Collapse
|
6
|
Espinosa JC, Marín‐Moreno A, Aguilar‐Calvo P, Torres JM. Met 166 -Glu 168 residues in human PrP β2-α2 loop account for evolutionary resistance to prion infection. Neuropathol Appl Neurobiol 2021; 47:506-518. [PMID: 33253417 PMCID: PMC8247420 DOI: 10.1111/nan.12676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
AIMS The amino acid sequence of prion protein (PrP) is a key determinant in the transmissibility of prion diseases. While PrP sequence is highly conserved among mammalian species, minor changes in the PrP amino acid sequence may confer alterations in the transmissibility of prion diseases. Classical bovine spongiform encephalopathy (C-BSE) is the only zoonotic prion strain reported to date causing variant Creutzfeldt-Jacob disease (vCJD) in humans, although experimental transmission points to atypical L-BSE and some classical scrapie isolates as also zoonotic. The precise molecular elements in the human PrP sequence that limit the transmissibility of prion strains such as sheep/goat scrapie or cervid chronic wasting disease (CWD) are not well known. METHODS The transmissibility of a panel of diverse prions from different species was compared in transgenic mice expressing either wild-type human PrPC (MDE-HuTg340) or a mutated human PrPC harbouring Val166 -Gln168 amino acid changes (VDQ-HuTg372) in the β2-α2 loop instead of Met166 -Glu168 wild-type variants. RESULTS VDQ-HuTg372 mice were more susceptible to prions than MDE-HuTg340 mice in a strain-dependent manner. CONCLUSIONS Met166 -Glu168 amino acid residues present in wild-type human PrPC are molecular determinants that limit the propagation of most prion strains assayed in the human PrP context.
Collapse
Affiliation(s)
| | | | - Patricia Aguilar‐Calvo
- Centro de Investigación en Sanidad Animal (INIA‐CISA)MadridSpain
- Present address:
Department of PathologyUC San DiegoLa JollaCAUSA
| | | |
Collapse
|
7
|
Marín-Moreno A, Aguilar-Calvo P, Espinosa JC, Zamora-Ceballos M, Pitarch JL, González L, Fernández-Borges N, Orge L, Andréoletti O, Nonno R, Torres JM. Classical scrapie in small ruminants is caused by at least four different prion strains. Vet Res 2021; 52:57. [PMID: 33858518 PMCID: PMC8048364 DOI: 10.1186/s13567-021-00929-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
The diversity of goat scrapie strains in Europe has recently been studied using bioassays in a wide collection of rodent models, resulting in the classification of classical scrapie into four different categories. However, the sole use of the first passage does not lead to isolate adaptation and identification of the strains involved and might therefore lead to misclassification of some scrapie isolates. Therefore, this work reports the complete transmission study of a wide collection of goat transmissible spongiform encephalopathy (TSE) isolates by intracranial inoculation in two transgenic mouse lines overexpressing either small ruminant (TgGoat-ARQ) or bovine (TgBov) PrPC. To compare scrapie strains in sheep and goats, sheep scrapie isolates from different European countries were also included in the study. Once the species barrier phenomenon was overcome, an accurate classification of the isolates was attained. Thus, the use of just two rodent models allowed us to fully differentiate at least four different classical scrapie strains in small ruminants and to identify isolates containing mixtures of strains. This work reinforces the idea that classical scrapie in small ruminants is a prion disease caused by multiple different prion strains and not by a single strain, as is the case for epidemic classical bovine spongiform encephalopathy (BSE-C). In addition, the clear dissimilarity between the different scrapie strains and BSE-C does not support the idea that classical scrapie is the origin of epidemic BSE-C.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Patricia Aguilar-Calvo
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.,Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | | | - José Luis Pitarch
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | | | | | - Leonor Orge
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Romolo Nonno
- Department of Veterinary Public Health, Nutrition and Food Safety, Istituto Superiore di Sanitá, Rome, Italy
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
8
|
Arshad H, Bourkas MEC, Watts JC. The utility of bank voles for studying prion disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:179-211. [PMID: 32958232 DOI: 10.1016/bs.pmbts.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transmission of prions between species is typically an inefficient process due to the species barrier, which represents incompatibility between prion seed and substrate molecules. Bank voles (Myodes glareolus) are an exception to this rule, as they are susceptible to a diverse range of prion strains from many different animal species. In particular, bank voles can be efficiently infected with most types of human prions and have played a critical role in validating variably protease-sensitive prionopathy (VPSPr) and certain forms of Gerstmann-Sträussler-Scheinker (GSS) disease as bona fide prion disorders rather than non-transmissible proteinopathies. The bank vole prion protein (BVPrP) confers a "universal prion acceptor" phenotype when expressed in mice and when used as a substrate for in vitro prion amplification assays, indicating that the unique prion transmission properties of bank voles are mediated by BVPrP. Over-expression of BVPrP in mice can also promote the spontaneous development of prion disease, indicating that BVPrP is intrinsically prone to both spontaneous and template-directed misfolding. Here, we discuss the utility of bank voles and BVPrP for prion research and how they have provided new tools for establishing rapid animal bioassays, modeling spontaneous prion disease, standardizing prion diagnostics, and understanding the molecular basis of the species barrier.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Vanni I, Pirisinu L, Acevedo-Morantes C, Kamali-Jamil R, Rathod V, Di Bari MA, D’Agostino C, Marcon S, Esposito E, Riccardi G, Hornemann S, Senatore A, Aguzzi A, Agrimi U, Wille H, Nonno R. Isolation of infectious, non-fibrillar and oligomeric prions from a genetic prion disease. Brain 2020; 143:1512-1524. [PMID: 32303068 PMCID: PMC7241950 DOI: 10.1093/brain/awaa078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 11/21/2022] Open
Abstract
