1
|
Zhu G, Fu M, Zhang Y, Lu L. A ubiquitin-mediated post-translational degradation of Cyp51A contributes to a novel azole resistance mode in Aspergillus fumigatus. Microbiol Res 2024; 289:127891. [PMID: 39244806 DOI: 10.1016/j.micres.2024.127891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
The airborne fungus Aspergillus fumigatus is a major pathogen that poses a serious health threat to humans by causing aspergillosis. Azole antifungals inhibit sterol 14-demethylase (encoded by cyp51A), an enzyme crucial for fungal cell survival. However, the most common mechanism of azole resistance in A. fumigatus is associated with the mutations in cyp51A and tandem repeats in its promoter, leading to reduced drug-enzyme interaction and overexpression of cyp51A. It remains unknown whether post-translational modifications of Cyp51A contribute to azole resistance. In this study, we report that the Cyp51A expression is highly induced upon exposure to itraconazole, while its ubiquitination level is significantly reduced by itraconazole. Loss of the ubiquitin-conjugating enzyme Ubc7 confers resistance to multiple azole antifungals but hinders hyphal growth, conidiation, and virulence. Western blot and immunoprecipitation assays show that deletion of ubc7 reduces Cyp51A degradation by impairing its ubiquitination, thereby leading to drug resistance. Most importantly, the overexpression of ubc7 in common environmental and clinical azole-resistant cyp51A isolates partially restores azole sensitivity. Our findings demonstrate a non-cyp51A mutation-based resistance mechanism and uncover a novel role of post-translational modification in contributing to azole resistance in A. fumigatus.
Collapse
Affiliation(s)
- Guoxing Zhu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengjuan Fu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Ling Lu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
2
|
Islam T, Danishuddin, Tamanna NT, Matin MN, Barai HR, Haque MA. Resistance Mechanisms of Plant Pathogenic Fungi to Fungicide, Environmental Impacts of Fungicides, and Sustainable Solutions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2737. [PMID: 39409607 PMCID: PMC11478979 DOI: 10.3390/plants13192737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The significant reduction in agricultural output and the decline in product quality are two of the most glaring negative impacts caused by plant pathogenic fungi (PPF). Furthermore, contaminated food or transit might introduce mycotoxins produced by PPF directly into the food chain. Eating food tainted with mycotoxin is extremely dangerous for both human and animal health. Using fungicides is the first choice to control PPF or their toxins in food. Fungicide resistance and its effects on the environment and public health are becoming more and more of a concern, despite the fact that chemical fungicides are used to limit PPF toxicity and control growth in crops. Fungicides induce target site alteration and efflux pump activation, and mutations in PPF result in resistance. As a result, global trends are shifting away from chemically manufactured pesticides and toward managing fungal plant diseases using various biocontrol techniques, tactics, and approaches. However, surveillance programs to monitor fungicide resistance and their environmental impact are much fewer compared to bacterial antibiotic resistance surveillance programs. In this review, we discuss the PPF that contributes to disease development in plants, the fungicides used against them, factors causing the spread of PPF and the emergence of new strains, the antifungal resistance mechanisms of PPF, health, the environmental impacts of fungicides, and the use of biocontrol agents (BCAs), antimicrobial peptides (AMPs), and nanotechnologies to control PPF as a safe and eco-friendly alternative to fungicides.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Muhammad Nurul Matin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| |
Collapse
|
3
|
Leconte A, Jacquin J, Duban M, Deweer C, Trapet P, Laruelle F, Farce A, Compère P, Sahmer K, Fiévet V, Hoste A, Siah A, Lounès-Hadj Sahraoui A, Jacques P, Coutte F, Deleu M, Muchembled J. Deciphering the mechanisms involved in reduced sensitivity to azoles and fengycin lipopeptide in Venturia inaequalis. Microbiol Res 2024; 286:127816. [PMID: 38964072 DOI: 10.1016/j.micres.2024.127816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Apple scab, caused by the hemibiotrophic fungus Venturia inaequalis, is currently the most common and damaging disease in apple orchards. Two strains of V. inaequalis (S755 and Rs552) with different sensitivities to azole fungicides and the bacterial metabolite fengycin were compared to determine the mechanisms responsible for these differences. Antifungal activity tests showed that Rs552 had reduced sensitivity to tebuconazole and tetraconazole, as well as to fengycin alone or in a binary mixture with other lipopeptides (iturin A, pumilacidin, lichenysin). S755 was highly sensitive to fengycin, whose activity was close to that of tebuconazole. Unlike fengycin, lipopeptides from the iturin family (mycosubtilin, iturin A) had similar activity on both strains, while those from the surfactin family (lichenysin, pumilacidin) were not active, except in binary mixtures with fengycin. The activity of lipopeptides varies according to their family and structure. Analyses to determine the difference in sensitivity to azoles (which target the CYP51 enzyme involved in the ergosterol biosynthesis pathway) showed that the reduced sensitivity in Rs552 is linked to (i) a constitutive increased expression of the Cyp51A gene caused by insertions in the upstream region and (ii) greater efflux by membrane pumps with the involvement of ABC transporters. Microscopic observations revealed that fengycin, known to interact with plasma membranes, induced morphological and cytological changes in cells from both strains. Sterol and phospholipid analyses showed a higher level of ergosta-7,22-dien-3-ol and a lower level of PI(C16:0/C18:1) in Rs552 compared with S755. These differences could therefore influence the composition of the plasma membrane and explain the differential sensitivity of the strains to fengycin. However, the similar antifungal activities of mycosubtilin and iturin A in the two strains indirectly indicate that sterols are probably not involved in the fengycin resistance mechanism. This leads to the conclusion that different mechanisms are responsible for the difference in susceptibility to azoles or fengycin in the strains studied.
Collapse
Affiliation(s)
- Aline Leconte
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France; University of Lille, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, Charles Viollette Institute, Lille F-59000, France; University of Liège, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, Gembloux B-5030, Belgium
| | - Justine Jacquin
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France
| | - Matthieu Duban
- University of Lille, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, Charles Viollette Institute, Lille F-59000, France
| | - Caroline Deweer
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France
| | - Pauline Trapet
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France
| | - Frédéric Laruelle
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d'Opale, CEDEX CS 80699, Calais 62228, France
| | - Amaury Farce
- Université Lille, Inserm, CHU Lille, U1286 - INFINITE - Institut de recherche translationnelle sur l'inflammation, Lille F-59000, France
| | - Philippe Compère
- Laboratoire de morphologie fonctionnelle et évolutive, UR FOCUS, and Centre de recherche appliquée et d'enseignement en microscopie (CAREM), Université de Liège, Liège, Belgium
| | - Karin Sahmer
- Université Lille, IMT Lille Douai, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et geo-Environnement, Lille F-59000, France
| | - Valentin Fiévet
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France
| | - Alexis Hoste
- University of Liège, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, Gembloux B-5030, Belgium
| | - Ali Siah
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d'Opale, CEDEX CS 80699, Calais 62228, France
| | - Philippe Jacques
- University of Liège, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, Gembloux B-5030, Belgium
| | - François Coutte
- University of Lille, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, Charles Viollette Institute, Lille F-59000, France
| | - Magali Deleu
- University of Liège, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, Gembloux B-5030, Belgium
| | - Jérôme Muchembled
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France.
| |
Collapse
|
4
|
Pereira de Sa N, Del Poeta M. MBX-7591: a promising drug candidate against drug-resistant fungal infections. mBio 2024; 15:e0136124. [PMID: 38990019 PMCID: PMC11323553 DOI: 10.1128/mbio.01361-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Invasive fungal infections (IFIs) caused by pathogenic fungi pose a significant public health concern, particularly for immunocompromised individuals. Mortality rates for IFIs remain high, and currently available treatment options are limited. Existing antifungal agents often suffer from limited clinical efficacy, poor fungicidal activity within the host, potential toxicity, and increasing ineffectiveness due to emerging resistance, especially against triazole drugs, the current mainstay of antifungal treatment. A recent study has identified MBX-7591, a small molecule with promising antifungal activity against Aspergillus fumigatus and other pathogenic fungi, including strains resistant to triazoles (C. Gutierrez-Perez, C. Puerner, J. T. Jones, S. Vellanki, E. M. Vesely, et al., mBio e01166-24, 2024, https://doi.org/10.1128/mbio.01166-24). This novel compound appears to inhibit stearoyl-CoA 9-desaturase, a key enzyme involved in fungal fatty acid biosynthesis. By disrupting the conversion of saturated fatty acids to oleic acid, MBX-7591 offers a unique mechanism of action, potentially reducing the risk of resistance development. Here, we now discuss the implications of these groundbreaking findings for overcoming antifungal drug resistance.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
- MicroRid Technologies Inc., Dix Hills, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
5
|
Ror S, Stamnes MA, Moye-Rowley WS. Gene-specific transcriptional activation by the Aspergillus fumigatus AtrR factor requires a conserved C-terminal domain. mSphere 2024; 9:e0042524. [PMID: 38975761 PMCID: PMC11288021 DOI: 10.1128/msphere.00425-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Treatment of fungal infections associated with the filamentous fungus Aspergillus fumigatus is becoming more problematic as this organism is developing resistance to the main chemotherapeutic drug at an increasing rate. Azole drugs represent the current standard-of-care in the treatment of aspergillosis with this drug class acting by inhibiting a key step in the biosynthesis of the fungal sterol ergosterol. Azole compounds block the activity of the lanosterol α-14 demethylase, encoded by the cyp51A gene. A common route of azole resistance involves an increase in transcription of cyp51A. This transcriptional increase requires the function of a Zn2Cys6 DNA-binding domain-containing transcription activator protein called AtrR. AtrR was identified through its action as a positive regulator of expression of an ATP-binding cassette transporter (abcC/cdr1B here called abcG1). Using both deletion and alanine scanning mutagenesis, we demonstrate that a conserved C-terminal domain in A. fumigatus is required for the expression of abcG1 but dispensable for cyp51A transcription. This domain is also found in several other fungal pathogen AtrR homologs consistent with a conserved gene-selective function of this protein segment being conserved. Using RNA sequencing (RNA-seq), we find that this gene-specific transcriptional defect extends to several other membrane transporter-encoding genes including a second ABC transporter locus. Our data reveal that AtrR uses at least two distinct mechanisms to induce gene expression and that normal susceptibility to azole drugs cannot be provided by maintenance of wild-type expression of the ergosterol biosynthetic pathway when ABC transporter expression is reduced. IMPORTANCE Aspergillus fumigatus is the primary human filamentous fungal pathogen. The principal chemotherapeutic drug used to control infections associated with A. fumigatus is the azole compound. These drugs are well-tolerated and effective, but resistance is emerging at an alarming rate. Most resistance is associated with mutations that lead to overexpression of the azole target enzyme, lanosterol α-14 demethylase, encoded by the cyp51A gene. A key regulator of cyp51A gene expression is the transcription factor AtrR. Very little is known of the molecular mechanisms underlying the effect of AtrR on gene expression. Here, we use deletion and clustered amino acid substitution mutagenesis to map a region of AtrR that confers gene-specific activation on target genes of this transcription factor. This region is highly conserved across AtrR homologs from other pathogenic species arguing that its importance in transcriptional regulation is maintained across evolution.
Collapse
Affiliation(s)
- Shivani Ror
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Wang C, Zhang X, Wu K, Liu S, Li X, Zhu C, Xiao Y, Fang Z, Liu J. Two Zn 2Cys 6-type transcription factors respond to aromatic compounds and regulate the expression of laccases in the white-rot fungus Trametes hirsuta. Appl Environ Microbiol 2024; 90:e0054524. [PMID: 38899887 PMCID: PMC11267944 DOI: 10.1128/aem.00545-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
White-rot fungi differentially express laccases when they encounter aromatic compounds. However, the underlying mechanisms are still being explored. Here, proteomics analysis revealed that in addition to increased laccase activity, proteins involved in sphingolipid metabolism and toluene degradation as well as some cytochrome P450s (CYP450s) were differentially expressed and significantly enriched during 48 h of o-toluidine exposure, in Trametes hirsuta AH28-2. Two Zn2Cys6-type transcription factors (TFs), TH8421 and TH4300, were upregulated. Bioinformatics docking and isothermal titration calorimetry assays showed that each of them could bind directly to o-toluidine and another aromatic monomer, guaiacol. Binding to aromatic compounds promoted the formation of TH8421/TH4300 heterodimers. TH8421 and TH4300 silencing in T. hirsuta AH28-2 led to decreased transcriptional levels and activities of LacA and LacB upon o-toluidine and guaiacol exposure. EMSA and ChIP-qPCR analysis further showed that TH8421 and TH4300 bound directly with the promoter regions of lacA and lacB containing CGG or CCG motifs. Furthermore, the two TFs were involved in direct and positive regulation of the transcription of some CYP450s. Together, TH8421 and TH4300, two key regulators found in T. hirsuta AH28-2, function as heterodimers to simultaneously trigger the expression of downstream laccases and intracellular enzymes. Monomeric aromatic compounds act as ligands to promote heterodimer formation and enhance the transcriptional activities of the two TFs.IMPORTANCEWhite-rot fungi differentially express laccase isoenzymes when exposed to aromatic compounds. Clarification of the molecular mechanisms underlying differential laccase expression is essential to elucidate how white-rot fungi respond to the environment. Our study shows that two Zn2Cys6-type transcription factors form heterodimers, interact with the promoters of laccase genes, and positively regulate laccase transcription in Trametes hirsuta AH28-2. Aromatic monomer addition induces faster heterodimer formation and rate of activity. These findings not only identify two new transcription factors involved in fungal laccase transcription but also deepen our understanding of the mechanisms underlying the response to aromatics exposure in white-rot fungi.
Collapse
Affiliation(s)
- Chenkai Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xinlei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Kun Wu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Shenglong Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xiang Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Chaona Zhu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| |
Collapse
|
7
|
Gutierrez-Perez C, Puerner C, Jones JT, Vellanki S, Vesely EM, Xatse MA, Viera AFC, Olsen CP, Attiku KO, Cardinale S, Kwasny SM, G-Dayanandan N, Opperman TJ, Cramer RA. Unsaturated fatty acid perturbation combats emerging triazole antifungal resistance in the human fungal pathogen Aspergillus fumigatus. mBio 2024; 15:e0116624. [PMID: 38934618 PMCID: PMC11253624 DOI: 10.1128/mbio.01166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
Contemporary antifungal therapies utilized to treat filamentous fungal infections are inhibited by intrinsic and emerging drug resistance. Consequently, there is an urgent need to develop novel antifungal compounds that are effective against drug-resistant filamentous fungi. Here, we utilized an Aspergillus fumigatus cell-based high-throughput screen to identify small molecules with antifungal activity that also potentiated triazole activity. The screen identified 16 hits with promising activity against A. fumigatus. A nonspirocyclic piperidine, herein named MBX-7591, exhibited synergy with triazole antifungal drugs and activity against pan-azole-resistant A. fumigatus isolates. MBX-7591 has additional potent activity against Rhizopus species and CO2-dependent activity against Cryptococcus neoformans. Chemical, genetic, and biochemical mode of action analyses revealed that MBX-7591 increases cell membrane saturation by decreasing oleic acid content. MBX-7591 has low toxicity in vivo and shows good efficacy in decreasing fungal burden in a murine model of invasive pulmonary aspergillosis. Taken together, our results suggest MBX-7591 is a promising hit with a novel mode of action for further antifungal drug development to combat the rising incidence of triazole-resistant filamentous fungal infections.IMPORTANCEThe incidence of infections caused by fungi continues to increase with advances in medical therapies. Unfortunately, antifungal drug development has not kept pace with the incidence and importance of fungal infections, with only three major classes of antifungal drugs currently available for use in the clinic. Filamentous fungi, also called molds, are particularly recalcitrant to contemporary antifungal therapies. Here, a recently developed Aspergillus fumigatus cell reporter strain was utilized to conduct a high-throughput screen to identify small molecules with antifungal activity. An emphasis was placed on small molecules that potentiated the activity of contemporary triazole antifungals and led to the discovery of MBX-7591. MBX-7591 potentiates triazole activity against drug-resistant molds such as A. fumigatus and has activity against Mucorales fungi. MBX-7591's mode of action involves inhibiting the conversion of saturated to unsaturated fatty acids, thereby impacting fungal membrane integrity. MBX-7591 is a novel small molecule with antifungal activity poised for lead development.
Collapse
Affiliation(s)
- Cecilia Gutierrez-Perez
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Charles Puerner
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Jane T. Jones
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Sandeep Vellanki
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Elisa M. Vesely
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Mark A. Xatse
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre F. C. Viera
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Carissa P. Olsen
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Keren O. Attiku
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | | | - Robert A. Cramer
- Microbiology and Immunology Department, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
8
|
Ror S, Stamnes MA, Moye-Rowley WS. Loss of a conserved C-terminal region of the Aspergillus fumigatus AtrR transcriptional regulator leads to a gene-specific defect in target gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595332. [PMID: 38826412 PMCID: PMC11142210 DOI: 10.1101/2024.05.22.595332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Treatment of fungal infections associated with the filamentous fungus Aspergillus fumigatus is becoming more problematic as this organism is developing resistance to the main chemotherapeutic drug at an increasing rate. Azole drugs represent the current standard-of-care in treatment of aspergillosis with this drug class acting by inhibiting a key step in biosynthesis of the fungal sterol ergosterol. Azole compounds block the activity of the lanosterol α-14 demethylase, encoded by the cyp51A gene. A common route of azole resistance involves an increase in transcription of cyp51A. This transcriptional increase requires the function of a Zn2Cys6 DNA-binding domain-containing transcription activator protein called AtrR. AtrR was identified through its action as a positive regulator of expression of an ATP-binding cassette transporter (abcC/cdr1B here called abcG1). Using both deletion and alanine scanning mutagenesis, we demonstrate that a conserved C-terminal domain in A. fumigatus is required for expression of abcG1 but dispensable for cyp51A transcription. This domain is also found in several other fungal pathogen AtrR homologues consistent with a conserved gene-selective function of this protein segment being conserved. Using RNA-seq, we find that this gene-specific transcriptional defect extends to several other membrane transporter-encoding genes including a second ABC transporter locus. Our data reveal that AtrR uses at least two distinct mechanisms to induce gene expression and that normal susceptibility to azole drugs cannot be provided by maintenance of wild-type expression of the ergosterol biosynthetic pathway when ABC transporter expression is reduced.
Collapse
Affiliation(s)
- Shivani Ror
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Miyazawa K, Umeyama T, Takatsuka S, Muraosa Y, Hoshino Y, Yano S, Abe K, Miyazaki Y. Real-time monitoring of mycelial growth in liquid culture using hyphal dispersion mutant of Aspergillus fumigatus. Med Mycol 2024; 62:myae011. [PMID: 38429972 DOI: 10.1093/mmy/myae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/03/2024] Open
Abstract
Hyphal pellet formation by Aspergillus species in liquid cultures is one of the main obstacles to high-throughput anti-Aspergillus reagent screening. We previously constructed a hyphal dispersion mutant of Aspergillus fumigatus by disrupting the genes encoding the primary cell wall α-1,3-glucan synthase Ags1 and putative galactosaminogalactan synthase Gtb3 (Δags1Δgtb3). Mycelial growth of the mutant in liquid cultures monitored by optical density was reproducible, and the dose-response of hyphal growth to antifungal agents has been quantified by optical density. However, Δags1Δgtb3 still forms hyphal pellets in some rich growth media. Here, we constructed a disruptant lacking all three α-1,3-glucan synthases and galactosaminogalactan synthase (Δags1Δags2Δags3Δgtb3), and confirmed that its hyphae were dispersed in all the media tested. We established an automatic method to monitor hyphal growth of the mutant in a 24-well plate shaken with a real-time plate reader. Dose-dependent growth suppression and unique growth responses to antifungal agents (voriconazole, amphotericin B, and micafungin) were clearly observed. A 96-well plate was also found to be useful for the evaluation of mycelial growth by optical density. Our method is potentially applicable to high-throughput screening for anti-Aspergillus agents.
Collapse
Affiliation(s)
- Ken Miyazawa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Umeyama
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Takatsuka
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasunori Muraosa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasutaka Hoshino
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Yonezawa, Japan
| | - Keietsu Abe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
10
|
Kang Y, Li Q, Yao Y, Xu C, Qiu Z, Jia W, Li G, Wang P. Epidemiology and Azole Resistance of Clinical Isolates of Aspergillus fumigatus from a Large Tertiary Hospital in Ningxia, China. Infect Drug Resist 2024; 17:427-439. [PMID: 38328338 PMCID: PMC10849152 DOI: 10.2147/idr.s440363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Purpose The objective of this study was to determine the clinical distribution, in vitro antifungal susceptibility and underlying resistance mechanisms of Aspergillus fumigatus (A. fumigatus) isolates from the General Hospital of Ningxia Medical University between November 2021 and May 2023. Methods Antifungal susceptibility testing was performed using the Sensititre YeastOne YO10, and isolates with high minimal inhibitory concentrations (MICs) were further confirmed using the standard broth microdilution assays established by the Clinical and Laboratory Standards Institute (CLSI) M38-third edition. Whole-Genome Resequencing and RT-qPCR in azole-resistant A. fumigatus strains were performed to investigate the underlying resistance mechanisms. Results Overall, a total of 276 A. fumigatus isolates were identified from various clinical departments, showing an increasing trend in the number of isolates over the past 3 years. Two azole-resistant A. fumigatus strains (0.72%) were observed, one of which showed overexpression of cyp51A, cyp51B, cdr1B, MDR1/2, artR, srbA, erg24A, and erg4B, but no cyp51A mutation. However, the other strain harbored two alterations in the cyp51A sequences (L98H/S297T). Therefore, we first described two azole-resistant clinical A. fumigatus strains in Ningxia, China, and reported one azole-resistant strain that has the L98H/S297T mutations in the cyp51A gene without any tandem repeat (TR) sequences in the promoter region. Conclusions This study emphasizes the importance of enhancing attention and surveillance of azole-resistant A. fumigatus, particularly those with non-TR point mutations of cyp51A or non-cyp51A mutations, in order to gain a better understanding of their prevalence and spread in the region.
Collapse
Affiliation(s)
- Yuting Kang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Qiujie Li
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Yao Yao
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Chao Xu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Zhuoran Qiu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Wei Jia
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Gang Li
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Pengtao Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| |
Collapse
|
11
|
Fan J, Zhang Z, Chen H, Chen D, Yuan W, Li J, Zeng Y, Zhou S, Zhang S, Zhang G, Xiong J, Zhou L, Xu J, Liu W, Xu Y. Zinc finger protein 831 promotes apoptosis and enhances chemosensitivity in breast cancer by acting as a novel transcriptional repressor targeting the STAT3/Bcl2 signaling pathway. Genes Dis 2024; 11:430-448. [PMID: 37588209 PMCID: PMC10425751 DOI: 10.1016/j.gendis.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence suggested that zinc finger protein 831 (ZNF831) was associated with immune activity and stem cell regulation in breast cancer. Whereas, the roles and molecular mechanisms of ZNF831 in oncogenesis remain unclear. ZNF831 expression was significantly diminished in breast cancer which was associated with promoter CpG methylation but not mutation. Ectopic over-expression of ZNF831 suppressed breast cancer cell proliferation and colony formation and promoted apoptosis in vitro, while knockdown of ZNF831 resulted in an opposite phenotype. Anti-proliferation effect of ZNF831 was verified in vivo. Bioinformatic analysis of public databases and transcriptome sequencing both showed that ZNF831 could enhance apoptosis through transcriptional regulation of the JAK/STAT pathway. ChIP and luciferase report assays demonstrated that ZNF831 could directly bind to one specific region of STAT3 promoter and induce the transcriptional inhibition of STAT3. As a result, the attenuation of STAT3 led to a restraint of the transcription of Bcl2 and thus accelerated the apoptotic progression. Augmentation of STAT3 diminished the apoptosis-promoting effect of ZNF831 in breast cancer cell lines. Furthermore, ZNF831 could ameliorate the anti-proliferation effect of capecitabine and gemcitabine in breast cancer cell lines. Our findings demonstrate for the first time that ZNF831 is a novel transcriptional suppressor through inhibiting the expression of STAT3/Bcl2 and promoting the apoptosis process in breast cancer, suggesting ZNF831 as a novel biomarker and potential therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dongjiao Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wenbo Yuan
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jingzhi Li
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shimeng Zhou
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shu Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Gang Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jiashen Xiong
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Lu Zhou
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jing Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| |
Collapse
|
12
|
Sasse C, Bastakis E, Bakti F, Höfer AM, Zangl I, Schüller C, Köhler AM, Gerke J, Krappmann S, Finkernagel F, Harting R, Strauss J, Heimel K, Braus GH. Induction of Aspergillus fumigatus zinc cluster transcription factor OdrA/Mdu2 provides combined cellular responses for oxidative stress protection and multiple antifungal drug resistance. mBio 2023; 14:e0262823. [PMID: 37982619 PMCID: PMC10746196 DOI: 10.1128/mbio.02628-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE An overexpression screen of 228 zinc cluster transcription factor encoding genes of A. fumigatus revealed 11 genes conferring increased tolerance to antifungal drugs. Out of these, four oxidative stress and drug tolerance transcription factor encoding odr genes increased tolerance to oxidative stress and antifungal drugs when overexpressed. This supports a correlation between oxidative stress response and antifungal drug tolerance in A. fumigatus. OdrA/Mdu2 is required for the cross-tolerance between azoles, polyenes, and oxidative stress and activates genes for detoxification. Under oxidative stress conditions or when overexpressed, OdrA/Mdu2 accumulates in the nucleus and activates detoxifying genes by direct binding at their promoters, as we describe with the mdr1 gene encoding an itraconazole specific efflux pump. Finally, this work gives new insights about drug and stress resistance in the opportunistic pathogenic fungus A. fumigatus.
Collapse
Affiliation(s)
- Christoph Sasse
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Emmanouil Bastakis
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Fruzsina Bakti
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Annalena M. Höfer
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabella Zangl
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Sven Krappmann
- Institute of Microbiology–Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Center for Infection Research (ECI) and Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Core Facility Bioinformatics, Philipps University, Marburg, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
| | - Kai Heimel
- Department of Microbial Cell Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Kühbacher A, Merschak P, Haas H, Liebl M, Müller C, Gsaller F. The cytochrome P450 reductase CprA is a rate-limiting factor for Cyp51A-mediated azole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2023; 67:e0091823. [PMID: 37815358 PMCID: PMC10648939 DOI: 10.1128/aac.00918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 10/11/2023] Open
Abstract
Azole antifungals remain the "gold standard" therapy for invasive aspergillosis. The world-wide emergence of isolates resistant to this drug class, however, developed into a steadily increasing threat to human health over the past years. In Aspergillus fumigatus, major mechanisms of resistance involve increased expression of cyp51A encoding one of two isoenzymes targeted by azoles. Yet, the level of resistance caused by cyp51A upregulation, driven by either clinically relevant tandem repeat mutations within its promoter or the use of high expressing heterologous promoters, is limited. Cytochrome P450 enzymes such as Cyp51A rely on redox partners that provide electrons for their activity. A. fumigatus harbors several genes encoding putative candidate proteins including two paralogous cytochrome P450 reductases, CprA and CprB, and the cytochrome b 5 CybE. In this work, we investigated the contribution of each cprA, cprB, and cybE overexpression to cyp51A-mediated resistance to different medical and agricultural azoles. Using the bidirectional promoter PxylP, we conditionally expressed these genes in combination with cyp51A, revealing cprA as the main limiting factor. Similar to this approach, we overexpressed cprA in an azole-resistant background strain carrying a cyp51A allele with TR34 in its promoter, which led to a further increase in its resistance. Employing sterol measurements, we demonstrate an enhanced eburicol turnover during upregulation of either cprA or cyp51A, which was even more pronounced during their simultaneous overexpression. In summary, our work suggests that mutations leading to increased Cyp51A activity through increased electron supply could be key factors that elevate azole resistance.
Collapse
Affiliation(s)
- Alexander Kühbacher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Merschak
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maximilian Liebl
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians Universität München, Munich, Germany
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians Universität München, Munich, Germany
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Boyce KJ. The Microevolution of Antifungal Drug Resistance in Pathogenic Fungi. Microorganisms 2023; 11:2757. [PMID: 38004768 PMCID: PMC10673521 DOI: 10.3390/microorganisms11112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The mortality rates of invasive fungal infections remain high because of the limited number of antifungal drugs available and antifungal drug resistance, which can rapidly evolve during treatment. Mutations in key resistance genes such as ERG11 were postulated to be the predominant cause of antifungal drug resistance in the clinic. However, recent advances in whole genome sequencing have revealed that there are multiple mechanisms leading to the microevolution of resistance. In many fungal species, resistance can emerge through ERG11-independent mechanisms and through the accumulation of mutations in many genes to generate a polygenic resistance phenotype. In addition, genome sequencing has revealed that full or partial aneuploidy commonly occurs in clinical or microevolved in vitro isolates to confer antifungal resistance. This review will provide an overview of the mutations known to be selected during the adaptive microevolution of antifungal drug resistance and focus on how recent advances in genome sequencing technology have enhanced our understanding of this process.
Collapse
Affiliation(s)
- Kylie J Boyce
- School of Science, RMIT University, Melbourne, VIC 3085, Australia
| |
Collapse
|
15
|
De Francesco MA. Drug-Resistant Aspergillus spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe. Pathogens 2023; 12:1305. [PMID: 38003770 PMCID: PMC10674884 DOI: 10.3390/pathogens12111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Infections due to the Aspergillus species constitute an important challenge for human health. Invasive aspergillosis represents a life-threatening disease, mostly in patients with immune defects. Drugs used for fungal infections comprise amphotericin B, triazoles, and echinocandins. However, in the last decade, an increased emergence of azole-resistant Aspergillus strains has been reported, principally belonging to Aspergillus fumigatus species. Therefore, both the early diagnosis of aspergillosis and its epidemiological surveillance are very important to establish the correct antifungal therapy and to ensure a successful patient outcome. In this paper, a literature review is performed to analyze the prevalence of Aspergillus antifungal resistance in European countries. Amphotericin B resistance is observed in 2.6% and 10.8% of Aspergillus fumigatus isolates in Denmark and Greece, respectively. A prevalence of 84% of amphotericin B-resistant Aspergillus flavus isolates is reported in France, followed by 49.4%, 35.1%, 21.7%, and 20% in Spain, Portugal, Greece, and amphotericin B resistance of Aspergillus niger isolates is observed in Greece and Belgium with a prevalence of 75% and 12.8%, respectively. The prevalence of triazole resistance of Aspergillus fumigatus isolates, the most studied mold obtained from the included studies, is 0.3% in Austria, 1% in Greece, 1.2% in Switzerland, 2.1% in France, 3.9% in Portugal, 4.9% in Italy, 5.3% in Germany, 6.1% in Denmark, 7.4% in Spain, 8.3% in Belgium, 11% in the Netherlands, and 13.2% in the United Kingdom. The mechanism of resistance is mainly driven by the TR34/L98H mutation. In Europe, no in vivo resistance is reported for echinocandins. Future studies are needed to implement the knowledge on the spread of drug-resistant Aspergillus spp. with the aim of defining optimal treatment strategies.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
16
|
Shi N, Qiu D, Chen F, Yang YQ, Du Y. Analysis of the Difenoconazole-Resistance Risk and Its Molecular Basis in Colletotrichum truncatum from Soybean. PLANT DISEASE 2023; 107:3123-3130. [PMID: 37172974 DOI: 10.1094/pdis-12-22-2983-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Anthracnose disease, caused by Colletotrichum truncatum, is a destructive fungal disease in soybean worldwide, and some demethylation inhibitor fungicides are used to manage it. In this study, the sensitivity of C. truncatum to difenoconazole was determined, and the risk for resistance development of C. truncatum to difenoconazole was also assessed. The results showed that the mean EC50 value was 0.9313 μg/ml, and the frequency of sensitivity formed a unimodal distribution. Six stable mutants with a mutation frequency of 8.33 × 10-5 were generated, and resistance factors ranged from 3.00 to 5.81 after 10 successive culture transfers. All mutants exhibited fitness penalties in reduced mycelial growth rate, sporulation, and pathogenicity, except for the Ct2-3-5 mutant. Positive cross-resistance was observed between difenoconazole and propiconazole but not between difenoconazole and prochloraz, pyraclostrobin, or fluazinam. One point mutation I463V in CYP51A was found in five resistant mutants. Surprisingly, the homologous I463V mutation has not been observed in other plant pathogens. CYP51A and CYP51B expression increased slightly in the resistant mutants as compared to wild-types when exposed to difenoconazole but not in the CtR61-2-3f and CtR61-2-4a mutants. In general, a new point mutation, I463V in CYP51A, could be associated with low resistance to difenoconazole in C. truncatum. In the greenhouse assay, control efficacy of difenoconazole on both parental isolates and the mutants increased in a dose-dependent manner. Collectively, the resistance risk of C. truncatum to difenoconazole is regarded to be low to moderate, suggesting that difenoconazole can still be reasonably used to control soybean anthracnose.
Collapse
Affiliation(s)
- Niuniu Shi
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian 350013, China
| | - Dezhu Qiu
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Furu Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian 350013, China
| | - Ying-Qing Yang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330000, China
| | - Yixin Du
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian 350013, China
| |
Collapse
|
17
|
Paul S, Stamnes MA, Moye-Rowley WS. Interactions between the transcription factors FfmA and AtrR are required to properly regulate gene expression in the fungus Aspergillus fumigatus. G3 (BETHESDA, MD.) 2023; 13:jkad173. [PMID: 37523774 PMCID: PMC10542180 DOI: 10.1093/g3journal/jkad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Transcriptional regulation of azole resistance in the filamentous fungus Aspergillus fumigatus is a key step in development of this problematic clinical phenotype. We and others have previously described a C2H2-containing transcription factor called FfmA that is required for normal levels of voriconazole susceptibility. Null alleles of ffmA exhibit a strongly compromised growth rate even in the absence of any external stress. Here, we employ an acutely repressible doxycycline-off form of ffmA to rapidly deplete FfmA protein from the cell. Using this approach, we carried out RNA-seq analyses to probe the transcriptome cells acutely deprived of FfmA. A total of 2,000 genes were differentially expressed upon acute depletion of FfmA, illustrating the broad transcriptomic effect of this factor. Interestingly, the transcriptome changes observed upon this acute depletion of FfmA expression only shared limited overlap with those found in an ffmAΔ null strain analyzed by others. Chromatin immunoprecipitation coupled with high throughput DNA sequencing analysis (ChIP-seq) identified 530 genes that were bound by FfmA. More than 300 of these genes were also bound by AtrR, a transcription factor important in azole drug resistance, demonstrating striking regulatory overlap with FfmA. However, while AtrR is an upstream activation protein with known specificity, our data suggest that FfmA is a chromatin-associated factor that binds DNA in a manner dependent on other factors. We provide evidence that AtrR and FfmA interact in the cell and show reciprocal expression modulation. Interaction of AtrR and FfmA is required for normal gene expression in A. fumigatus.
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
18
|
Puerner C, Vellanki S, Strauch JL, Cramer RA. Recent Advances in Understanding the Human Fungal Pathogen Hypoxia Response in Disease Progression. Annu Rev Microbiol 2023; 77:403-425. [PMID: 37713457 PMCID: PMC11034785 DOI: 10.1146/annurev-micro-032521-021745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.
Collapse
Affiliation(s)
- Charles Puerner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Sandeep Vellanki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Julianne L Strauch
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
- Department of Biology, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| |
Collapse
|
19
|
Happacher I, Aguiar M, Yap A, Decristoforo C, Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus: impact on biotic interactions and potential translational applications. Essays Biochem 2023; 67:829-842. [PMID: 37313590 PMCID: PMC10500206 DOI: 10.1042/ebc20220252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Iron is an essential trace element that is limiting in most habitats including hosts for fungal pathogens. Siderophores are iron-chelators synthesized by most fungal species for high-affinity uptake and intracellular handling of iron. Moreover, virtually all fungal species including those lacking siderophore biosynthesis appear to be able to utilize siderophores produced by other species. Siderophore biosynthesis has been shown to be crucial for virulence of several fungal pathogens infecting animals and plants revealing induction of this iron acquisition system during virulence, which offers translational potential of this fungal-specific system. The present article summarizes the current knowledge on the fungal siderophore system with a focus on Aspergillus fumigatus and its potential translational application including noninvasive diagnosis of fungal infections via urine samples, imaging of fungal infections via labeling of siderophores with radionuclides such as Gallium-68 for detection with positron emission tomography, conjugation of siderophores with fluorescent probes, and development of novel antifungal strategies.
Collapse
Affiliation(s)
- Isidor Happacher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mario Aguiar
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Annie Yap
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Li Y, Dai M, Lu L, Zhang Y. The C 2H 2-Type Transcription Factor ZfpA, Coordinately with CrzA, Affects Azole Susceptibility by Regulating the Multidrug Transporter Gene atrF in Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0032523. [PMID: 37318356 PMCID: PMC10434176 DOI: 10.1128/spectrum.00325-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
The incidence of invasive aspergillosis caused by Aspergillus fumigatus has risen steadily over the past few decades due to the limited effective treatment options and the emergence of antifungal-resistant isolates. In clinic-isolated A. fumigatus, the azole resistance mechanism is primarily caused by mutations of the drug target and/or overexpression of drug efflux pumps. However, knowledge about how drug efflux pumps are transcriptionally regulated is limited. In this study, we found that loss of a C2H2 transcription factor ZfpA (zinc finger protein) results in the marked upregulation of a series of drug efflux pump-encoding genes, especially atrF, which contributes to azole drug resistance in A. fumigatus. CrzA is a previously identified positive transcription factor for genes of drug efflux pumps, and ZfpA transcriptionally inhibits expressions of drug efflux pumps in a CrzA-dependent way. Under the treatment of azoles, both ZfpA and CrzA transfer to nuclei and coregulate the expression of multidrug transporters and then keep normal drug susceptibility in fungal cells. Findings in this study demonstrated that ZfpA is not only involved in fungal growth and virulence potential but also negatively regulates antifungal drug susceptibility. IMPORTANCE Conserved across all kingdoms of life, ABC transporters comprise one of the largest protein families. They are associated with multidrug resistance, affecting aspects such as resistance to antimicrobials or anticancer drugs. Despite the importance of ABC transporters in multidrug resistance, the understanding of their regulatory network is still limited in A. fumigatus. Here, we found that the loss of the transcription factor ZfpA induces the expression of the ABC transporter gene atrF, altering azole susceptibility in A. fumigatus. ZfpA, coordinately with CrzA, affects the azole susceptibility by regulating the expression of the ABC transporter gene atrF. These findings reveal the regulatory mechanism of the ABC transporter gene atrF in A. fumigatus.
Collapse
Affiliation(s)
- Yeqi Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
21
|
Lee Y, Robbins N, Cowen LE. Molecular mechanisms governing antifungal drug resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:5. [PMID: 38686214 PMCID: PMC11057204 DOI: 10.1038/s44259-023-00007-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 05/02/2024]
Abstract
Fungal pathogens are a severe public health problem. The leading causative agents of systemic fungal infections include species from the Candida, Cryptococcus, and Aspergillus genera. As opportunistic pathogens, these fungi are generally harmless in healthy hosts; however, they can cause significant morbidity and mortality in immunocompromised patients. Despite the profound impact of pathogenic fungi on global human health, the current antifungal armamentarium is limited to only three major classes of drugs, all of which face complications, including host toxicity, unfavourable pharmacokinetics, or limited spectrum of activity. Further exacerbating this issue is the growing prevalence of antifungal-resistant infections and the emergence of multidrug-resistant pathogens. In this review, we discuss the diverse strategies employed by leading fungal pathogens to evolve antifungal resistance, including drug target alterations, enhanced drug efflux, and induction of cellular stress response pathways. Such mechanisms of resistance occur through diverse genetic alterations, including point mutations, aneuploidy formation, and epigenetic changes given the significant plasticity observed in many fungal genomes. Additionally, we highlight recent literature surrounding the mechanisms governing resistance in emerging multidrug-resistant pathogens including Candida auris and Candida glabrata. Advancing our knowledge of the molecular mechanisms by which fungi adapt to the challenge of antifungal exposure is imperative for designing therapeutic strategies to tackle the emerging threat of antifungal resistance.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| |
Collapse
|
22
|
Yap A, Volz R, Paul S, Moye-Rowley WS, Haas H. Regulation of High-Affinity Iron Acquisition, Including Acquisition Mediated by the Iron Permease FtrA, Is Coordinated by AtrR, SrbA, and SreA in Aspergillus fumigatus. mBio 2023; 14:e0075723. [PMID: 37093084 PMCID: PMC10294635 DOI: 10.1128/mbio.00757-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Iron acquisition is crucial for virulence of the human pathogen Aspergillus fumigatus. Previous studies indicated that this mold regulates iron uptake via both siderophores and reductive iron assimilation by the GATA factor SreA and the SREBP regulator SrbA. Here, characterization of loss of function as well as hyperactive alleles revealed that transcriptional activation of iron uptake depends additionally on the Zn2Cys6 regulator AtrR, most likely via cooperation with SrbA. Mutational analysis of the promoter of the iron permease-encoding ftrA gene identified a 210-bp sequence, which is both essential and sufficient to impart iron regulation. Further studies located functional sequences, densely packed within 75 bp, that largely resemble binding motifs for SrbA, SreA, and AtrR. The latter, confirmed by chromatin immunoprecipitation (ChIP) analysis, is the first one not fully matching the 5'-CGGN12CCG-3' consensus sequence. The results presented here emphasize for the first time the direct involvement of SrbA, AtrR, and SreA in iron regulation. The essential role of both AtrR and SrbA in activation of iron acquisition underlines the coordination of iron homeostasis with biosynthesis of ergosterol and heme as well as adaptation to hypoxia. The rationale is most likely the iron dependence of these pathways along with the enzymatic link of biosynthesis of ergosterol and siderophores. IMPORTANCE Aspergillus fumigatus is the most common filamentous fungal pathogen infecting humans. Iron acquisition via siderophores has previously been shown to be essential for virulence of this mold species. Here, we demonstrate that AtrR, a transcription factor previously shown to control ergosterol biosynthesis, azole resistance, and adaptation to hypoxia, is essential for activation of iron acquisition, including siderophore biosynthesis and uptake. Dissection of an iron-regulated promoter identified binding motifs for AtrR and the two previously identified regulators of iron acquisition, SrbA and SreA. Altogether, this study identified a new regulator required for maintenance of iron homeostasis, revealed insights into promoter architecture for iron regulation, and emphasized the coordinated regulation of iron homeostasis ergosterol biosynthesis and adaptation to hypoxia.
Collapse
Affiliation(s)
- Annie Yap
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ricarda Volz
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Sanjoy Paul
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Paul S, Stamnes MA, Moye-Rowley WS. Transcription factor FfmA interacts both physically and genetically with AtrR to properly regulate gene expression in the fungus Aspergillus fumigatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543935. [PMID: 37333080 PMCID: PMC10274792 DOI: 10.1101/2023.06.06.543935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transcriptional regulation of azole resistance in the filamentous fungus Aspergillus fumigatus is a key step in development of this problematic clinical phenotype. We and others have previously described a C2H2-containing transcription factor called FfmA that is required for normal levels of voriconazole susceptibility and expression of an ATP-binding cassette transporter gene called abcG1 . Null alleles of ffmA exhibit a strongly compromised growth rate even in the absence of any external stress. Here we employ an acutely repressible doxycycline-off form of ffmA to rapidly deplete FfmA protein from the cell. Using this approach, we carried out RNA-seq analyses to probe the transcriptome of A. fumigatus cells that have been deprived of normal FfmA levels. We found that 2000 genes were differentially expressed upon depletion of FfmA, consistent with the wide-ranging effect of this factor on gene regulation. Chromatin immunoprecipitation coupled with high throughput DNA sequencing analysis (ChIP-seq) identified 530 genes that were bound by FfmA using two different antibodies for immunoprecipitation. More than 300 of these genes were also bound by AtrR demonstrating the striking regulatory overlap with FfmA. However, while AtrR is clearly an upstream activation protein with clear sequence specificity, our data suggest that FfmA is a chromatin-associated factor that may bind to DNA in a manner dependent on other factors. We provide evidence that AtrR and FfmA interact in the cell and can influence one another's expression. This interaction of AtrR and FfmA is required for normal azole resistance in A. fumigatus .
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA. 52242 USA
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA. 52242 USA
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA. 52242 USA
| |
Collapse
|
24
|
Osset-Trénor P, Pascual-Ahuir A, Proft M. Fungal Drug Response and Antimicrobial Resistance. J Fungi (Basel) 2023; 9:jof9050565. [PMID: 37233275 DOI: 10.3390/jof9050565] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Antifungal resistance is a growing concern as it poses a significant threat to public health. Fungal infections are a significant cause of morbidity and mortality, especially in immunocompromised individuals. The limited number of antifungal agents and the emergence of resistance have led to a critical need to understand the mechanisms of antifungal drug resistance. This review provides an overview of the importance of antifungal resistance, the classes of antifungal agents, and their mode of action. It highlights the molecular mechanisms of antifungal drug resistance, including alterations in drug modification, activation, and availability. In addition, the review discusses the response to drugs via the regulation of multidrug efflux systems and antifungal drug-target interactions. We emphasize the importance of understanding the molecular mechanisms of antifungal drug resistance to develop effective strategies to combat the emergence of resistance and highlight the need for continued research to identify new targets for antifungal drug development and explore alternative therapeutic options to overcome resistance. Overall, an understanding of antifungal drug resistance and its mechanisms will be indispensable for the field of antifungal drug development and clinical management of fungal infections.
Collapse
Affiliation(s)
- Paloma Osset-Trénor
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, 46010 Valencia, Spain
| |
Collapse
|
25
|
Baldin C, Kühbacher A, Merschak P, Wagener J, Gsaller F. Modular Inducible Multigene Expression System for Filamentous Fungi. Microbiol Spectr 2022; 10:e0367022. [PMID: 36350143 PMCID: PMC9769661 DOI: 10.1128/spectrum.03670-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Inducible promoters are indispensable elements when considering the possibility to modulate gene expression on demand. Desirable traits of conditional expression systems include their capacity for tight downregulation, high overexpression, and in some instances for fine-tuning, to achieve a desired product's stoichiometry. Although the number of inducible systems is slowly increasing, suitable promoters comprising these features are rare. To date, the concomitant use of multiple regulatable promoter platforms for controlled multigene expression has been poorly explored. This work provides pioneer work in the human pathogenic fungus Aspergillus fumigatus, wherein we investigated different inducible systems, elucidated three candidate promoters, and proved for the first time that up to three systems can be used simultaneously without interfering with each other. Proof of concept was obtained by conditionally expressing three antifungal drug targets within the ergosterol biosynthetic pathway under the control of the xylose-inducible PxylP system, the tetracycline-dependent Tet-On system, and the thiamine-repressible PthiA system. IMPORTANCE In recent years, inducible promoters have gained increasing interest for industrial or laboratory use and have become key instruments for protein expression, synthetic biology, and metabolic engineering. Constitutive, high-expressing promoters can be used to achieve high expression yields; however, the continuous overexpression of specific proteins can lead to an unpredictable metabolic burden. To prevent undesirable effects on the expression host's metabolism, the utilization of tunable systems that allow expression of a gene product on demand is indispensable. Here, we elucidated several excellent tunable promoter systems and verified that each can be independently induced in a single strain to ultimately develop a unique conditional multigene expression system. This highly efficient, modular toolbox has the potential to significantly advance applications in fundamental as well as applied research in which regulatable expression of several genes is a key requirement.
Collapse
Affiliation(s)
- Clara Baldin
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kühbacher
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Merschak
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Wagener
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Biochemical Identification of a Nuclear Coactivator Protein Required for AtrR-Dependent Gene Regulation in Aspergillus fumigatus. mSphere 2022; 7:e0047622. [PMID: 36374043 PMCID: PMC9769526 DOI: 10.1128/msphere.00476-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Azole drugs represent the primary means of treating infections associated with the filamentous fungal pathogen Aspergillus fumigatus. A central player in azole resistance is the Zn2Cys6 zinc cluster-containing transcription factor AtrR. This factor stimulates expression of both the cyp51A gene, which encodes the azole drug target enzyme, as well as an ATP-binding cassette transporter-encoding gene called abcG1 (cdr1B). We used a fusion protein between AtrR and the tandem affinity purification (TAP) moiety to purify proteins that associated with AtrR from A. fumigatus. Protein fractions associated with AtrR-TAP were subjected to multidimensional protein identification technology mass spectrometry, and one of the proteins identified was encoded by the AFUA_6g08010 gene. We have designated this protein NcaA (for nuclear coactivator of AtrR). Loss of ncaA caused a reduction in voriconazole resistance and drug-induced abcG1 expression, although it did not impact induction of cyp51A transcription. We confirmed the association of AtrR and NcaA by coimmunoprecipitation from otherwise-wild-type cells. Expression of fusion proteins between AtrR and NcaA with green fluorescent protein allowed determination that these two proteins were localized in the A. fumigatus nucleus. Together, these data support the view that NcaA is required for nuclear gene transcription controlled by AtrR. IMPORTANCE Aspergillus fumigatus is a major filamentous fungal pathogen in humans and is susceptible to the azole antifungal class of drugs. However, loss of azole susceptibility has been detected with increasing frequency in the clinic, and infections associated with these azole-resistant isolates have been linked to treatment failure and worse outcomes. Many of these azole-resistant strains contain mutant alleles of the cyp51A gene, which encodes the azole drug target. A transcription factor essential for cyp51A gene transcription has been identified and designated AtrR. AtrR is required for azole-inducible cyp51A transcription, but we know little of the regulation of this transcription factor. Using a biochemical approach, we identified a new protein called NcaA that is involved in regulation of AtrR at certain target gene promoters. Understanding the mechanisms controlling AtrR function is an important goal in preventing or reversing azole resistance in this pathogen.
Collapse
|
27
|
Rajasenan S, Osmani AH, Osmani SA. Modulation of sensitivity to gaseous signaling by sterol-regulatory hypoxic transcription factors in Aspergillus nidulans biofilm cells. Fungal Genet Biol 2022; 163:103739. [PMID: 36089227 DOI: 10.1016/j.fgb.2022.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 01/06/2023]
Abstract
Fungal biofilm founder cells experience self-generated hypoxia leading to dramatic changes in their cell biology. For example, during Aspergillus nidulans biofilm formation microtubule (MT) disassembly is triggered causing dispersal of EB1 from MT tips. This process is dependent on SrbA, a sterol regulatory element-binding transcription factor required for adaptation to hypoxia. We show that SrbA, an ER resident protein prior to activation, is proteolytically activated during early stages of biofilm formation and that, like SrbA itself, its activating proteases are also required for normal biofilm MT disassembly. In addition to SrbA, the AtrR transcription factor is also found to be required to modulate cellular responses to gaseous signaling during biofilm development. Using co-cultures, we further show that cells lacking srbA or atrR are capable of responding to biofilm generated gaseous microenvironments but are actually more sensitive to this signal than wild type cells. SrbA is a regulator of ergosterol biosynthetic genes and we find that the levels of seven GFP-tagged Erg proteins differentially accumulate during biofilm formation with various dependencies on SrbA for their accumulation. This uncovers a complex pattern of regulation with biofilm accumulation of only some Erg proteins being dependent on SrbA with others accumulating to higher levels in its absence. Because different membrane sterols are known to influence cell permeability to gaseous molecules, including oxygen, we propose that differential regulation of ergosterol biosynthetic proteins by SrbA potentially calibrates the cell's responsiveness to gaseous signaling which in turn modifies the cell biology of developing biofilm cells.
Collapse
Affiliation(s)
- Shobhana Rajasenan
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States
| | - Aysha H Osmani
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States
| | - Stephen A Osmani
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
28
|
James JE, Santhanam J, Cannon RD, Lamping E. Voriconazole Treatment Induces a Conserved Sterol/Pleiotropic Drug Resistance Regulatory Network, including an Alternative Ergosterol Biosynthesis Pathway, in the Clinically Important FSSC Species, Fusarium keratoplasticum. J Fungi (Basel) 2022; 8:jof8101070. [PMID: 36294635 PMCID: PMC9605146 DOI: 10.3390/jof8101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium keratoplasticum is the Fusarium species most commonly associated with human infections (fusariosis). Antifungal treatment of fusariosis is often hampered by limited treatment options due to resistance towards azole antifungals. The mechanisms of antifungal resistance and sterol biosynthesis in fusaria are poorly understood. Therefore, in this study we assessed the transcriptional response of F. keratoplasticum when exposed to voriconazole. Our results revealed a group of dramatically upregulated ergosterol biosynthesis gene duplicates, most notably erg6A (912-fold), cyp51A (52-fold) and ebp1 (20-fold), which are likely part of an alternative ergosterol biosynthesis salvage pathway. The presence of human cholesterol biosynthesis gene homologs in F. keratoplasticum (ebp1, dhcr7 and dhcr24_1, dhcr24_2 and dhcr24_3) suggests that additional sterol biosynthesis pathways may be induced in fusaria under other growth conditions or during host invasion. Voriconazole also induced the expression of a number of ABC efflux pumps. Further investigations suggested that the highly conserved master regulator of ergosterol biosynthesis, FkSR, and the pleiotropic drug resistance network that induces zinc-cluster transcription factor FkAtrR coordinate the response of FSSC species to azole antifungal exposure. In-depth genome mining also helped clarify the ergosterol biosynthesis pathways of moulds and provided a better understanding of antifungal drug resistance mechanisms in fusaria.
Collapse
Affiliation(s)
- Jasper E. James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| |
Collapse
|
29
|
Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA, Gurr SJ, Harrison TS, Kuijper E, Rhodes J, Sheppard DC, Warris A, White PL, Xu J, Zwaan B, Verweij PE. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 2022; 20:557-571. [PMID: 35352028 PMCID: PMC8962932 DOI: 10.1038/s41579-022-00720-1] [Citation(s) in RCA: 381] [Impact Index Per Article: 190.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Invasive fungal infections pose an important threat to public health and are an under-recognized component of antimicrobial resistance, an emerging crisis worldwide. Across a period of profound global environmental change and expanding at-risk populations, human-infecting pathogenic fungi are evolving resistance to all licensed systemic antifungal drugs. In this Review, we highlight the main mechanisms of antifungal resistance and explore the similarities and differences between bacterial and fungal resistance to antimicrobial control. We discuss the research and innovation topics that are needed for risk reduction strategies aimed at minimizing the emergence of resistance in pathogenic fungi. These topics include links between the environment and One Health, surveillance, diagnostics, routes of transmission, novel therapeutics and methods to mitigate hotspots for fungal adaptation. We emphasize the global efforts required to steward our existing antifungal armamentarium, and to direct the research and development of future therapies and interventions.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial College London, London, UK.
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University London, London, UK
| | - Elaine M Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Roger Brüggemann
- Department of Pharmacy, Radboudumc Institute for Health Sciences and Radboudumc - CWZ Centre of Expertise for Mycology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Gary Garber
- Department of Medicine and the School of Public Health and Epidemiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | | | - Thomas S Harrison
- Institute of Infection and Immunity, St George's University London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Ed Kuijper
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial College London, London, UK
| | - Donald C Sheppard
- Infectious Disease in Global Health Program and McGill Interdisciplinary Initiative in Infection and Immunity, McGill University Health Centre, Montreal, Québec, Canada
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Cardiff, UK
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Bas Zwaan
- Department of Plant Science, Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Paul E Verweij
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
- Department of Medical Microbiology and Radboudumc - CWZ Centre of Expertise for Mycology, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
30
|
A novel Zn 2-Cys 6 transcription factor clcA contributes to copper homeostasis in Aspergillus fumigatus. Curr Genet 2022; 68:605-617. [PMID: 35972528 DOI: 10.1007/s00294-022-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
Abstract
The filamentous fungus Aspergillus fumigatus is the most important pathogenic fungus among Aspergillus species associated with aspergillosis. A. fumigatus is exposed to diverse environmental stresses in the hosts during infection such as an excess of essential metal copper. To gain further insights into copper homeostasis, we generated an A. fumigatus laboratory evolved strain with increased fitness in copper stress, and identified the mutation in a Zn2-Cys6 type transcription factor clcA. We examined the role of clcA using the evolved and ∆clcA strains. The ∆clcA strain exhibited defective growth on minimal medium, PDA and copper-repleted medium, and defective conidiogenesis and conidial pigmentation. We found that clcA was required for the expressions of genes involved in conidiogenesis, conidial pigmentation, and transporters cdr1B and mfsB related to azole resistance. clcA was dispensable for the virulence in silkworm infection model. We report here that clcA plays an important role in hyphal growth, conidiogenesis, and copper adaptation.
Collapse
|
31
|
Kühbacher A, Peiffer M, Hortschansky P, Merschak P, Bromley MJ, Haas H, Brakhage AA, Gsaller F. Azole Resistance-Associated Regulatory Motifs within the Promoter of cyp51A in Aspergillus fumigatus. Microbiol Spectr 2022; 10:e0120922. [PMID: 35575535 PMCID: PMC9241776 DOI: 10.1128/spectrum.01209-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is one of the deadliest fungal species, causing hundreds of thousands of deaths each year. Because azoles provide the preferred first-line option for treatment of aspergillosis, the increase in rates of resistance and the poor therapeutic outcomes for patients infected with a resistant isolate constitute a serious global health threat. Azole resistance is frequently associated with specific tandem repeat duplications of a promoter element upstream of cyp51A, the gene that encodes the target for this drug class in A. fumigatus. This promoter element is recognized by the activating transcription factors SrbA and AtrR. This region also provides a docking platform for the CCAAT-binding complex (CBC) and HapX, which cooperate in the regulation of genes involved in iron-consuming pathways, including cyp51A. Here, we studied the regulatory contributions of SrbA, AtrR, CBC, and HapX binding sites to cyp51A expression and azole resistance under different iron availability employing promoter mutational analysis and protein-DNA interaction analysis. This strategy revealed iron status-dependent and -independent roles of these regulatory elements. We show that promoter occupation by both AtrR and SrbA is required for iron-independent steady-state transcriptional activation of cyp51A and its induction during short-term iron exposure relies on HapX binding. We further reveal the HapX binding site as a repressor element, disruption of which increases cyp51A expression and azole resistance regardless of iron availability. IMPORTANCE First-line treatment of aspergillosis typically involves the use of azole antifungals. Worryingly, their future clinical use is challenged by an alarming increase in resistance. Therapeutic outcomes for such patients are poor due to delays in switching to alternative treatments and reduced efficacy of salvage therapeutics. Our lack of understanding of the molecular mechanisms that underpin resistance hampers our ability to develop novel therapeutic interventions. In this work, we dissect the regulatory motifs associated with azole resistance in the promoter of the gene that encodes the azole drug target Cyp51A. These motifs include binding platforms for SrbA and AtrR, as well as the CCAAT-binding complex and HapX. Employing mutational analyses, we uncovered crucial cyp51A-activating and -repressing functions of the binding sites. Remarkably, disrupting binding of the iron regulator HapX increased cyp51A expression and azole resistance in an iron-independent manner.
Collapse
Affiliation(s)
- Alexander Kühbacher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mandy Peiffer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Petra Merschak
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, The University of Manchester, Manchester, United Kingdom
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Differential Functions of Individual Transcription Factor Binding Sites in the Tandem Repeats Found in Clinically Relevant cyp51A Promoters in Aspergillus fumigatus. mBio 2022; 13:e0070222. [PMID: 35467427 PMCID: PMC9239056 DOI: 10.1128/mbio.00702-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aspergillus fumigatus is the major filamentous fungal pathogen in humans. The gold standard treatment of A. fumigatus is based on azole drug use, but the appearance of azole-resistant isolates is increasing at an alarming rate. The cyp51A gene encodes the enzymatic target of azole drugs, and azole-resistant alleles of cyp51A often have an unusual genetic structure containing a duplication of a 34- or 46-bp region in the promoter causing enhanced gene transcription. These tandem repeats are called TR34 and TR46 and produce duplicated binding sites for the SrbA and AtrR transcription factors. Using site-directed mutagenesis, we demonstrate that both the SrbA (sterol response element [SRE]) and AtrR binding sites (AtrR response element [ATRE]) are required for normal cyp51A gene expression. Loss of either the SRE or ATRE from the distal 34-bp repeat of the TR34 promoter (further 5′ from the transcription start site) caused loss of expression of cyp51A and decreased voriconazole resistance. Surprisingly, loss of these same binding sites from the proximal 34- or 46-bp repeat led to increased cyp51A expression and voriconazole resistance. These data indicate that these duplicated regions in the cyp51A promoter function differently. Our findings suggest that the proximal 34- or 46-bp repeat in cyp51A recruits a corepressor that requires multiple factors to act while the distal repeat is free of this repression and provides the elevated cyp51A expression caused by these promoter duplications.
Collapse
|
33
|
Kerkaert JD, Le Mauff F, Wucher BR, Beattie SR, Vesely EM, Sheppard DC, Nadell CD, Cramer RA. An Alanine Aminotransferase Is Required for Biofilm-Specific Resistance of Aspergillus fumigatus to Echinocandin Treatment. mBio 2022; 13:e0293321. [PMID: 35254131 PMCID: PMC9040767 DOI: 10.1128/mbio.02933-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Alanine metabolism has been suggested as an adaptation strategy to oxygen limitation in organisms ranging from plants to mammals. Within the pulmonary infection microenvironment, Aspergillus fumigatus forms biofilms with steep oxygen gradients defined by regions of oxygen limitation. An alanine aminotransferase, AlaA, was observed to function in alanine catabolism and is required for several aspects of A. fumigatus biofilm physiology. Loss of alaA, or its catalytic activity, results in decreased adherence of biofilms through a defect in the maturation of the extracellular matrix polysaccharide galactosaminogalactan (GAG). Additionally, exposure of cell wall polysaccharides is also impacted by loss of alaA, and loss of AlaA catalytic activity confers increased biofilm susceptibility to echinocandin treatment, which is correlated with enhanced fungicidal activity. The increase in echinocandin susceptibility is specific to biofilms, and chemical inhibition of alaA by the alanine aminotransferase inhibitor β-chloro-l-alanine is sufficient to sensitize A. fumigatus biofilms to echinocandin treatment. Finally, loss of alaA increases susceptibility of A. fumigatus to in vivo echinocandin treatment in a murine model of invasive pulmonary aspergillosis. Our results provide insight into the interplay of metabolism, biofilm formation, and antifungal drug resistance in A. fumigatus and describe a mechanism of increasing susceptibility of A. fumigatus biofilms to the echinocandin class of antifungal drugs. IMPORTANCE Aspergillus fumigatus is a ubiquitous filamentous fungus that causes an array of diseases depending on the immune status of an individual, collectively termed aspergillosis. Antifungal therapy for invasive pulmonary aspergillosis (IPA) or chronic pulmonary aspergillosis (CPA) is limited and too often ineffective. This is in part due to A. fumigatus biofilm formation within the infection environment and the resulting emergent properties, particularly increased antifungal resistance. Thus, insights into biofilm formation and mechanisms driving increased antifungal drug resistance are critical for improving existing therapeutic strategies and development of novel antifungals. In this work, we describe an unexpected observation where alanine metabolism, via the alanine aminotransferase AlaA, is required for several aspects of A. fumigatus biofilm physiology, including resistance of A. fumigatus biofilms to the echinocandin class of antifungal drugs. Importantly, we observed that chemical inhibition of alanine aminotransferases is sufficient to increase echinocandin susceptibility and that loss of alaA increases susceptibility to echinocandin treatment in a murine model of IPA. AlaA is the first gene discovered in A. fumigatus that confers resistance to an antifungal drug specifically in a biofilm context.
Collapse
Affiliation(s)
- Joshua D. Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Benjamin R. Wucher
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
34
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
35
|
Wang ZQ, Meng FZ, Yin LF, Yin WX, Lv L, Yang XL, Chang XQ, Zhang S, Luo CX. Transcriptomic Analysis of Resistant and Wild-Type Isolates Revealed Fludioxonil as a Candidate for Controlling the Emerging Isoprothiolane Resistant Populations of Magnaporthe oryzae. Front Microbiol 2022; 13:874497. [PMID: 35464942 PMCID: PMC9024399 DOI: 10.3389/fmicb.2022.874497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
The point mutation R343W in MoIRR, a putative Zn2Cys6 transcription factor, introduces isoprothiolane (IPT) resistance in Magnaporthe oryzae. However, the function of MoIRR has not been characterized. In this study, the function of MoIRR was investigated by subcellular localization observation, transcriptional autoactivation test, and transcriptomic analysis. As expected, GFP-tagged MoIRR was translocated in the nucleus, and its C-terminal could autonomously activate the expression of reporter genes HIS3 and α-galactosidase in absence of any prey proteins in Y2HGold, suggesting that MoIRR was a typical transcription factor. Transcriptomic analysis was then performed for resistant mutant 1a_mut (R343W), knockout transformant ΔMoIRR-1, and their parental wild-type isolate H08-1a. Upregulated genes in both 1a_mut and ΔMoIRR-1 were involved in fungicide resistance-related KEGG pathways, including the glycerophospholipid metabolism and Hog1 MAPK pathways. All MoIRR deficiency-related IPT-resistant strains exhibited increased susceptibility to fludioxonil (FLU) that was due to the upregulation of Hog1 MAPK pathway genes. The results indicated a correlation between FLU susceptibility and MoIRR deficiency-related IPT resistance in M. oryzae. Thus, using a mixture of IPT and FLU could be a strategy to manage the IPT-resistant populations of M. oryzae in rice fields.
Collapse
Affiliation(s)
- Zuo-Qian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Fan-Zhu Meng
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Liang-Fen Yin
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Liang Lv
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Xiao-Lin Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Xiang-Qian Chang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Shu Zhang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- *Correspondence: Shu Zhang,
| | - Chao-Xi Luo
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Chao-Xi Luo,
| |
Collapse
|
36
|
Coordinated Regulation of Membrane Homeostasis and Drug Accumulation by Novel Kinase STK-17 in Response to Antifungal Azole Treatment. Microbiol Spectr 2022; 10:e0012722. [PMID: 35196787 PMCID: PMC8865411 DOI: 10.1128/spectrum.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The emergence of antifungal resistance, especially to the most widely used azole class of ergosterol biosynthesis inhibitors, makes fungal infections difficult to treat in clinics and agriculture. When exposed to azoles, fungi can make adaptive responses to alleviate azole toxicity and produce azole tolerance. However, except for azole efflux pumps and ergosterol biosynthesis genes, the role of most azole responsive genes in azole resistance is unknown. In this study, STK-17, whose transcription is upregulated by azoles, was characterized as a novel kinase that is required for azole resistance. Deletion or dysfunction of STK-17 led to azole hypersensitivity in Neurospora crassa and to other ergosterol biosynthesis inhibitors such as amorolfine, terbinafine, and amphotericin B, but not fatty acid and ceramide biosynthesis inhibitors. STK-17 was also required for oxidative stress resistance, but this was not connected to azole resistance. RNA-seq results showed that stk-17 deletion affected the basal expression and the response to ketoconazole of some membrane protein genes, indicating functional association of STK-17 with the membrane. Notably, deletion of stk-17 affected the normal response to azoles of erg genes, including the azole target-encoding gene erg11, and erg2, erg6, and erg24, and led to abnormal accumulation of sterols in the presence of azoles. HPLC-MS/MS analysis revealed increased intracellular azole accumulation in the stk-17 mutant, possibly due to enhanced azole influx and reduced azole efflux that was independent of the major efflux pump CDR4. Importantly, STK-17 was widely distributed and functionally conserved among fungi, thus providing a potential antifungal target. IMPORTANCE Antifungal resistance is increasing worldwide, especially to the most widely used azole class of ergosterol biosynthesis inhibitors, making control of fungal infections more challenging. A lot of effort has been expended in elucidating the mechanism of azole resistance and revealing potential antifungal targets. In this study, by analyzing azole-responsive genes in Neurospora crassa, we discovered STK-17, a novel kinase, that is required for azole resistance in several types of fungi. It has a role in regulating membrane homeostasis, responses to azole by ergosterol biosynthesis genes and azole accumulation, thus, deepening our understanding on the mechanism of azole stress response. Additionally, STK-17 is conserved among fungi and plays important roles in fungal development and stress resistance. Kinase inhibitors are broadly used for treating diseases, and our study pinpoints a potential drug target for antifungal development.
Collapse
|
37
|
Zhao Y, Sun H, Li J, Ju C, Huang J. The Transcription Factor FgAtrR Regulates Asexual and Sexual Development, Virulence, and DON Production and Contributes to Intrinsic Resistance to Azole Fungicides in Fusarium graminearum. BIOLOGY 2022; 11:biology11020326. [PMID: 35205191 PMCID: PMC8869466 DOI: 10.3390/biology11020326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Simple Summary Fusarium graminearum is a devastating plant pathogen that can cause wheat head blight. Azole fungicides are commonly used chemicals for control of this disease. However, F. graminearum strains resistant to these fungicides have emerged. To better understand the azole resistance mechanism of F. graminearum, we identified and characterized the Zn(II)2-Cys6 transcription factor FgAtrR in F. graminearum. We found that FgAtrR played critical roles in vegetative growth, conidia production, perithecium formation, and virulence on wheat heads and corn silks. FgAtrR was also involved in the resistance to azole antifungals by regulating the expression of the drug target FgCYP51s and efflux pump transporters. These results broadened our understanding of the azole resistance mechanisms of F. graminearum. Abstract Fusarium graminearum is the predominant causal agent of cereal Fusarium head blight disease (FHB) worldwide. The application of chemical fungicides such as azole antifungals is still the primary method for FHB control. However, to date, our knowledge of transcriptional regulation in the azole resistance of F. graminearum is quite limited. In this study, we identified and functionally characterized a Zn(II)2-Cys6 transcription factor FgAtrR in F. graminearum. We constructed a FgAtrR deletion mutant and found that deletion of FgAtrR resulted in faster radial growth with serious pigmentation defects, significantly reduced conidial production, and an inability to form perithecia. The pathogenicity of the ΔFgAtrR mutant on wheat spikes and corn silks was severely impaired with reduced deoxynivalenol production, while the tolerance to prochloraz and propiconazole of the deletion mutant was also significantly decreased. RNA-seq indicated that many metabolic pathways were affected by the deletion of FgAtrR. Importantly, FgAtrR could regulate the expression of the FgCYP51A and ABC transporters, which are the main contributors to azole resistance. These results demonstrated that FgAtrR played essential roles in asexual and sexual development, DON production, and pathogenicity, and contributed to intrinsic resistance to azole fungicides in F. graminearum. This study will help us improve the understanding of the azole resistance mechanism in F. graminearum.
Collapse
|
38
|
Aspergillus fumigatus ffmA Encodes a C 2H 2-Containing Transcriptional Regulator That Modulates Azole Resistance and Is Required for Normal Growth. mSphere 2022; 7:e0093821. [PMID: 35138125 PMCID: PMC8826999 DOI: 10.1128/msphere.00938-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of a collection of deletion mutant strains corresponding to a large number of transcription factors from the filamentous fungal pathogen Aspergillus fumigatus has permitted rapid identification of transcriptional regulators involved in a range of different processes. Here, we characterize a gene designated ffmA (favors fermentative metabolism) as a C2H2-containing transcription factor that is required for azole drug resistance and normal growth. Loss of ffmA caused cells to exhibit significant defects in growth, either under untreated or azole-challenged conditions. Loss of FfmA caused a reduction in expression of the AbcG1 ATP-binding cassette transporter, previously shown to contribute to azole resistance. Strikingly, overproduction of the AtrR transcription factor gene restored a wild-type growth phenotype to an ffmAΔ strain. Overexpression of AtrR also suppressed the defect in AbcG1 expression caused by loss of FfmA. Replacement of the ffmA promoter with a doxycycline-repressible promoter restored nearly normal growth in the absence of doxycycline. Finally, chromatin immunoprecipitation experiments indicated that FfmA bound to its own promoter as well as to the abcG1 promoter. These data imply that FfmA and AtrR interact both with respect to abcG1 expression and also more broadly to regulate hyphal growth. IMPORTANCE Infections associated with azole-resistant forms of the primary human pathogen Aspergillus fumigatus are associated with poor outcomes in patient populations. This makes analysis of the mechanisms underlying azole resistance of A. fumigatus a high priority. In this work, we describe characterization of a gene designated ffmA that encodes a sequence-specific transcriptional regulator. We identified ffmA in a screen of a collection of gene deletion mutant strains made in A. fumigatus. Loss of ffmA caused sensitivity to azole drugs and also a large reduction in normal growth. We found that overproduction of the AtrR transcription factor could restore growth to ffmA null cells. We provide evidence that FfmA can recognize promoters of genes involved in azole resistance as well as the ffmA promoter itself. Our data indicate that FfmA and AtrR interact to support azole resistance and normal growth.
Collapse
|
39
|
The Gβ-like Protein AfCpcB Affects Sexual Development, Response to Oxidative Stress and Phagocytosis by Alveolar Macrophages in Aspergillus fumigatus. J Fungi (Basel) 2022; 8:jof8010056. [PMID: 35049996 PMCID: PMC8777951 DOI: 10.3390/jof8010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
G-protein signaling is important for signal transduction, allowing various stimuli that are external to a cell to affect its internal molecules. In Aspergillus fumigatus, the roles of Gβ-like protein CpcB on growth, asexual development, drug sensitivity, and virulence in a mouse model have been previously reported. To gain a deeper insight into Aspergillus fumigatus sexual development, the ΔAfcpcB strain was generated using the supermater AFB62 strain and crossed with AFIR928. This cross yields a decreased number of cleistothecia, including few ascospores. The sexual reproductive organ-specific transcriptional analysis using RNAs from the cleistothecia (sexual fruiting bodies) indicated that the CpcB is essential for the completion of sexual development by regulating the transcription of sexual genes, such as veA, steA, and vosA. The ΔAfcpcB strain revealed increased resistance to oxidative stress by regulating genes for catalase, peroxiredoxin, and ergosterol biosynthesis. The ΔAfcpcB strain showed decreased uptake by alveolar macrophages in vitro, decreased sensitivity to Congo red, decreased expression of cell wall genes, and increased expression of the hydrophobin genes. Taken together, these findings indicate that AfCpcB plays important roles in sexual development, phagocytosis by alveolar macrophages, biosynthesis of the cell wall, and oxidative stress response.
Collapse
|
40
|
Chen X, Wu L, Lan H, Sun R, Wen M, Ruan D, Zhang M, Wang S. Histone acetyltransferases MystA and MystB contribute to morphogenesis and aflatoxin biosynthesis by regulating acetylation in fungus Aspergillus flavus. Environ Microbiol 2021; 24:1340-1361. [PMID: 34863014 DOI: 10.1111/1462-2920.15856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Myst family is highly conserved histone acetyltransferases in eukaryotic cells and is known to play crucial roles in various cellular processes; however, acetylation catalysed by acetyltransferases is unclear in filamentous fungi. Here, we identified two classical nonessential Myst enzymes and analysed their functions in Aspergillus flavus, which generates aflatoxin B1, one of the most carcinogenic secondary metabolites. MystA and MystB located in nuclei and cytoplasm, and mystA could acetylate H4K16ac, while mystB acetylates H3K14ac, H3K18ac and H3K23ac. Deletion mystA resulted in decreased conidiation, increased sclerotia formation and aflatoxin production. Deletion of mystB leads to significant defects in conidiation, sclerotia formation and aflatoxin production. Additionally, double-knockout mutant (ΔmystA/mystB) display a stronger and similar defect to ΔmystB mutant, indicating that mystB plays a major role in regulating development and aflatoxin production. Both mystA and mystB play important role in crop colonization. Moreover, catalytic domain MOZ and the catalytic site E199/E243 were important for the acetyltransferase function of Myst. Notably, chromatin immunoprecipitation results indicated that mystB participated in oxidative detoxification by regulating the acetylation level of H3K14, and further regulated nsdD to affect sclerotia formation and aflatoxin production. This study provides new evidences to discover the biological functions of histone acetyltransferase in A. flavus.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianghuan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huahui Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruilin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meifang Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danrui Ruan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengjuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
41
|
Zhang C, Gao L, Ren Y, Gu H, Zhang Y, Lu L. The CCAAT-binding complex mediates azole susceptibility of Aspergillus fumigatus by suppressing SrbA expression and cleavage. Microbiologyopen 2021; 10:e1249. [PMID: 34964293 PMCID: PMC8608569 DOI: 10.1002/mbo3.1249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
In fungal pathogens, the transcription factor SrbA (a sterol regulatory element-binding protein, SREBP) and CBC (CCAAT binding complex) have been reported to regulate azole resistance by competitively binding the TR34 region (34 mer) in the promoter of the drug target gene, erg11A. However, current knowledge about how the SrbA and CBC coordinately mediate erg11A expression remains limited. In this study, we uncovered a novel relationship between HapB (a subunit of CBC) and SrbA in which deletion of hapB significantly prolongs the nuclear retention of SrbA by increasing its expression and cleavage under azole treatment conditions, thereby enhancing Erg11A expression for drug resistance. Furthermore, we verified that loss of HapB significantly induces the expression of the rhomboid protease RbdB, Dsc ubiquitin E3 ligase complex, and signal peptide peptidase SppA, which are required for the cleavage of SrbA, suggesting that HapB acts as a repressor for these genes which contribute to the activation of SrbA by proteolytic cleavage. Together, our study reveals that CBC functions not only to compete with SrbA for binding to erg11A promoter region but also to affect SrbA expression, cleavage, and translocation to nuclei for the function, which ultimately regulate Erg11A expression and azole resistance.
Collapse
Affiliation(s)
- Chi Zhang
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Lu Gao
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yiran Ren
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Huiyu Gu
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
42
|
Gómez M, Baeza M, Cifuentes V, Alcaíno J. The SREBP (Sterol Regulatory Element-Binding Protein) pathway: a regulatory bridge between carotenogenesis and sterol biosynthesis in the carotenogenic yeast Xanthophyllomyces dendrorhous. Biol Res 2021; 54:34. [PMID: 34702374 PMCID: PMC8549280 DOI: 10.1186/s40659-021-00359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/16/2021] [Indexed: 11/22/2022] Open
Abstract
Xanthophyllomyces dendrorhous is a basidiomycete yeast that naturally produces the red–orange carotenoid astaxanthin, which has remarkable antioxidant properties. The biosynthesis of carotenoids and sterols share some common elements that have been studied in X. dendrorhous. For example, their synthesis requires metabolites derived from the mevalonate pathway and in both specific pathways, cytochrome P450 enzymes are involved that share a single cytochrome P450 reductase, CrtR, which is essential for astaxanthin biosynthesis, but is replaceable for ergosterol biosynthesis. Research on the regulation of carotenoid biosynthesis is still limited in X. dendrorhous; however, it is known that the Sterol Regulatory Element-Binding Protein (SREBP) pathway, which is a conserved regulatory pathway involved in the control of lipid metabolism, also regulates carotenoid production in X. dendrorhous. This review addresses the similarities and differences that have been observed between mammal and fungal SREBP pathways and what it is known about this pathway regarding the regulation of the production of carotenoids and sterols in X. dendrorhous.
Collapse
Affiliation(s)
- Melissa Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile. .,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile.
| |
Collapse
|
43
|
Yan Y, Xiang B, Xie Q, Lin Y, Shen G, Hao X, Zhu X. A Putative C 2H 2 Transcription Factor CgTF6, Controlled by CgTF1, Negatively Regulates Chaetoglobosin A Biosynthesis in Chaetomium globosum. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:756104. [PMID: 37744158 PMCID: PMC10512409 DOI: 10.3389/ffunb.2021.756104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/22/2021] [Indexed: 09/26/2023]
Abstract
Gα signaling pathway as well as the global regulator LaeA were demonstrated to positively regulate the biosynthesis of chaetoglobosin A (ChA), a promising biotic pesticide produced by Chaetomium globosum. Recently, the regulatory function of Zn2Cys6 binuclear finger transcription factor CgcheR that lies within the ChA biosynthesis gene cluster has been confirmed. However, CgcheR was not merely a pathway specific regulator. In this study, we showed that the homologs gene of CgcheR (designated as Cgtf1) regulate ChA biosynthesis and sporulation in C. globosum NK102. More importantly, RNA-seq profiling demonstrated that 1,388 genes were significant differentially expressed as Cgtf1 deleted. Among them, a putative C2H2 transcription factor, named Cgtf6, showed the highest gene expression variation in zinc-binding proteins encoding genes as Cgtf1 deleted. qRT-PCR analysis confirmed that expression of Cgtf6 was significantly reduced in CgTF1 null mutants. Whereas, deletion of Cgtf6 resulted in the transcriptional activation and consequent increase in the expression of ChA biosynthesis gene cluster and ChA production in C. globosum. These data suggested that CgTF6 probably acted as an end product feedback effector, and interacted with CgTF1 to maintain a tolerable concentration of ChA for cell survival.
Collapse
Affiliation(s)
- Yu Yan
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Biyun Xiang
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiaohong Xie
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
- Xiamen No. 1 High School of Fujian, Xiamen, China
| | - Yamin Lin
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
- Shenzhen Senior High School Group, Shenzhen, China
| | - Guangya Shen
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xiaoran Hao
- National Experimental Teaching Demonstrating Center, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
44
|
Iron homeostasis in the absence of ferricrocin and its consequences in fungal development and insect virulence in Beauveria bassiana. Sci Rep 2021; 11:19624. [PMID: 34608174 PMCID: PMC8490459 DOI: 10.1038/s41598-021-99030-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022] Open
Abstract
The putative ferricrocin synthetase gene ferS in the fungal entomopathogen Beauveria bassiana BCC 2660 was identified and characterized. The 14,445-bp ferS encodes a multimodular nonribosomal siderophore synthetase tightly clustered with Fusarium graminearum ferricrocin synthetase. Functional analysis of this gene was performed by disruption with the bar cassette. ΔferS mutants were verified by Southern and PCR analyses. HPLC and TLC analyses of crude extracts indicated that biosynthesis of ferricrocin was abolished in ΔferS. Insect bioassays surprisingly indicated that ΔferS killed the Spodoptera exigua larvae faster (LT50 59 h) than wild type (66 h). Growth and developmental assays of the mutant and wild type demonstrated that ΔferS had a significant increase in germination under iron depletion and radial growth and a decrease in conidiation. Mitotracker staining showed that the mitochondrial activity was enriched in ΔferS under both iron excess and iron depletion. Comparative transcriptomes between wild type and ΔferS indicated that the mutant was increased in the expression of eight cytochrome P450 genes and those in iron homeostasis, ferroptosis, oxidative stress response, ergosterol biosynthesis, and TCA cycle, compared to wild type. Our data suggested that ΔferS sensed the iron excess and the oxidative stress and, in turn, was up-regulated in the antioxidant-related genes and those in ergosterol biosynthesis and TCA cycle. These increased biological pathways help ΔferS grow and germinate faster than the wild type and caused higher insect mortality than the wild type in the early phase of infection.
Collapse
|
45
|
Hoenigl M, Sprute R, Egger M, Arastehfar A, Cornely OA, Krause R, Lass-Flörl C, Prattes J, Spec A, Thompson GR, Wiederhold N, Jenks JD. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021; 81:1703-1729. [PMID: 34626339 PMCID: PMC8501344 DOI: 10.1007/s40265-021-01611-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
The epidemiology of invasive fungal infections is changing, with new populations at risk and the emergence of resistance caused by the selective pressure from increased usage of antifungal agents in prophylaxis, empiric therapy, and agriculture. Limited antifungal therapeutic options are further challenged by drug-drug interactions, toxicity, and constraints in administration routes. Despite the need for more antifungal drug options, no new classes of antifungal drugs have become available over the last 2 decades, and only one single new agent from a known antifungal class has been approved in the last decade. Nevertheless, there is hope on the horizon, with a number of new antifungal classes in late-stage clinical development. In this review, we describe the mechanisms of drug resistance employed by fungi and extensively discuss the most promising drugs in development, including fosmanogepix (a novel Gwt1 enzyme inhibitor), ibrexafungerp (a first-in-class triterpenoid), olorofim (a novel dihyroorotate dehydrogenase enzyme inhibitor), opelconazole (a novel triazole optimized for inhalation), and rezafungin (an echinocandin designed to be dosed once weekly). We focus on the mechanism of action and pharmacokinetics, as well as the spectrum of activity and stages of clinical development. We also highlight the potential future role of these drugs and unmet needs.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA.
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, San Diego, CA, USA.
| | - Rosanne Sprute
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Oliver A Cornely
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MI, USA
| | - George R Thompson
- Division of Infectious Diseases, Departments of Internal Medicine and Medical Microbiology and Immunology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Nathan Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jeffrey D Jenks
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, San Diego, CA, USA
- Division of General Internal Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| |
Collapse
|
46
|
dos Santos RAC, Mead ME, Steenwyk JL, Rivero-Menéndez O, Alastruey-Izquierdo A, Goldman GH, Rokas A. Examining Signatures of Natural Selection in Antifungal Resistance Genes Across Aspergillus Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:723051. [PMID: 37744093 PMCID: PMC10512362 DOI: 10.3389/ffunb.2021.723051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 09/26/2023]
Abstract
Certain Aspergillus fungi cause aspergillosis, a set of diseases that typically affect immunocompromised individuals. Most cases of aspergillosis are caused by Aspergillus fumigatus, which infects millions of people annually. Some closely related so-called cryptic species, such as Aspergillus lentulus, can also cause aspergillosis, albeit at lower frequencies, and they are also clinically relevant. Few antifungal drugs are currently available for treating aspergillosis and there is increasing worldwide concern about the presence of antifungal drug resistance in Aspergillus species. Furthermore, isolates from both A. fumigatus and other Aspergillus pathogens exhibit substantial heterogeneity in their antifungal drug resistance profiles. To gain insights into the evolution of antifungal drug resistance genes in Aspergillus, we investigated signatures of positive selection in 41 genes known to be involved in drug resistance across 42 susceptible and resistant isolates from 12 Aspergillus section Fumigati species. Using codon-based site models of sequence evolution, we identified ten genes that contain 43 sites with signatures of ancient positive selection across our set of species. None of the sites that have experienced positive selection overlap with sites previously reported to be involved in drug resistance. These results identify sites that likely experienced ancient positive selection in Aspergillus genes involved in resistance to antifungal drugs and suggest that historical selective pressures on these genes likely differ from any current selective pressures imposed by antifungal drugs.
Collapse
Affiliation(s)
- Renato Augusto Corrêa dos Santos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Olga Rivero-Menéndez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
47
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
48
|
Takahashi H, Oiki S, Kusuya Y, Urayama S, Hagiwara D. Intimate genetic relationships and fungicide resistance in multiple strains of Aspergillus fumigatus isolated from a plant bulb. Environ Microbiol 2021; 23:5621-5638. [PMID: 34464008 PMCID: PMC9292267 DOI: 10.1111/1462-2920.15724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Fungal infections are increasingly dangerous because of environmentally dispersed resistance to antifungal drugs. Azoles are commonly used antifungal drugs, but they are also used as fungicides in agriculture, which may enable enrichment of azole-resistant strains of the human pathogen Aspergillus fumigatus in the environment. Understanding of environmental dissemination and enrichment of genetic variation associated with azole resistance in A. fumigatus is required to suppress resistant strains. Here, we focused on eight strains of azole-resistant A. fumigatus isolated from a single tulip bulb for sale in Japan. This set includes strains with TR34 /L98H/T289A/I364V/G448S and TR46 /Y121F/T289A/S363P/I364V/G448S mutations in the cyp51A gene, which showed higher tolerance to several azoles than strains harbouring TR46 /Y121F/T289A mutation. The strains were typed by microsatellite typing, single nucleotide polymorphism profiles, and mitochondrial and nuclear genome analyses. The strains grouped differently using each typing method, suggesting historical genetic recombination among the strains. Our data also revealed that some strains isolated from the tulip bulb showed tolerance to other classes of fungicides, such as QoI and carbendazim, followed by related amino acid alterations in the target proteins. Considering spatial-temporal factors, plant bulbs are an excellent environmental niche for fungal strains to encounter partners, and to obtain and spread resistance-associated mutations.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Medical Mycology Research CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8673Japan
- Molecular Chirality Research CenterChiba University, 1‐33 Yayoi‐choInage‐kuChiba263‐8522Japan
- Plant Molecular Science CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8675Japan
| | - Sayoko Oiki
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| | - Yoko Kusuya
- Medical Mycology Research CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8673Japan
| | - Syun‐ichi Urayama
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
- Microbiology Research Center for SustainabilityUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
- Microbiology Research Center for SustainabilityUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| |
Collapse
|
49
|
Morelli KA, Kerkaert JD, Cramer RA. Aspergillus fumigatus biofilms: Toward understanding how growth as a multicellular network increases antifungal resistance and disease progression. PLoS Pathog 2021; 17:e1009794. [PMID: 34437655 PMCID: PMC8389518 DOI: 10.1371/journal.ppat.1009794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aspergillus fumigatus is a saprophytic, filamentous fungus found in soils and compost and the causative agent of several pulmonary diseases in humans, birds, and other mammals. A. fumigatus and other filamentous fungi grow as networks of filamentous hyphae that have characteristics of a classic microbial biofilm. These characteristics include production of an extracellular matrix (ECM), surface adhesion, multicellularity, and increased antimicrobial drug resistance. A. fumigatus biofilm growth occurs in vivo at sites of infection, highlighting the importance of defining mechanisms underlying biofilm development and associated emergent properties. We propose that there are 3 distinct phases in the development of A. fumigatus biofilms: biofilm initiation, immature biofilm, and mature biofilm. These stages are defined both temporally and by unique genetic and structural changes over the course of development. Here, we review known mechanisms within each of these stages that contribute to biofilm structure, ECM production, and increased resistance to contemporary antifungal drugs. We highlight gaps in our understanding of biofilm development and function that when addressed are expected to aid in the development of novel antifungal therapies capable of killing filamentous fungal biofilms.
Collapse
Affiliation(s)
- Kaesi A. Morelli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Joshua D. Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
50
|
James JE, Lamping E, Santhanam J, Cannon RD. PDR Transporter ABC1 Is Involved in the Innate Azole Resistance of the Human Fungal Pathogen Fusarium keratoplasticum. Front Microbiol 2021; 12:673206. [PMID: 34149660 PMCID: PMC8211738 DOI: 10.3389/fmicb.2021.673206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Fusarium keratoplasticum is arguably the most common Fusarium solani species complex (FSSC) species associated with human infections. Invasive fusariosis is a life-threatening fungal infection that is difficult to treat with conventional azole antifungals. Azole drug resistance is often caused by the increased expression of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG sub-family. Most investigations of Fusarium ABC transporters associated with azole antifungal drug resistance are limited to plant pathogens. Through the manual curation of the entire ABCG protein family of four FSSC species including the fully annotated genome of the plant pathogen Nectria haematococca we identified PDR transporters ABC1 and ABC2 as the efflux pump candidates most likely to be associated with the innate azole resistance phenotype of Fusarium keratoplasticum. An initial investigation of the transcriptional response of logarithmic phase F. keratoplasticum cells to 16 mg/L voriconazole confirmed strong upregulation (372-fold) of ABC1 while ABC2 mRNA levels were unaffected by voriconazole exposure over a 4 h time-period. Overexpression of F. keratoplasticum ABC1 and ABC2 in the genetically modified Saccharomyces cerevisiae host ADΔΔ caused up to ∼1,024-fold increased resistance to a number of xenobiotics, including azole antifungals. Although ABC1 and ABC2 were only moderately (20% and 10%, respectively) expressed compared to the Candida albicans multidrug efflux pump CDR1, overexpression of F. keratoplasticum ABC1 caused even higher resistance levels to certain xenobiotics (e.g., rhodamine 6G and nigericin) than CDR1. Our investigations suggest an important role for ABC1 orthologues in the innate azole resistance phenotype of FSSC species.
Collapse
Affiliation(s)
- Jasper Elvin James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Richard David Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|