1
|
Cooper KG, Kari L, Chong A, Tandon N, Doran K, Gomes Da Silva L, Cockrell DC, Baylink A, Steele-Mortimer O. HilD-regulated chemotaxis proteins contribute to Salmonella Typhimurium colonization in the gut. mBio 2025:e0039025. [PMID: 39998229 DOI: 10.1128/mbio.00390-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
In the enteric pathogen Salmonella Typhimurium, invasion and motility are coordinated by HilD, a master regulator that activates expression of genes encoding the type III secretion system 1 and some motility genes, including the chemotaxis gene mcpC. Previously, we have shown that McpC induces smooth swimming, which is important for type III secretion system 1-dependent invasion of epithelial cells. Here, we have studied another Salmonella-specific chemotaxis gene, mcpA, and demonstrate that it is also HilD regulated. Whereas HilD induction of mcpC occurs by direct derepression of H-NS, mcpA induction requires neither H-NS derepression nor the flagellar-specific sigma factor fliA; instead it occurs through a HilD-SprB regulatory cascade, providing experimental confirmation of previous transcriptional regulatory mapping. McpA and McpC contain methyl-accepting domains characteristic of bacterial chemoreceptors, and McpA also contains a chemoreceptor zinc-binding (CZB) protein domain found in a variety of bacterial proteins, many of which are involved in signaling or regulatory roles. Here, we show that, in a mouse model for acute Salmonella colitis, both mcpA and mcpC deletion mutants are outcompeted by wild-type Salmonella Typhimurium in the gut lumen. CZB domains bind Zn2+ through a conserved cysteine residue and are thought to perform redox-sensing through redox-initiated alterations in zinc homeostasis. We found that the conserved cysteine is required for McpA function in the mouse gut, thus demonstrating a virulence role for the CZB Zn2+-binding site during infection. IMPORTANCE The gut-adapted bacterium Salmonella Typhimurium causes inflammatory diarrhea via a process that involves active invasion of intestinal epithelial cells, secretion of inflammatory molecules, and recruitment of immune cells. Although bacterial motility and invasion of host cells are coordinated, how directed movement facilitates luminal survival and growth or invasion at the mucosal surface is not understood. Chemotaxis is the process by which bacteria control movement toward attractants and away from repellents. Previously, we identified a Salmonella-specific chemoreceptor, McpC, that is co-expressed with the invasion machinery and promotes smooth swimming for optimal host cell invasion. Here, we investigated another chemoreceptor, McpA, also regulated with invasion-associated genes and show it contributes to luminal expansion rather than invasion of epithelial cells. McpA activity requires a conserved Zn2+-binding domain, thought to be involved in sensing inflammation. This work demonstrates that coordination of invasion and chemotaxis plays a significant role in the gut.
Collapse
Affiliation(s)
- Kendal G Cooper
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Laszlo Kari
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Naman Tandon
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kathleen Doran
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Lidiane Gomes Da Silva
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Diane C Cockrell
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Arden Baylink
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
2
|
Raman V, Hall CL, Wetherby VE, Whitney SA, Van Dessel N, Forbes NS. Controlling intracellular protein delivery, tumor colonization and tissue distribution using flhDC in clinically relevant ΔsseJ Salmonella. Mol Ther 2025; 33:649-669. [PMID: 39741404 PMCID: PMC11852948 DOI: 10.1016/j.ymthe.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/17/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Effectively targeting intracellular pathways in cancers requires a system that specifically delivers to tumors and internalizes into cancer cells. To achieve this goal, we developed intracellular-delivering (ID) Salmonella with controllable expression of flhDC to regulate flagella production and cell invasion. We hypothesized that controlling flhDC would overcome the poor colonization seen in prior clinical trials. To test this hypothesis, we incorporated the aspirin-responsive Psal promoter and tuned flhDC expression with ssra degradation tags. In tumor-bearing mice, controlling flhDC increased protein release, tissue dispersion, and tumor colonization more than 10 million times. We discovered that inducing flhDC increases escape from intracellular vacuoles; however, deleting sseJ prevented escape and further increased protein delivery. Delivering constitutively active caspase-3 with ID-f-s Salmonella (ΔsseJ and induced Psal-flhDC) induced cell death in pancreatic, breast, and liver cancer cells and reduced the growth of breast tumors. This clinically ready strain preferentially colonized metastatic breast tissue 280 and 800 times more than surrounding healthy tissue in the lung and liver, respectively. By precisely controlling tumor colonization and cell invasion, this strain overcomes critical limitations of bacterial therapy and will enable treatment of many hard-to-treat cancers.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Ernest Pharmaceuticals, Inc., Hadley, MA 01035, USA
| | - Christopher L Hall
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Ernest Pharmaceuticals, Inc., Hadley, MA 01035, USA
| | | | - Samantha A Whitney
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | | | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA 01003, USA; Department of Microbiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
3
|
Chan FHM, Yeap HW, Liu Z, Rosli SN, Low KE, Bonne I, Wu Y, Chong SZ, Chen KW. Plasticity of cell death pathways ensures GSDMD activation during Yersinia pseudotuberculosis infection. Cell Rep 2025; 44:115216. [PMID: 39823227 DOI: 10.1016/j.celrep.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/30/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
Macrophages express pattern recognition and cytokine receptors that mediate proinflammatory signal transduction pathways to combat microbial infection. To retaliate against such responses, pathogenic microorganisms have evolved multiple strategies to impede innate immune signaling. Recent studies demonstrated that YopJ suppression of TAK1 signaling during Yersinia pseudotuberculosis infection promotes the assembly of a RIPK1-dependent death-inducing complex that enables caspase-8 to directly cleave and activate gasdermin D (GSDMD). However, whether and how macrophages respond to Yersinia infection in the absence of YopJ or caspase-8 activity remains unclear. Here, we demonstrate that loss of YopJ or its catalytic activity triggers non-canonical inflammasome activation in macrophages and that caspase-11 is required to restrict the bacterial burden in vivo. Under conditions of low caspase-8 activity, wild-type Y. pseudotuberculosis invades macrophages and accesses the cytosol, leading to non-canonical inflammasome activation. Thus, our study highlights the plasticity of death pathways to ensure GSDMD activation during Yersinia infection.
Collapse
Affiliation(s)
- Felicia Hui Min Chan
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Zonghan Liu
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Safwah Nasuha Rosli
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Kay En Low
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Isabelle Bonne
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Shu Zhen Chong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| |
Collapse
|
4
|
Khanduja S, Bloom SM, Raman V, Deshpande CP, Hall CL, Forbes NS. Intracellular delivery of oncolytic viruses with engineered Salmonella causes viral replication and cell death. iScience 2024; 27:109813. [PMID: 38799578 PMCID: PMC11126981 DOI: 10.1016/j.isci.2024.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
As therapies, oncolytic viruses regress tumors and have the potential to induce antitumor immune responses that clear hard-to-treat and late-stage cancers. Despite this promise, clearance from the blood prevents treatment of internal solid tumors. To address this issue, we developed virus-delivering Salmonella (VDS) to carry oncolytic viruses into cancer cells. The VDS strain contains the PsseJ-lysE delivery circuit and has deletions in four homologous recombination genes (ΔrecB, ΔsbcB, ΔsbcCD, and ΔrecF) to preserve essential hairpins in the viral genome required for replication and infectivity. VDS delivered the genome for minute virus of mice (MVMp) to multiple cancers, including breast, pancreatic, and osteosarcoma. Viral delivery produced functional viral particles that are cytotoxic and infective to neighboring cells. The release of mature virions initiated new rounds of infection and amplified the infection. Using Salmonella for delivery will circumvent the limitations of oncolytic viruses and will provide a new therapy for many cancers.
Collapse
Affiliation(s)
- Shradha Khanduja
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shoshana M.K. Bloom
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Chinmay P. Deshpande
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Christopher L. Hall
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA
- Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA
| |
Collapse
|
5
|
Machado LFM, Galán JE. Loss of function of metabolic traits in typhoidal Salmonella without apparent genome degradation. mBio 2024; 15:e0060724. [PMID: 38572992 PMCID: PMC11077982 DOI: 10.1128/mbio.00607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars are exclusively adapted to the human host, where they can cause life-long persistent infection. A distinct feature of these serovars is the presence of a relatively high number of degraded coding sequences coding for metabolic pathways, most likely a consequence of their adaptation to a single host. As a result of convergent evolution, these serovars shared many of the degraded coding sequences although often affecting different genes in the same metabolic pathway. However, there are several coding sequences that appear intact in one serovar while clearly degraded in the other, suggesting differences in their metabolic capabilities. Here, we examined the functionality of metabolic pathways that appear intact in S. Typhi but that show clear signs of degradation in S. Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. Thus, the inability of S. Typhi to metabolize Glucose-6-Phosphate or 3-phosphoglyceric acid is due to the silencing of the expression of the genes encoding the transporters for these compounds due to point mutations in the transcriptional regulatory proteins. In contrast, its inability to utilize glucarate or galactarate is due to the presence of point mutations in the transporter and enzymes necessary for the metabolism of these sugars. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted S. enterica serovars and highlight a limitation of bioinformatic approaches to predict metabolic capabilities. IMPORTANCE Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars can only infect the human host, where they can cause life-long persistent infection. Because of their adaptation to the human host, these bacterial pathogens have changed their metabolism, leading to the loss of their ability to utilize certain nutrients. In this study we examined the functionality of metabolic pathways that appear intact in S. Typhi but that show clear signs of degradation in S. Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted S. enterica serovars.
Collapse
Affiliation(s)
- Leopoldo F. M. Machado
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Ernst C, Andreassen PR, Giger GH, Nguyen BD, Gäbelein CG, Guillaume-Gentil O, Fattinger SA, Sellin ME, Hardt WD, Vorholt JA. Direct Salmonella injection into enteroid cells allows the study of host-pathogen interactions in the cytosol with high spatiotemporal resolution. PLoS Biol 2024; 22:e3002597. [PMID: 38684033 PMCID: PMC11057982 DOI: 10.1371/journal.pbio.3002597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Chantal Ernst
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Gabriel H. Giger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikael E. Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Machado LFM, Galán JE. Loss of function of metabolic traits in typhoidal Salmonella without apparent genome degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580360. [PMID: 38405738 PMCID: PMC10888927 DOI: 10.1101/2024.02.14.580360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars are exclusively adapted to the human host, where they can cause life-long persistent infection. A distinct feature of these serovars is the presence of a relatively high number of degraded coding sequences coding for metabolic pathways, most likely a consequence of their adaptation to a single host. As a result of convergent evolution, these serovars shared many of the degraded coding sequences although often affecting different genes in the same metabolic pathway. However, there are several coding sequences that appear intact in one serovar while clearly degraded in the other, suggesting differences in their metabolic capabilities. Here, we examined the functionality of metabolic pathways that appear intact in S . Typhi but that show clear signs of degradation in S . Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. Thus, the inability of S . Typhi to metabolize Glucose-6-Phosphate or 3-phosphoglyceric acid is due to the silencing of the expression of the genes encoding the transporters for these compounds due to point mutations in the transcriptional regulatory proteins. In contrast, its inability to utilize glucarate or galactarate is due to the presence of point mutations in the transporter and enzymes necessary for the metabolism of these sugars. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted Salmonella enterica serovars and highlight a limitation of bioinformatic approaches to predict metabolic capabilities.
Collapse
|
8
|
Koczerka M, Lantier I, Morillon M, Deperne J, Clamagirand CD, Virlogeux-Payant I, Grépinet O. From intestine to beyond: Salmonella entry factors display distinct transcription pattern upon infection in murine models. Open Biol 2024; 14:230312. [PMID: 38228171 DOI: 10.1098/rsob.230312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
The infectious process of bacteria of the genus Salmonella requires the finely regulated use of various virulence factors. Among them, the type 3 secretion system-1 (T3SS-1) and the Rck and PagN invasins are involved in the internalization of the pathogen within eukaryotic cells, but their precise role in the host and in the pathogenic process is still poorly understood. In this study, we aimed to determine the kinetics of expression of these entry factors in a typhoid fever-like and a gastroenteritis model in mice by in vivo imaging using bioluminescent Salmonella Typhimurium reporter strains carrying chromosomal transcriptional fusions. Only pagN and T3SS-1 transcription has been clearly identified. Independently of the pathological model, the caecum was identified as the main transcription site of both pagN and the T3SS-1-encoding gene both at early and late stages of the infection. An intense transcription of pagN was also observed in deep organs in the typhoid fever-like model, while that of T3SS-1 remained quite sporadic in these organs, and mainly focused on the intestine all along the infection. This work will help to understand the respective role of these entry factors at the cellular level in the pathogenesis of Salmonella in vivo.
Collapse
Affiliation(s)
| | | | - Marie Morillon
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | | | | | | | | |
Collapse
|
9
|
Berni M, Bolzoni L, Menozzi I, Dodi A, Bracchi C, Morganti M, Scaltriti E, Pongolini S, Tambassi M. Salmonella Derby adaptation to swine and simultaneous attenuation for humans go through decay of Salmonella Pathogenicity Island I. Microbiol Spectr 2023; 11:e0189923. [PMID: 37800927 PMCID: PMC10715017 DOI: 10.1128/spectrum.01899-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE This study integrated population data with in vitro assessment of virulence phenotypes to unveil that a considerable part of the global population of Salmonella Derby is evolving to enhance its host adaptation to the swine host and that this evolution is simultaneously increasing its attenuation for humans. The study shows that the fixation of deleterious mutations in SPI-1 has a role in this process. This evidence indicates that SPI-1 has a key role for S. Derby virulence in humans but not for its circulation in swine. The results show that genes generally considered essential for Salmonella pathogenesis do not play the same key role for all Salmonella serovars or lineages and/or all hosts. The study helps in understanding the molecular mechanisms underlying the ecology and host adaptation of Salmonella showing that the adaptation process can vary for different types of Salmonella and hosts.
Collapse
Affiliation(s)
- Melissa Berni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Ilaria Menozzi
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Alessandra Dodi
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Chiara Bracchi
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Marina Morganti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Martina Tambassi
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| |
Collapse
|
10
|
Worley MJ. Salmonella Bloodstream Infections. Trop Med Infect Dis 2023; 8:487. [PMID: 37999606 PMCID: PMC10675298 DOI: 10.3390/tropicalmed8110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Salmonella is a major foodborne pathogen of both animals and humans. This bacterium is responsible for considerable morbidity and mortality world-wide. Different serovars of this genus cause diseases ranging from self-limiting gastroenteritis to a potentially fatal systemic disease known as enteric fever. Gastrointestinal infections with Salmonella are usually self-limiting and rarely require medical intervention. Bloodstream infections, on the other hand, are often fatal even with hospitalization. This review describes the routes and underlying mechanisms of the extraintestinal dissemination of Salmonella and the chronic infections that sometimes result. It includes information on the pathogenicity islands and individual virulence factors involved in systemic dissemination as well as a discussion of the host factors that mediate susceptibility. Also, the major outbreaks of invasive Salmonella disease in the tropics are described.
Collapse
Affiliation(s)
- Micah J Worley
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
11
|
Raman V, Deshpande CP, Khanduja S, Howell LM, Van Dessel N, Forbes NS. Build-a-bug workshop: Using microbial-host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 2023; 31:1574-1592. [PMID: 37827116 DOI: 10.1016/j.chom.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Many systemically administered cancer therapies exhibit dose-limiting toxicities that reduce their effectiveness. To increase efficacy, bacterial delivery platforms have been developed that improve safety and prolong treatment. Bacteria are a unique class of therapy that selectively colonizes most solid tumors. As delivery vehicles, bacteria have been genetically modified to express a range of therapies that match multiple cancer indications. In this review, we describe a modular "build-a-bug" method that focuses on five design characteristics: bacterial strain (chassis), therapeutic compound, delivery method, immune-modulating features, and genetic control circuits. We emphasize how fundamental research into gut microbe pathogenesis has created safe bacterial therapies, some of which have entered clinical trials. The genomes of gut microbes are fertile grounds for discovery of components to improve delivery and modulate host immune responses. Future work coupling these delivery vehicles with insights from gut microbes could lead to the next generation of microbial cancer therapy.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Ernest Pharmaceuticals, LLC, Hadley, MA, USA
| | - Chinmay P Deshpande
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shradha Khanduja
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | | | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA; Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA.
| |
Collapse
|
12
|
Qin W, Ren Z, Xu C, Cao YN, Sun MA, Huang R, Bao W. Chromatin Accessibility and Transcriptional Landscape during Inhibition of Salmonella enterica by Lactobacillus reuteri in IPEC-J2 Cells. Cells 2023; 12:cells12060968. [PMID: 36980306 PMCID: PMC10046971 DOI: 10.3390/cells12060968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Lactobacillus reuteri is a probiotic with bacteriostatic effects, which can effectively inhibit the activity of pathogens. However, the molecular mechanism underlying the inhibition of pathogens by L. reuteri in intestinal cells remains unclear. Using the porcine intestinal cell line IPEC-J2 as a model, we combined RNA-seq and ATAC-seq methods to delineate the porcine genome-wide changes in biological processes and chromatin accessibility in IPEC-J2 cells stimulated by Salmonella enterica BNCC186354, as well as L. reuteri ATCC 53608. Overall, we found that many porcine transcripts were altered after S. enterica BNCC186354 treatment, while L. reuteri ATCC 53608 treatment partially restored this alteration, such as salmonella infection and PI3K/AKT and MAPK pathways. Combined analysis of these two datasets revealed that 26 genes with similar trends overlapped between gene expression and chromatin accessibility. In addition, we identified potential host functional transcription factors (TFs), such as GATA1, TAL1, TBP, RUNX1, Gmeb1, Gfi1b, RARA, and RXRG, in IPEC-J2 cells that might play a critical role and are targeted by L. reuteri ATCC 53608. Moreover, we verified that PI3K/AKT, MAPK, and apoptosis pathways are potentially regulated by S. enterica BNCC186354 but restored by L. reuteri ATCC 53608. The PI3K/AKT pathway was activated by L. reuteri ATCC 53608, thereby potentially inhibiting S. enterica BNCC186354 infection. In conclusion, our data provide new insights into the expression pattern of functional genes and the epigenetic alterations in IPEC-J2 cells underlying the bacteriostatic action of L. reuteri ATCC 53608.
Collapse
Affiliation(s)
- Weiyun Qin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhanshi Ren
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Nan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ming-An Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ruihua Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
14
|
Abstract
The ability of bacteria to respond to changes in their environment is critical to their survival, allowing them to withstand stress, form complex communities, and induce virulence responses during host infection. A remarkable feature of many of these bacterial responses is that they are often variable across individual cells, despite occurring in an isogenic population exposed to a homogeneous environmental change, a phenomenon known as phenotypic heterogeneity. Phenotypic heterogeneity can enable bet-hedging or division of labor strategies that allow bacteria to survive fluctuating conditions. Investigating the significance of phenotypic heterogeneity in environmental transitions requires dynamic, single-cell data. Technical advances in quantitative single-cell measurements, imaging, and microfluidics have led to a surge of publications on this topic. Here, we review recent discoveries on single-cell bacterial responses to environmental transitions of various origins and complexities, from simple diauxic shifts to community behaviors in biofilm formation to virulence regulation during infection. We describe how these studies firmly establish that this form of heterogeneity is prevalent and a conserved mechanism by which bacteria cope with fluctuating conditions. We end with an outline of current challenges and future directions for the field. While it remains challenging to predict how an individual bacterium will respond to a given environmental input, we anticipate that capturing the dynamics of the process will begin to resolve this and facilitate rational perturbation of environmental responses for therapeutic and bioengineering purposes.
Collapse
|
15
|
Luk CH, Enninga J, Valenzuela C. Fit to dwell in many places – The growing diversity of intracellular Salmonella niches. Front Cell Infect Microbiol 2022; 12:989451. [PMID: 36061869 PMCID: PMC9433700 DOI: 10.3389/fcimb.2022.989451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica is capable of invading different host cell types including epithelial cells and M cells during local infection, and immune cells and fibroblasts during the subsequent systemic spread. The intracellular lifestyles of Salmonella inside different cell types are remarkable for their distinct residential niches, and their varying replication rates. To study this, researchers have employed different cell models, such as various epithelial cells, immune cells, and fibroblasts. In epithelial cells, S. Typhimurium dwells within modified endolysosomes or gains access to the host cytoplasm. In the cytoplasm, the pathogen is exposed to the host autophagy machinery or poised for rapid multiplication, whereas it grows at a slower rate or remains dormant within the endomembrane-bound compartments. The swift bimodal lifestyle is not observed in fibroblasts and immune cells, and it emerges that these cells handle intracellular S. Typhimurium through different clearance machineries. Moreover, in these cell types S. Typhimurium grows withing modified phagosomes of distinct functional composition by adopting targeted molecular countermeasures. The preference for one or the other intracellular niche and the diverse cell type-specific Salmonella lifestyles are determined by the complex interactions between a myriad of bacterial effectors and host factors. It is important to understand how this communication is differentially regulated dependent on the host cell type and on the distinct intracellular growth rate. To support the efforts in deciphering Salmonella invasion across the different infection models, we provide a systematic comparison of the findings yielded from cell culture models. We also outline the future directions towards a better understanding of these differential Salmonella intracellular lifestyles.
Collapse
Affiliation(s)
- Chak Hon Luk
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| | - Jost Enninga
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| |
Collapse
|
16
|
Luis LB, Ana GT, Carlos GE, Abraham GG, Iris EG, Martha ML, