1
|
Li J, Yuan N, Zhai Y, Wang M, Hao M, Liu X, Zhou D, Liu W, Jin Y, Wang A. Protein disulfide isomerase A4 binds to Brucella BtpB and mediates intracellular NAD +/NADH metabolism in RAW264.7 cells. Int Immunopharmacol 2024; 142:113046. [PMID: 39226825 DOI: 10.1016/j.intimp.2024.113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The Toll/interleukin-1 receptor (TIR) signaling domain is distributed widely in mammalian Toll-like receptors and adaptors, plant nucleotide-binding leucine-rich repeat receptors, and specific bacterial virulence proteins. Proteins that possess TIR domain exhibit NADase activity which is distinct from the canonical signaling function of these domains. However, the effects of bacterial TIR domain proteins on host metabolic switches and the underlying mechanism of NADase activity in these proteins remain unclear. Here, we utilized Brucella TIR domain-containing type IV secretion system effector protein, BtpB, to explore the mechanism of NADase activity in host cells. We showed that using ectopic expression BtpB not only generates depletion of NAD+ but also loss of NADH and ATP in RAW264.7 macrophage cells. Moreover, immunoprecipitation-mass spectrometry, co-immunoprecipitation, and confocal microscope assays revealed that BtpB interacted with host protein disulfide isomerase A4 (PDIA4). The Brucella mutant strain deleted the gene for BtpB, significantly decreased PDIA4 expression. Furthermore, our data revealed that PDIA4 played an important role in regulating intracellular NAD+/NADH levels in macrophages, and PDIA4 overexpression restored the decline of intracellular NAD+ and NADH levels induced by Brucella BtpB. The results provide new insights into the metabolic regulatory activity of TIR domain proteins in the critical human and animal pathogen Brucella.
Collapse
Affiliation(s)
- Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Department of Veterinary Medicine, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ningqiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Minghui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dong Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Alvarez Narvaez S, Sanchez S. Exploring the Accessory Genome of Multidrug-Resistant Rhodococcus equi Clone 2287. Antibiotics (Basel) 2023; 12:1631. [PMID: 37998833 PMCID: PMC10669575 DOI: 10.3390/antibiotics12111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Decades of antimicrobial overuse to treat respiratory disease in foals have promoted the emergence and spread of zoonotic multidrug-resistant (MDR) Rhodococcus equi worldwide. Three main R. equi MDR clonal populations-2287, G2106, and G2017-have been identified so far. However, only clones 2287 and G2016 have been isolated from sick animals, with clone 2287 being the main MDR R. equi recovered. The genetic mechanisms that make this MDR clone superior to the others at infecting foals are still unknown. Here, we performed a deep genetic characterization of the accessory genomes of 207 R. equi isolates, and we describe IME2287, a novel genetic element in the accessory genome of clone 2287, potentially involved in the maintenance and spread of this MDR population over time. IME2287 is a putative self-replicative integrative mobilizable element (IME) carrying a DNA replication and partitioning operon and genes encoding its excision and integration from the R. equi genome via a serine recombinase. Additionally, IME2287 encodes a protein containing a Toll/interleukin-1 receptor (TIR) domain that may inhibit TLR-mediated NF-kB signaling in the host and a toxin-antitoxin (TA) system, whose orthologs have been associated with antibiotic resistance/tolerance, virulence, pathogenicity islands, bacterial persistence, and pathogen trafficking. This new set of genes may explain the success of clone 2287 over the other MDR R. equi clones.
Collapse
Affiliation(s)
- Sonsiray Alvarez Narvaez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Klontz E, Obi JO, Wang Y, Glendening G, Carr J, Tsibouris C, Buddula S, Nallar S, Soares AS, Beckett D, Redzic JS, Eisenmesser E, Palm C, Schmidt K, Scudder AH, Obiorah T, Essuman K, Milbrandt J, Diantonio A, Ray K, Snyder MLD, Deredge D, Snyder GA. The structure of NAD + consuming protein Acinetobacter baumannii TIR domain shows unique kinetics and conformations. J Biol Chem 2023; 299:105290. [PMID: 37758001 PMCID: PMC10641520 DOI: 10.1016/j.jbc.2023.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Toll-like and interleukin-1/18 receptor/resistance (TIR) domain-containing proteins function as important signaling and immune regulatory molecules. TIR domain-containing proteins identified in eukaryotic and prokaryotic species also exhibit NAD+ hydrolase activity in select bacteria, plants, and mammalian cells. We report the crystal structure of the Acinetobacter baumannii TIR domain protein (AbTir-TIR) with confirmed NAD+ hydrolysis and map the conformational effects of its interaction with NAD+ using hydrogen-deuterium exchange-mass spectrometry. NAD+ results in mild decreases in deuterium uptake at the dimeric interface. In addition, AbTir-TIR exhibits EX1 kinetics indicative of large cooperative conformational changes, which are slowed down upon substrate binding. Additionally, we have developed label-free imaging using the minimally invasive spectroscopic method 2-photon excitation with fluorescence lifetime imaging, which shows differences in bacteria expressing native and mutant NAD+ hydrolase-inactivated AbTir-TIRE208A protein. Our observations are consistent with substrate-induced conformational changes reported in other TIR model systems with NAD+ hydrolase activity. These studies provide further insight into bacterial TIR protein mechanisms and their varying roles in biology.
Collapse
Affiliation(s)
- Erik Klontz
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Juliet O Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Yajing Wang
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Physiology, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Gabrielle Glendening
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Jahid Carr
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Constantine Tsibouris
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Sahthi Buddula
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Shreeram Nallar
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alexei S Soares
- Brookhaven National Laboratory, National Synchrotron Light Source II, Structural Biology Program, Upton, New York, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Cheyenne Palm
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Katrina Schmidt
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Alexis H Scudder
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Trinity Obiorah
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Kow Essuman
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeffrey Milbrandt
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Aaron Diantonio
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Biochemistry and Molecular Biology at the University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | - Daniel Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Greg A Snyder
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Monecke S, Bedewy AK, Müller E, Braun SD, Diezel C, Elsheredy A, Kader O, Reinicke M, Ghazal A, Rezk S, Ehricht R. Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt. Antibiotics (Basel) 2023; 12:78. [PMID: 36671279 PMCID: PMC9855118 DOI: 10.3390/antibiotics12010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
The present study aims to characterise clinical MRSA isolates from a tertiary care centre in Egypt's second-largest city, Alexandria. Thirty isolates collected in 2020 were genotypically characterised by microarray to detect their resistance and virulence genes and assign them to clonal complexes (CC) and strains. Isolates belonged to 11 different CCs and 14 different strains. CC15-MRSA-[V+fus] (n = 6), CC1-MRSA-[V+fus+tir+ccrA/B-1] (PVL+) (n = 5) as well as CC1-MRSA-[V+fus+tir+ccrA/B-1] and CC1153-MRSA-[V+fus] (PVL+) (both with n = 3) were the most common strains. Most isolates (83%) harboured variant or composite SCCmec V or VI elements that included the fusidic acid resistance gene fusC. The SCCmec [V+fus+tir+ccrA/B-1] element of one of the CC1 isolates was sequenced, revealing a presence not only of fusC but also of blaZ, aacA-aphD and other resistance genes. PVL genes were also common (40%). The hospital-acquired MRSA CC239-III strain was only found twice. A comparison to data from a study on strains collected in 2015 (Montelongo et al., 2022) showed an increase in fusC and PVL carriage and a decreasing prevalence of the CC239 strain. These observations indicate a diffusion of community-acquired strains into hospital settings. The beta-lactam use in hospitals and the widespread fusidic acid consumption in the community might pose a selective pressure that favours MRSA strains with composite SCCmec elements comprising mecA and fusC. This is an unsettling trend, but more MRSA typing data from Egypt are required.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Amira K. Bedewy
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria 5424041, Egypt
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Amel Elsheredy
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria 5424041, Egypt
| | - Ola Kader
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria 5424041, Egypt
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Abeer Ghazal
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria 5424041, Egypt
| | - Shahinda Rezk
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria 5424041, Egypt
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
5
|
Targeted Proteomics Analysis of Staphylococcal Superantigenic Toxins in Menstrual Fluid from Women with Menstrual Toxic Shock Syndrome (mTSS). Toxins (Basel) 2022; 14:toxins14120886. [PMID: 36548783 PMCID: PMC9788610 DOI: 10.3390/toxins14120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Menstrual toxic shock syndrome (mTSS) is a rare life-threatening febrile illness that occurs in women using intravaginal menstrual protection. It is caused by toxic shock syndrome toxin 1 (TSST-1) produced by Staphylococcus aureus, triggering a sudden onset of rash and hypotension, subsequently leading to multiple organ failure. Detecting TSST-1 and S. aureus virulence factors in menstrual fluid could accelerate the diagnosis and improve therapeutic management of mTSS. However, menstrual fluid is a highly complex matrix, making detection of bacterial toxins challenging. Here, we present a mass-spectrometry-based proteomics workflow for the targeted, quantitative analysis of four S. aureus superantigenic toxins in menstrual fluids (TSST-1, SEA, SEC, and SED). This method was applied to characterize toxin levels in menstrual fluids collected from patients with mTSS and healthy women. Toxins were detectable in samples from patients with mTSS and one healthy donor at concentrations ranging from 0 to 0.46 µg/mL for TSST-1, and 0 to 1.07 µg/mL for SEC. SEA and SED were never detected in clinical specimens, even though many S. aureus strains were positive for the corresponding genes. The method presented here could be used to explore toxin production in vivo in users of intravaginal devices to improve the diagnosis, understanding, and prevention of mTSS.
