1
|
Biophysical Reviews’ “Meet the Councilor Series”—a profile of Kandala V. R. Chary. Biophys Rev 2021; 13:821-824. [DOI: 10.1007/s12551-021-00898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022] Open
|
2
|
Entamoeba histolytica protein CaBP3 uses a calcium dependent nuclear localisation pathway in mammalian cells. EXPERIMENTAL RESULTS 2020. [DOI: 10.1017/exp.2020.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractEntamoeba histolytica is a major cause of dysentery that leads to a high level of morbidity and mortality, especially in developing countries. Calmodulin-like calcium binding protein EhCaBP3 of E. histolytica is directly involved in disease mechanisms with roles in cytoskeleton dynamics and scission during erythrophagocytosis in a calcium dependent fashion. Interestingly, EhCaBP3 is also present in the nucleus of E. histolytica. We have used a transfected cell system to show that EhCaBP3 is capable of calcium dependent nucleocytoplasmic trafficking. Our data confirms and extends recent findings suggesting presence of a calcium dependent nuclear transport pathway in E. histolytica.
Collapse
|
3
|
Kumar S, Mishra S, Gourinath S. Structural and functional diversity of Entamoeba histolytica calcium-binding proteins. Biophys Rev 2020; 12:10.1007/s12551-020-00766-6. [PMID: 33063237 PMCID: PMC7755952 DOI: 10.1007/s12551-020-00766-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Entamoeba histolytica (E. histolytica) is an etiological agent of human amoebic colitis, and it causes a high level of morbidity and mortality worldwide, particularly in developing countries. Ca2+ plays a pivotal role in amoebic pathogenesis, and Ca2+-binding proteins (CaBPs) of E. histolytica appear to be a major determinant in this process. E. histolytica has 27-EF-hand containing CaBPs, suggesting that this organism has complex Ca2+ signaling cascade. E. histolytica CaBPs share (29-47%) sequence identity with ubiquitous Ca2+-binding protein calmodulin (CaM); however, they do not show any significant structural similarity, indicating lack of a typical CaM in this organism. Structurally, these CaBPs are very diverse among themselves, and perhaps such diversity allows them to recognize different cellular targets, thereby enabling them to perform a range of cellular functions. The presence of such varied signaling molecules helps parasites to invade host cells and advance in disease progression. In the past two decades, tremendous progress has been made in understanding the structure of E. histolytica CaBPs by using the X-ray or NMR method. To gain greater insight into the structural and functional diversity of these amoebic CaBPs, we analyzed and compiled all the available literature. Most of the CaBPs has about 150 amino acids with 4-EF hand or EF-hand-like sequences, similar to CaM. In a few cases, all the EF-hand motifs are not capable of binding Ca2+, suggesting them to be pseudo EF-hand motifs. The CaBPs perform diverse cellular signaling that includes cytoskeleton remodeling, phagocytosis, cell proliferation, migration of trophozoites, and GTPase activity. Overall, the structural and functional diversity of E. histolytica CaBPs compiled here may offer a basis to develop an efficient drug to counter its pathogenesis.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Present Address: Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Shalini Mishra
- School of Life Science Jawaharlal Nehru University, New Delhi, 110067 India
| | - S. Gourinath
- School of Life Science Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
4
|
Reyes-López M, Piña-Vázquez C, Pérez-Salazar E, de la Garza M. Endocytosis, signal transduction and proteolytic cleaving of human holotransferrin in Entamoeba histolytica. Int J Parasitol 2020; 50:959-967. [PMID: 32822678 DOI: 10.1016/j.ijpara.2020.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/03/2020] [Accepted: 05/08/2020] [Indexed: 01/15/2023]
Abstract
Amoebiasis is a parasitic infection of the human large intestine caused by Entamoeba histolytica; this disease mainly affects people from developing countries. To survive, this primitive protozoan has a high demand for iron, and it uses host iron proteins upon invasion. Transferrin (Tf) is a plasma iron-binding protein that transports and delivers iron to all cells. Iron-loaded Tf (holoTf) in humans can support the proliferation of amoebae in vitro by binding to an amoebic TfR (EhTfR), and amoebae endocytose it inside clathrin-coated vesicles. In this study, it was found that EhTfR phosphorylation is required for human holoTf endocytosis by E. histolytica. Once this complex is endocytosed, human holoTf could be degraded with a nutritional purpose by cysteine proteases. HoloTf endocytosis initiates the activation of the mitogen-activated protein kinases (MAPKs) and focal adhesion kinase (FAK) pathways, which induce cell proliferation with phosphoinositide 3-kinase (PI-3 K) and Ca2+ involvement. In the first minutes after holoTf is endocytosed, several proteins are phosphorylated including transketolase, enolase, L-myo-inositol-1-phosphate synthase and phosphoglucomutase, which control carbohydrate metabolism, and heat shock protein-70. The study of these proteins and their signal transduction pathways could be useful for developing future therapies.
Collapse
Affiliation(s)
- Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Eduardo Pérez-Salazar
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico.
| |
Collapse
|
5
|
Ca 2+-binding protein from Entamoeba histolytica (EhCaBP6) is a novel GTPase. Biochem Biophys Res Commun 2020; 527:631-637. [PMID: 32423808 DOI: 10.1016/j.bbrc.2020.04.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 11/23/2022]
Abstract
GTPases are molecular switches, which regulate a variety of cellular processes such as cell polarity, gene transcription, microtubule dynamics, cell-cycle etc. In this paper, we characterize a Ca2+-binding protein from Entamoeba histolytica (EhCaBP6) as a novel GTPase. We locate the active site for GTP hydrolysis within the C-terminal domain of EhCaBP6, although it requires full length protein for its complete range of activity. Using NMR studies, we observe that GTP binding induces conformational change in EhCaBP6. The identification of this novel and unusual Ca2+-dependent GTPase is important to elucidate the unconventional cell cycle of E. histolytica.
Collapse
|
6
|
Abstract
Calcium signaling plays a key role in many essential processes in almost all eukaryotic systems. It is believed that it may also be an important signaling system of the protist parasite Entamoeba histolytica. Motility, adhesion, cytolysis, and phagocytosis/trogocytosis are important steps in invasion and pathogenesis of E. histolytica, and Ca2+ signaling is thought to be associated with these processes leading to tissue invasion. There are a large number of Ca2+-binding proteins (CaBPs) in E. histolytica, and a number of these proteins appear to be associated with different steps in pathogenesis. The genome encodes 27 EF-hand–containing CaBPs in addition to a number of other Ca2+-binding domain/motif-containing proteins, which suggest intricate calcium signaling network in this parasite. Unlike other eukaryotes, a typical calmodulin-like protein has not been seen in E. histolytica. Though none of the CaBPs display sequence similarity with a typical calmodulin, extensive structural similarity has been seen in spite of lack of significant functional overlap with that of typical calmodulins. One of the unique features observed in E. histolytica is the identification of CaBPs (EhCaBP1, EhCaBP3) that have the ability to directly bind actin and modulate actin dynamics. Direct interaction of CaBPs with actin has not been seen in any other system. Pseudopod formation and phagocytosis are some of the processes that require actin dynamics, and some of the amoebic CaBPs (EhC2Pk, EhCaBP1, EhCaBP3, EhCaBP5) participate in this process. None of these E. histolytica CaBPs have any homolog in organisms other than different species of Entamoeba, suggesting a novel Ca2+ signaling pathway that has evolved in this genus.
Collapse
Affiliation(s)
- Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- Department of Biology, Ashoka University, Sonepat, Haryana, India
- * E-mail:
| |
Collapse
|
7
|
Tripathi A, Jain M, Chandra M, Parveen S, Yadav R, Collins BM, Maiti S, Datta S. EhC2B, a C2 domain-containing protein, promotes erythrophagocytosis in Entamoeba histolytica via actin nucleation. PLoS Pathog 2020; 16:e1008489. [PMID: 32365140 PMCID: PMC7197785 DOI: 10.1371/journal.ppat.1008489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Remodelling of the actin cytoskeleton in response to external stimuli is obligatory for many cellular processes in the amoebic cell. A rapid and local rearrangement of the actin cytoskeleton is required for the development of the cellular protrusions during phagocytosis, trogocytosis, migration, and invasion. Here, we demonstrated that EhC2B, a C2 domain-containing protein, is an actin modulator. EhC2B was first identified as an effector of EhRab21 from E. histolytica. In vitro interaction studies including GST pull-down, fluorescence-based assay and ITC also corroborated with our observation. In the amoebic trophozoites, EhC2B accumulates at the pseudopods and the tips of phagocytic cups. FRAP based studies confirmed the recruitment and dynamics of EhC2B at the phagocytic cup. Moreover, we have shown the role of EhC2B in erythrophagocytosis. It is well known that calcium-dependent signal transduction is essential for the cytoskeletal dynamics during phagocytosis in the amoebic parasite. Using liposome pelleting assay, we demonstrated that EhC2B preferentially binds to the phosphatidylserine in the presence of calcium. The EhC2B mutants defective in calcium or lipid-binding failed to localise beneath the plasma membrane. The cells overexpressing these mutants have also shown a significant reduction in erythrophagocytosis. The role of EhC2B in erythrophagocytosis and pseudopod formation was also validated by siRNA-based gene knockdown approach. Finally, with the help of in vitro nucleation assay using fluorescence spectroscopy and total internal reflection fluorescence microscopy, we have established that EhC2B is an actin nucleator. Collectively, based on the results from the study, we propose that EhC2B acts like a molecular bridge which promotes membrane deformation via its actin nucleation activity during the progression of the phagocytic cup in a calcium-dependent manner.
Collapse
Affiliation(s)
- Aashutosh Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Megha Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Mintu Chandra
- Institute for Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Rupali Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Brett M. Collins
- Institute for Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- * E-mail:
| |
Collapse
|
8
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Singh SS, Naiyer S, Bharadwaj R, Kumar A, Singh YP, Ray AK, Subbarao N, Bhattacharya A, Bhattacharya S. Stress-induced nuclear depletion of Entamoeba histolytica 3'-5' exoribonuclease EhRrp6 and its role in growth and erythrophagocytosis. J Biol Chem 2018; 293:16242-16260. [PMID: 30171071 DOI: 10.1074/jbc.ra118.004632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/10/2018] [Indexed: 01/24/2023] Open
Abstract
The 3'-5' exoribonuclease Rrp6 is a key enzyme in RNA homeostasis involved in processing and degradation of many stable RNA precursors, aberrant transcripts, and noncoding RNAs. We previously have shown that in the protozoan parasite Entamoeba histolytica, the 5'-external transcribed spacer fragment of pre-rRNA accumulates under serum starvation-induced growth stress. This fragment is a known target of degradation by Rrp6. Here, we computationally and biochemically characterized EhRrp6 and found that it contains the catalytically important EXO and HRDC domains and exhibits exoribonuclease activity with both unstructured and structured RNA substrates, which required the conserved DEDD-Y catalytic-site residues. It lacked the N-terminal PMC2NT domain for binding of the cofactor Rrp47, but could functionally complement the growth defect of a yeast rrp6 mutant. Of note, no Rrp47 homologue was detected in E. histolytica Immunolocalization studies revealed that EhRrp6 is present both in the nucleus and cytosol of normal E. histolytica cells. However, growth stress induced its complete loss from the nuclei, reversed by proteasome inhibitors. EhRrp6-depleted E. histolytica cells were severely growth restricted, and EhRrp6 overexpression protected the cells against stress, suggesting that EhRrp6 functions as a stress sensor. Importantly EhRrp6 depletion reduced erythrophagocytosis, an important virulence determinant of E. histolytica This reduction was due to a specific decrease in transcript levels of some phagocytosis-related genes (Ehcabp3 and Ehrho1), whereas expression of other genes (Ehcabp1, Ehcabp6, Ehc2pk, and Eharp2/3) was unaffected. This is the first report of the role of Rrp6 in cell growth and stress responses in a protozoan parasite.
Collapse
Affiliation(s)
| | | | - Ravi Bharadwaj
- the School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Amarjeet Kumar
- the School of Computational and Integrative Sciences, and
| | | | | | - Naidu Subbarao
- the School of Computational and Integrative Sciences, and
| | - Alok Bhattacharya
- the School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | | |
Collapse
|
10
|
Abstract
Entamoeba histolytica is the protozoan parasite that causes human amoebiasis. It is one of the leading parasitic disease burdens in tropical regions and developing countries, with spread to developed countries through migrants from and travellers to endemic regions.Understanding E. histolytica's invasion mechanisms requires an understanding of how it interacts with external cell components and how it engulfs and kills cells (phagocytosis). Recent research suggests that optimal phagocytosis requires signalling events from the cell surface to the nucleus via the cytoplasm, and the induction of several factors that are transported to the plasma membrane. Current research in other protozoans suggests the presence of proteins with nuclear localization signals, nuclear export signals and Ran proteins; however, there is limited literature on their functionality and their functional similarity to higher eukaryotes.Based on learnings from the development of antivirals, nuclear transport elements in E. histolytica may present viable, specific, therapeutic targets.In this review, we aim to summarize our limited knowledge of the eukaryotic nuclear transport mechanisms that are conserved and may function in E. histolytica.
Collapse
|