Prions are transmissible agents causing lethal neurodegenerative diseases that are composed of aggregates of misfolded cellular prion protein (PrPSc). Despite non-fibrillar oligomers having been proposed as the most infectious prion particles, prions purified from diseased brains usually consist of large and fibrillar PrPSc aggregates, whose protease-resistant core (PrPres) encompasses the whole C-terminus of PrP. In contrast, PrPSc from Gerstmann-Sträussler-Scheinker disease associated with alanine to valine substitution at position 117 (GSS-A117V) is characterized by a small protease-resistant core, which is devoid of the C-terminus. We thus aimed to investigate the role of this unusual PrPSc in terms of infectivity, strain characteristics, and structural features. We found, by titration in bank voles, that the infectivity of GSS-A117V is extremely high (109.3 ID50 U/g) and is resistant to treatment with proteinase K (109.0 ID50 U/g). We then purified the proteinase K-resistant GSS-A117V prions and determined the amount of infectivity and PrPres in the different fractions, alongside the morphological characteristics of purified PrPres aggregates by electron microscopy. Purified pellet fractions from GSS-A117V contained the expected N- and C-terminally cleaved 7 kDa PrPres, although the yield of PrPres was low. We found that this low yield depended on the low density/small size of GSS-A117V PrPres, as it was mainly retained in the last supernatant fraction. All fractions were highly infectious, thus confirming the infectious nature of the 7 kDa PrPres, with infectivity levels that directly correlated with the PrPres amount detected. Finally, electron microscopy analysis of these fractions showed no presence of amyloid fibrils, but only very small and indistinct, non-fibrillar PrPresparticles were detected and confirmed to contain PrP via immunogold labelling. Our study demonstrates that purified aggregates of 7 kDa PrPres, spanning residues ∼90-150, are highly infectious oligomers that encode the biochemical and biological strain features of the original sample. Overall, the autocatalytic behaviour of the prion oligomers reveals their role in the propagation of neurodegeneration in patients with Gerstmann-Sträussler-Scheinker disease and implies that the C-terminus of PrPSc is dispensable for infectivity and strain features for this prion strain, uncovering the central PrP domain as the minimal molecular component able to encode infectious prions. These findings are consistent with the hypothesis that non-fibrillar prion particles are highly efficient propagators of disease and provide new molecular and morphological constraints on the structure of infectious prions.
Collapse
Affiliation(s)
- Ilaria Vanni
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Laura Pirisinu
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia Acevedo-Morantes
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Razieh Kamali-Jamil
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vineet Rathod
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michele Angelo Di Bari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia D’Agostino
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Stefano Marcon
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Elena Esposito
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Geraldina Riccardi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Simone Hornemann
- Institute for Neuropathology, University of Zürich, Zürich, Switzerland
| | - Assunta Senatore
- Institute for Neuropathology, University of Zürich, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute for Neuropathology, University of Zürich, Zürich, Switzerland
| | - Umberto Agrimi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Romolo Nonno
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| |
Collapse
|
10
|
Burke CM, Walsh DJ, Steele AD, Agrimi U, Di Bari MA, Watts JC, Supattapone S. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog 2019; 15:e1007662. [PMID: 30908557 PMCID: PMC6448948 DOI: 10.1371/journal.ppat.1007662] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Alexander D. Steele
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
11
|
Domingo E, Perales C. Quasispecies and virus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:443-457. [PMID: 29397419 DOI: 10.1007/s00249-018-1282-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022]
Abstract
Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| |
Collapse
|
12
|
Cofactors influence the biological properties of infectious recombinant prions. Acta Neuropathol 2018; 135:179-199. [PMID: 29094186 DOI: 10.1007/s00401-017-1782-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/23/2022]
Abstract
Prion diseases are caused by a misfolding of the cellular prion protein (PrP) to a pathogenic isoform named PrPSc. Prions exist as strains, which are characterized by specific pathological and biochemical properties likely encoded in the three-dimensional structure of PrPSc. However, whether cofactors determine these different PrPSc conformations and how this relates to their specific biological properties is largely unknown. To understand how different cofactors modulate prion strain generation and selection, Protein Misfolding Cyclic Amplification was used to create a diversity of infectious recombinant prion strains by propagation in the presence of brain homogenate. Brain homogenate is known to contain these mentioned cofactors, whose identity is only partially known, and which facilitate conversion of PrPC to PrPSc. We thus obtained a mix of distinguishable infectious prion strains. Subsequently, we replaced brain homogenate, by different polyanionic cofactors that were able to drive the evolution of mixed prion populations toward specific strains. Thus, our results show that a variety of infectious recombinant prions can be generated in vitro and that their specific type of conformation, i.e., the strain, is dependent on the cofactors available during the propagation process. These observations have significant implications for understanding the pathogenesis of prion diseases and their ability to replicate in different tissues and hosts. Importantly, these considerations might apply to other neurodegenerative diseases for which different conformations of misfolded proteins have been described.
Collapse
|
13
|
Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment. J Virol 2017; 91:JVI.02505-16. [PMID: 28275194 DOI: 10.1128/jvi.02505-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment.IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments.
Collapse
|