Collapse
|
6
|
Akunuri R, Unnissa T, Vadakattu M, Bujji S, Mahammad Ghouse S, Madhavi Yaddanapudi V, Chopra S, Nanduri S. Bacterial Pyruvate Kinase: A New Potential Target to Combat Drug‐Resistant
Staphylococcus aureus
Infections. ChemistrySelect 2022. [DOI: 10.1002/slct.202201403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ravikumar Akunuri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Tanveer Unnissa
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Manasa Vadakattu
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sushmitha Bujji
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Shaik Mahammad Ghouse
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031, Uttar Pradesh India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| |
Collapse
|
7
|
Characterisation of S. aureus/MRSA CC1153 and review of mobile genetic elements carrying the fusidic acid resistance gene fusC. Sci Rep 2021; 11:8128. [PMID: 33854075 PMCID: PMC8046974 DOI: 10.1038/s41598-021-86273-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/12/2021] [Indexed: 11/08/2022] Open
Abstract
While many data on molecular epidemiology of MRSA are available for North America, Western Europe and Australia, much less is known on the distribution of MRSA clones elsewhere. Here, we describe a poorly known lineage from the Middle East, CC1153, to which several strains from humans and livestock belong. Isolates were characterised using DNA microarrays and one isolate from the United Arab Emirates was sequenced using Nanopore technology. CC1153 carries agr II and capsule type 5 genes. Enterotoxin genes are rarely present, but PVL is common. Associated spa types include t504, t903 and t13507. PVL-positive CC1153-MSSA were found in Egyptian cattle suffering from mastitis. It was also identified among humans with skin and soft tissue infections in Saudi Arabia, France and Germany. CC1153-MRSA were mainly observed in Arabian Gulf countries. Some isolates presented with a previously unknown SCCmec/SCCfus chimeric element in which a mec B complex was found together with the fusidic acid resistance gene fusC and accompanying genes including ccrA/B-1 recombinase genes. Other isolates carried SCCmec V elements that usually also included fusC. Distribution and emergence of CC1153-MRSA show the necessity of molecular characterization of MRSA that are resistant to fusidic acid. These strains pose a public health threat as they combine resistance to beta-lactams used in hospitals as well as to fusidic acid used in the community. Because of the high prevalence of fusC-positive MRSA in the Middle East, sequences and descriptions of SCC elements harbouring fusC and/or mecA are reviewed. When comparing fusC and its surrounding regions from the CC1153 strain to available published sequences, it became obvious that there are four fusC alleles and five distinct types of fusC gene complexes reminiscent to the mec complexes in SCCmec elements. Likewise, they are associated with different sets of ccrA/B recombinase genes and additional payload that might include entire mec complexes or SCCmec elements.
Collapse
|
8
|
Soe YM, Bedoui S, Stinear TP, Hachani A. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol 2021; 23:e13317. [PMID: 33550697 DOI: 10.1111/cmi.13317] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major opportunistic human pathogen that is globally prevalent. Although S. aureus and humans may have co-evolved to the point of commensalism, the bacterium is equipped with virulence factors causing devastating infections. The adoption of an intracellular lifestyle by S. aureus is an important facet of its pathogenesis. Occupying a privileged intracellular compartment permits evasion from the bactericidal actions of host immunity and antibiotics. However, this localization exposes S. aureus to cell-intrinsic processes comprising autophagy, metabolic challenges and clearance mechanisms orchestrated by host programmed cell death pathways (PCDs), including apoptosis, pyroptosis and necroptosis. Mounting evidence suggests that S. aureus deploys pathoadaptive mechanisms that modulate the expression of its virulence factors to prevent elimination through PCD pathways. In this review, we critically analyse the current literature on the interplay between S. aureus virulence factors with the key, intertwined nodes of PCD. We discuss how S. aureus adaptation to the human host plays an essential role in the evasion of PCD, and we consider future directions to study S. aureus-PCD interactions.
Collapse
Affiliation(s)
- Ye Mon Soe
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
de Morais SD, Kak G, Menousek JP, Kielian T. Immunopathogenesis of Craniotomy Infection and Niche-Specific Immune Responses to Biofilm. Front Immunol 2021; 12:625467. [PMID: 33708216 PMCID: PMC7940520 DOI: 10.3389/fimmu.2021.625467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial infections in the central nervous system (CNS) can be life threatening and often impair neurological function. Biofilm infection is a complication following craniotomy, a neurosurgical procedure that involves the removal and replacement of a skull fragment (bone flap) to access the brain for surgical intervention. The incidence of infection following craniotomy ranges from 1% to 3% with approximately half caused by Staphylococcus aureus (S. aureus). These infections present a significant therapeutic challenge due to the antibiotic tolerance of biofilm and unique immune properties of the CNS. Previous studies have revealed a critical role for innate immune responses during S. aureus craniotomy infection. Experiments using knockout mouse models have highlighted the importance of the pattern recognition receptor Toll-like receptor 2 (TLR2) and its adaptor protein MyD88 for preventing S. aureus outgrowth during craniotomy biofilm infection. However, neither molecule affected bacterial burden in a mouse model of S. aureus brain abscess highlighting the distinctions between immune regulation of biofilm vs. planktonic infection in the CNS. Furthermore, the immune responses elicited during S. aureus craniotomy infection are distinct from biofilm infection in the periphery, emphasizing the critical role for niche-specific factors in dictating S. aureus biofilm-leukocyte crosstalk. In this review, we discuss the current knowledge concerning innate immunity to S. aureus craniotomy biofilm infection, compare this to S. aureus biofilm infection in the periphery, and discuss the importance of anatomical location in dictating how biofilm influences inflammatory responses and its impact on bacterial clearance.
Collapse
Affiliation(s)
- Sharon Db de Morais
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gunjan Kak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joseph P Menousek
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
10
|
Zhang J, Conly J, McClure J, Wu K, Petri B, Barber D, Elsayed S, Armstrong G, Zhang K. A Murine Skin Infection Model Capable of Differentiating the Dermatopathology of Community-Associated MRSA Strain USA300 from Other MRSA Strains. Microorganisms 2021; 9:microorganisms9020287. [PMID: 33573328 PMCID: PMC7912111 DOI: 10.3390/microorganisms9020287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
USA300 is a predominant and highly virulent community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain that is a leading cause of skin and soft tissue infections. We established a murine intradermal infection model capable of demonstrating dermatopathological differences between USA300 and other MRSA strains. In this model, USA300 induced dermonecrosis, uniformly presenting as extensive open lesions with a histologically documented profound inflammatory cell infiltrate extending below the subcutis. In contrast, USA400 and a colonizing control strain M92 caused only localized non-ulcerated skin infections associated with a mild focal inflammatory infiltrate. It was also determined that the dermonecrosis induced by USA300 was associated with significantly increased neutrophil recruitment, inhibition of an antibacterial response, and increased production of cytokines/chemokines associated with disease severity. These results suggest that induction of severe skin lesions by USA300 is related to over-activation of neutrophils, inhibition of host antibacterial responses, and selective alteration of host cytokine/chemokine profiles.
Collapse
Affiliation(s)
- Jack Zhang
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - John Conly
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
| | - JoAnn McClure
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Kaiyu Wu
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - Bjӧrn Petri
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Duane Barber
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
| | - Sameer Elsayed
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Western Ontario, London, ON N6A5C1, Canada
| | - Glen Armstrong
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - Kunyan Zhang
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
- Correspondence: ; Tel.: +1-403-210-8484
| |
Collapse
|
11
|
Vaginal Tampon Colonization by Staphylococcus aureus in Healthy Women. Appl Environ Microbiol 2020; 86:AEM.01249-20. [PMID: 32680868 DOI: 10.1128/aem.01249-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
Tampons recovered from a cohort of 737 healthy women (median age, 32 years) were analyzed for the presence of Staphylococcus aureus A total of 198 tampons (27%) were colonized by S. aureus, 28 (4%) by a strain producing toxic shock syndrome toxin 1 (TSST-1). S. aureus was detected more frequently in tampons that did not require an applicator for their insertion (74/233 [32%] versus 90/381 [24%]; odds ratio [OR] = 1.51 [95% confidence interval, 1.04 to 2.17]) and in women who used an intrauterine device for contraception (53/155 [34%] versus 145/572 [27%]; OR = 1.53 [95% confidence interval, 1.05 to 2.24]). The S. aureus strains isolated from tampons belonged to 22 different clonal complexes (CCs). The most prevalent CC was CC398 agr1 (n = 57 [27%]), a clone that does not produce superantigenic toxins, followed by CC30 agr3 (n = 27, 13%), producing TSST-1 (24/27 [89%]), the principal clone of S. aureus involved in menstrual toxic shock syndrome (MTSS).IMPORTANCE Menstrual toxic shock syndrome (MTSS) is an uncommon severe acute disease that occurs in healthy menstruating women colonized by TSST-1-producing S. aureus who use intravaginal protection, such as tampons and menstrual cups. The catamenial product collected by the protection serves as a growth medium for S. aureus and allows TSST-1 production. Previous studies evaluated the prevalence of genital colonization by S. aureus by vaginal swabbing, but they did not examine tampon colonization. This study demonstrated a high prevalence of tampon colonization by S. aureus and the presence of the CC30 TSST-1 S. aureus clone responsible for MTSS in tampons from healthy women. The results support the vaginal carriage of this lineage in healthy women. In addition, the higher prevalence of S. aureus within tampons that do not require an applicator indicates a crucial role for handwashing before tampon handling to decrease the risk of tampon contamination.
Collapse
|
12
|
The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathog 2020; 16:e1007979. [PMID: 32298382 PMCID: PMC7188309 DOI: 10.1371/journal.ppat.1007979] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/28/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Brucella species are facultative intracellular Gram-negative bacteria relevant to animal and human health. Their ability to establish an intracellular niche and subvert host cell pathways to their advantage depends on the delivery of bacterial effector proteins through a type IV secretion system. Brucella Toll/Interleukin-1 Receptor (TIR)-domain-containing proteins BtpA (also known as TcpB) and BtpB are among such effectors. Although divergent in primary sequence, they interfere with Toll-like receptor (TLR) signaling to inhibit the innate immune responses. However, the molecular mechanisms implicated still remain unclear. To gain insight into the functions of BtpA and BtpB, we expressed them in the budding yeast Saccharomyces cerevisiae as a eukaryotic cell model. We found that both effectors were cytotoxic and that their respective TIR domains were necessary and sufficient for yeast growth inhibition. Growth arrest was concomitant with actin depolymerization, endocytic block and a general decrease in kinase activity in the cell, suggesting a failure in energetic metabolism. Indeed, levels of ATP and NAD+ were low in yeast cells expressing BtpA and BtpB TIR domains, consistent with the recently described enzymatic activity of some TIR domains as NAD+ hydrolases. In human epithelial cells, both BtpA and BtpB expression reduced intracellular total NAD levels. In infected cells, both BtpA and BtpB contributed to reduction of total NAD, indicating that their NAD+ hydrolase functions are active intracellularly during infection. Overall, combining the yeast model together with mammalian cells and infection studies our results show that BtpA and BtpB modulate energy metabolism in host cells through NAD+ hydrolysis, assigning a novel role for these TIR domain-containing effectors in Brucella pathogenesis. Brucella is a genus of zoonotic bacteria that cause severe disease in a variety of mammals, ranging from farm animals (as bovines, swine and ovine) to marine mammals. Transmission to humans, often by ingestion of non-treated dairy products, leads to serious systemic infection. Brucella abortus invades host cells and replicates intracellularly. Such behavior relies on the injection of bacterial proteins into the host cytoplasm via specialized secretion systems. Our work focuses on the study of two of these factors, BtpA and BtpB, previously described to contain Toll/Interleukin-1 Receptor (TIR)-domains that modulate innate immunity. We use here two biological models: the yeast Saccharomyces cerevisiae and human cell lines. We found that the TIR domains of both Brucella proteins were necessary and sufficient to collapse energy metabolism in yeast by depleting ATP and NAD+. This result was translatable to higher cells and consistent with the recently described NADase activity of some TIR domains both in mammalian and bacterial proteins. Importantly, we demonstrate that Brucella down-regulates total NAD levels in host cells by using both BtpA and BtpB effectors. Our results show that NAD+ is targeted by Brucella during infection, which may constitute a novel mechanism for its pathogenicity.
Collapse
|
13
|
Aldrich AL, Heim CE, Shi W, Fallet RW, Duan B, Kielian T. TLR2 and caspase-1 signaling are critical for bacterial containment but not clearance during craniotomy-associated biofilm infection. J Neuroinflammation 2020; 17:114. [PMID: 32290861 PMCID: PMC7158029 DOI: 10.1186/s12974-020-01793-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A craniotomy is required to access the brain for tumor resection or epilepsy treatment, and despite precautionary measures, infectious complications occur at a frequency of 1-3%. Approximately half of craniotomy infections are caused by Staphylococcus aureus (S. aureus) that forms a biofilm on the bone flap, which is recalcitrant to antibiotics. Our prior work in a mouse model of S. aureus craniotomy infection revealed a critical role for myeloid differentiation factor 88 (MyD88) in bacterial containment and pro-inflammatory mediator production. Since numerous receptors utilize MyD88 as a signaling adaptor, the current study examined the importance of Toll-like receptor 2 (TLR2) and TLR9 based on their ability sense S. aureus ligands, namely lipoproteins and CpG DNA motifs, respectively. We also examined the role of caspase-1 based on its known association with TLR signaling to promote IL-1β release. METHODS A mouse model of craniotomy-associated biofilm infection was used to investigate the role of TLR2, TLR9, and caspase-1 in disease progression. Wild type (WT), TLR2 knockout (KO), TLR9 KO, and caspase-1 KO mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the galea, brain, and bone flap. In addition, the role of TLR2-dependent signaling during microglial/macrophage crosstalk with myeloid-derived suppressor cells (MDSCs) was examined. RESULTS TLR2, but not TLR9, was important for preventing S. aureus outgrowth during craniotomy infection, as revealed by the elevated bacterial burden in the brain, galea, and bone flap of TLR2 KO mice concomitant with global reductions in pro-inflammatory mediator production compared to WT animals. Co-culture of MDSCs with microglia or macrophages, to model interactions in the brain vs. galea, respectively, also revealed a critical role for TLR2 in triggering pro-inflammatory mediator production. Similar to TLR2, caspase-1 KO animals also displayed increased S. aureus titers coincident with reduced pro-inflammatory mediator release, suggestive of pathway cooperativity. Treatment of caspase-1 KO mice with IL-1β microparticles significantly reduced S. aureus burden in the brain and galea compared to empty microparticles, confirming the critical role of IL-1β in limiting S. aureus outgrowth during craniotomy infection. CONCLUSIONS These results demonstrate the existence of an initial anti-bacterial response that depends on both TLR2 and caspase-1 in controlling S. aureus growth; however, neither pathway is effective at clearing infection in the WT setting, since craniotomy infection persists when both molecules are present.
Collapse
Affiliation(s)
- Amy L Aldrich
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA
- Present Address: Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Cortney E Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Shi
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rachel W Fallet
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
Senok A, Slickers P, Hotzel H, Boswihi S, Braun SD, Gawlik D, Müller E, Nabi A, Nassar R, Nitschke H, Reissig A, Ruppelt-Lorz A, Mafofo J, Somily AM, Udo E, Ehricht R, Monecke S. Characterisation of a novel SCCmec VI element harbouring fusC in an emerging Staphylococcus aureus strain from the Arabian Gulf region. PLoS One 2019; 14:e0223985. [PMID: 31689288 PMCID: PMC6830749 DOI: 10.1371/journal.pone.0223985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/02/2019] [Indexed: 12/01/2022] Open
Abstract
Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that-to the best of our knowledge-has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.
Collapse
Affiliation(s)
- Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Peter Slickers
- InfectoGnostics Research Campus Jena, Jena, Germany
- Abbott (Alere Technologies GmbH), Jena, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Samar Boswihi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sascha D. Braun
- InfectoGnostics Research Campus Jena, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | | | - Elke Müller
- InfectoGnostics Research Campus Jena, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Anju Nabi
- Microbiology & Infection Control Unit, Pathology Department, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Hedda Nitschke
- Department of Laboratory Medicine, Hospital Dresden-Neustadt, Dresden, Germany
| | - Annett Reissig
- InfectoGnostics Research Campus Jena, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Antje Ruppelt-Lorz
- Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | - Joseph Mafofo
- Agiomix FZ-LLC, Dubai Science Park Warehouse Complex, Dubai, United Arab Emirates
| | - Ali M. Somily
- Department of Pathology and Laboratory Medicine, College of Medicine, King Khalid University Hospital and King Saud University, Riyadh, Saudi Arabia
| | - Edet Udo
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ralf Ehricht
- InfectoGnostics Research Campus Jena, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Stefan Monecke
- InfectoGnostics Research Campus Jena, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Liu T, Wang E, Wei W, Wang K, Yang Q, Ai X. TcpA, a novel Yersinia ruckeri TIR-containing virulent protein mediates immune evasion by targeting MyD88 adaptors. FISH & SHELLFISH IMMUNOLOGY 2019; 94:58-65. [PMID: 31470137 DOI: 10.1016/j.fsi.2019.08.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
TIR domain-containing protein is an important member for some bacterial pathogens to subvert host defenses. Here we described a fish virulent Yersinia ruckeri SC09 strain that interfered directly with Toll-like receptor (TLR) function by a TIR-containing protein. Firstly, the novel TIR-containing protein was identified by bioinformatics analysis and named as TcpA. Secondly, the toxic effects of TcpA in fish was demonstrated in vivo challenge experiments through knockout mutant and complement mutant of tcpA gene. Thirdly, The study in vitro revealed that TcpA could down-regulate the expression and secretion of IL-6, IL-1β and TNF-α. Finally, we demonstrated that TcpA could inhibit the TLR signaling pathway through interaction with myeloid differentiation factor 88 (MyD88) in experiments such as NF-κB dependent luciferase reporter system, co-immunoprecipitation, GST pull-down and yeast two-hybrid. The study revealed that TcpA was essential for virulence and was able to interact with the TIR adaptor protein MyD88 and inhibit the pre-inflammatory signal of immune cells and promote the intracellular survival of pathogenic Yersinia ruckeri SC09 strain. In conclusion, our results showed that TcpA acted as a new virulence factor in Y. ruckeri could suppress innate immune response and increase virulence by inhibiting TLR and MyD88-mediated specific signaling, highlighting a novel strategy for innate immune evasion in bacteria.
Collapse
Affiliation(s)
- Tao Liu
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Erlong Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Wenyan Wei
- Institute of Fisheries of Chengdu Agriculture and Forestry Academy, Chengdu, PR China
| | - Kaiyu Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| | - Qian Yang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, PR China
| |
Collapse
|
16
|
A Yersinia ruckeri TIR Domain-Containing Protein (STIR-2) Mediates Immune Evasion by Targeting the MyD88 Adaptor. Int J Mol Sci 2019; 20:ijms20184409. [PMID: 31500298 PMCID: PMC6769684 DOI: 10.3390/ijms20184409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
TIR domain-containing proteins are essential for bacterial pathogens to subvert host defenses. This study describes a fish pathogen, Yersinia ruckeri SC09 strain, with a novel TIR domain-containing protein (STIR-2) that affects Toll-like receptor (TLR) function. STIR-2 was identified in Y. ruckeri by bioinformatics analysis. The toxic effects of this gene on fish were determined by in vivo challenge experiments in knockout mutants and complement mutants of the stir-2 gene. In vitro, STIR-2 downregulated the expression and secretion of IL-6, IL-1β, and TNF-α. Furthermore, the results of NF-κB-dependent luciferase reporter system, co-immunoprecipitation, GST pull-down assays, and yeast two-hybrid assay indicated that STIR-2 inhibited the TLR signaling pathway by interacting with myeloid differentiation factor 88 (MyD88). In addition, STIR-2 promoted the intracellular survival of pathogenic Yersinia ruckeri SC09 strain by binding to the TIR adaptor protein MyD88 and inhibiting the pre-inflammatory signal of immune cells. These results showed that STIR-2 increased virulence in Y. ruckeri and suppressed the innate immune response by inhibiting TLR and MyD88-mediated signaling, serving as a novel strategy for innate immune evasion.
Collapse
|
17
|
Enterococcus faecium TIR-Domain Genes Are Part of a Gene Cluster Which Promotes Bacterial Survival in Blood. Int J Microbiol 2019; 2018:1435820. [PMID: 30631364 PMCID: PMC6304867 DOI: 10.1155/2018/1435820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/14/2018] [Indexed: 11/29/2022] Open
Abstract
Enterococcus faecium has undergone a transition to a multidrug-resistant nosocomial pathogen. The population structure of E. faecium is characterized by a sharp distinction of clades, where the hospital-adapted lineage is primarily responsible for bacteremia. So far, factors that were identified in hospital-adapted strains and that promoted pathogenesis of nosocomial E. faecium mainly play a role in adherence and biofilm production, while less is known about factors contributing to survival in blood. This study identified a gene cluster, which includes genes encoding bacterial Toll/interleukin-1 receptor- (TIR-) domain-containing proteins (TirEs). The cluster was found to be unique to nosocomial strains and to be located on a putative mobile genetic element of phage origin. The three genes within the cluster appeared to be expressed as an operon. Expression was detected in bacterial culture media and in the presence of human blood. TirEs are released into the bacterial supernatant, and TirE2 is associated with membrane vesicles. Furthermore, the tirE-gene cluster promotes bacterial proliferation in human blood, indicating that TirE may contribute to the pathogenesis of bacteremia.
Collapse
|
18
|
Jacquemond I, Muggeo A, Lamblin G, Tristan A, Gillet Y, Bolze PA, Bes M, Gustave CA, Rasigade JP, Golfier F, Ferry T, Dubost A, Abrouk D, Barreto S, Prigent-Combaret C, Thioulouse J, Lina G, Muller D. Complex ecological interactions of Staphylococcus aureus in tampons during menstruation. Sci Rep 2018; 8:9942. [PMID: 29967393 PMCID: PMC6028614 DOI: 10.1038/s41598-018-28116-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Menstrual toxic shock syndrome (mTSS) is a severe disease that occurs in healthy women vaginally colonized by Staphylococcus aureus producing toxic shock toxin 1 and who use tampons. The aim of the present study was to determine the impact of the composition of vaginal microbial communities on tampon colonisation by S. aureus during menses. We analysed the microbiota in menstrual fluids extracted from tampons from 108 healthy women and 7 mTSS cases. Using culture, S. aureus was detected in menstrual fluids of 40% of healthy volunteers and 100% of mTSS patients. Between class analysis of culturomic and 16S rRNA gene metabarcoding data indicated that the composition of the tampons' microbiota differs according to the presence or absence of S. aureus and identify discriminating genera. However, the bacterial communities of tampon fluid positive for S. aureus did not cluster together. No difference in tampon microbiome richness, diversity, and ecological distance was observed between tampon vaginal fluids with or without S. aureus, and between healthy donors carrying S. aureus and mTSS patients. Our results show that the vagina is a major niche of. S. aureus in tampon users and the composition of the tampon microbiota control its virulence though more complex interactions than simple inhibition by lactic acid-producing bacterial species.
Collapse
Affiliation(s)
- Isaline Jacquemond
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR Ecologie Microbienne, 43 bd du 11 Novembre, F-69622, Villeurbanne, France
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
| | - Anaëlle Muggeo
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
| | - Gery Lamblin
- Department of Gynecology, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Bron, France
| | - Anne Tristan
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des Agent infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Yves Gillet
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des Agent infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- Department of Pediatric Emergency, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Bron, France
| | - Pierre Adrien Bolze
- Department of Gynecological Surgery and Oncology, Obstetrics, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Michèle Bes
- Centre National de Référence des Staphylocoques, Institut des Agent infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Claude Alexandre Gustave
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des Agent infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Jean-Philippe Rasigade
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des Agent infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - François Golfier
- Department of Gynecological Surgery and Oncology, Obstetrics, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Tristan Ferry
- Service des maladies infectieuses et tropicales, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Audrey Dubost
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR Ecologie Microbienne, 43 bd du 11 Novembre, F-69622, Villeurbanne, France
| | - Danis Abrouk
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR Ecologie Microbienne, 43 bd du 11 Novembre, F-69622, Villeurbanne, France
| | - Samuel Barreto
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR Ecologie Microbienne, 43 bd du 11 Novembre, F-69622, Villeurbanne, France
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Claire Prigent-Combaret
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR Ecologie Microbienne, 43 bd du 11 Novembre, F-69622, Villeurbanne, France
| | - Jean Thioulouse
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Gérard Lina
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France.
- Centre National de Référence des Staphylocoques, Institut des Agent infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.
| | - Daniel Muller
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, VetAgro Sup, UMR Ecologie Microbienne, 43 bd du 11 Novembre, F-69622, Villeurbanne, France.
| |
Collapse
|
19
|
Nanson JD, Rahaman MH, Ve T, Kobe B. Regulation of signaling by cooperative assembly formation in mammalian innate immunity signalosomes by molecular mimics. Semin Cell Dev Biol 2018; 99:96-114. [PMID: 29738879 DOI: 10.1016/j.semcdb.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/18/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Innate immunity pathways constitute the first line of defense against infections and cellular damage. An emerging concept in these pathways is that signaling involves the formation of finite (e.g. rings in NLRs) or open-ended higher-order assemblies (e.g. filamentous assemblies by members of the death-fold family and TIR domains). This signaling by cooperative assembly formation (SCAF) mechanism allows rapid and strongly amplified responses to minute amounts of stimulus. While the characterization of the molecular mechanisms of SCAF has seen rapid progress, little is known about its regulation. One emerging theme involves proteins produced both in host cells and by pathogens that appear to mimic the signaling components. Recently characterized examples involve the capping of the filamentous assemblies formed by caspase-1 CARDs by the CARD-only protein INCA, and those formed by caspase-8 by the DED-containing protein MC159. By contrast, the CARD-only protein ICEBERG and the DED-containing protein cFLIP incorporate into signaling filaments and presumably interfere with proximity based activation of caspases. We review selected examples of SCAF in innate immunity pathways and focus on the current knowledge on signaling component mimics produced by mammalian and pathogen cells and what is known about their mechanisms of action.
Collapse
Affiliation(s)
- Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Habibur Rahaman
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
20
|
TIR Domain Proteins Are an Ancient Family of NAD +-Consuming Enzymes. Curr Biol 2018; 28:421-430.e4. [PMID: 29395922 DOI: 10.1016/j.cub.2017.12.024] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/02/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022]
Abstract
The Toll/interleukin-1 receptor (TIR) domain is the signature signaling domain of Toll-like receptors (TLRs) and their adaptors, serving as a scaffold for the assembly of protein complexes for innate immune signaling [1, 2]. TIR domain proteins are also expressed in plants, where they mediate disease resistance [3, 4], and in bacteria, where they have been associated with virulence [5-9]. In pursuing our work on axon degeneration [10], we made the surprising discovery that the TIR domain of SARM1 (sterile alpha and TIR motif containing 1), a TLR adaptor protein, has enzymatic activity [11]. Upon axon injury, the SARM1 TIR domain cleaves nicotinamide adenine dinucleotide (NAD+), destroying this essential metabolic co-factor to trigger axon destruction [11, 12]. Whereas current studies of TIR domains focus on their scaffolding function, our findings with SARM1 inspired us to ask whether this enzymatic activity is the primordial function of the TIR domain. Here we show that ancestral prokaryotic TIR domains constitute a new family of NADase enzymes. Using purified proteins from a cell-free translation system, we find that TIR domain proteins from both bacteria and archaea cleave NAD+ into nicotinamide and ADP-ribose (ADPR), with catalytic cleavage executed by a conserved glutamic acid. A subset of bacterial and archaeal TIR domains generates a non-canonical variant cyclic ADPR (cADPR) molecule, and the full-length TIR domain protein from pathogenic Staphylococcus aureus induces NAD+ loss in mammalian cells. These findings suggest that the primordial function of the TIR domain is the enzymatic cleavage of NAD+ and establish TIR domain proteins as a new class of metabolic regulatory enzymes.
Collapse
|
21
|
Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2018; 41:430-449. [PMID: 28419231 DOI: 10.1093/femsre/fux007] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/12/2017] [Indexed: 12/11/2022] Open
Abstract
The major targets for antibiotics in staphylococci are (i) the cell envelope, (ii) the ribosome and (iii) nucleic acids. Several novel targets emerged from recent targeted drug discovery programmes including the ClpP protease and FtsZ from the cell division machinery. Resistance can either develop by horizontal transfer of resistance determinants encoded by mobile genetic elements viz plasmids, transposons and the staphylococcal cassette chromosome or by mutations in chromosomal genes. Horizontally acquired resistance can occur by one of the following mechanisms: (i) enzymatic drug modification and inactivation, (ii) enzymatic modification of the drug binding site, (iii) drug efflux, (iv) bypass mechanisms involving acquisition of a novel drug-resistant target, (v) displacement of the drug to protect the target. Acquisition of resistance by mutation can result from (i) alteration of the drug target that prevents the inhibitor from binding, (ii) derepression of chromosomally encoded multidrug resistance efflux pumps and (iii) multiple stepwise mutations that alter the structure and composition of the cell wall and/or membrane to reduce drug access to its target. This review focuses on development of resistance to currently used antibiotics and examines future prospects for new antibiotics and informed use of drug combinations.
Collapse
|
22
|
TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines (Basel) 2017; 5:vaccines5040034. [PMID: 28976923 PMCID: PMC5748601 DOI: 10.3390/vaccines5040034] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023] Open
Abstract
Toll-Like Receptor 4 (TLR4) signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the TLR4 pathway is a potential strategy to specifically target these pathologies. Among the diseases caused by TLR4 abnormal activation by bacterial endotoxin, sepsis is the most dangerous one because it is a life-threatening acute system inflammatory condition that still lacks specific pharmacological treatment. Here, we review molecules at a preclinical or clinical phase of development, that are active in inhibiting the TLR4-MyD88 and TLR4-TRIF pathways in animal models. These are low-molecular weight compounds of natural and synthetic origin that can be considered leads for drug development. The results of in vivo studies in the sepsis model and the mechanisms of action of drug leads are presented and critically discussed, evidencing the differences in treatment results from rodents to humans.
Collapse
|
23
|
Malapati H, Millen SM, J Buchser W. The axon degeneration gene SARM1 is evolutionarily distinct from other TIR domain-containing proteins. Mol Genet Genomics 2017; 292:909-922. [PMID: 28447196 DOI: 10.1007/s00438-017-1320-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Many forms of neurodegenerative disease are characterized by Wallerian degeneration, an active program of axonal destruction. Recently, the important player which enacts Wallerian degeneration was discovered, the multidomain protein SARM1. Since the SARM1 protein has classically been thought of as an innate immune molecule, its role in Wallerian degeneration has raised questions on the evolutionary forces acting on it. Here, we synthesize a picture of SARM1's evolution through various organisms by examining the molecular and genetic changes of SARM1 and the genes around it. Using proteins that possess domains homologous to SARM1, we established distances and Ka/Ks values through 5671 pairwise species-species comparisons. We demonstrate that SARM1 diverged across species in a pattern similar to other SAM domain-containing proteins. This is surprising, because it was expected that SARM1 would behave more like its TIR domain relatives. Going along with this divorce from TIR, we also noted that SARM1's TIR is under stronger purifying selection than the rest of the TIR domain-containing proteins (remaining highly conserved). In addition, SARM1's synteny analysis reveals that the surrounding gene cluster is highly conserved, functioning as a potential nexus of gene functionality across species. Taken together, SARM1 demonstrates a unique evolutionary pattern, separate from the TIR domain protein family.
Collapse
Affiliation(s)
- Harsha Malapati
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA
| | - Spencer M Millen
- Neuroscience Program, College of William & Mary, Williamsburg, VA, USA
| | - William J Buchser
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA. .,Neuroscience Program, College of William & Mary, Williamsburg, VA, USA.
| |
Collapse
|
24
|
Patot S, Imbert PRC, Baude J, Martins Simões P, Campergue JB, Louche A, Nijland R, Bès M, Tristan A, Laurent F, Fischer A, Schrenzel J, Vandenesch F, Salcedo SP, François P, Lina G. Correction: The TIR Homologue Lies near Resistance Genes in Staphylococcus aureus, Coupling Modulation of Virulence and Antimicrobial Susceptibility. PLoS Pathog 2017; 13:e1006291. [PMID: 28339496 PMCID: PMC5365114 DOI: 10.1371/journal.ppat.1006291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|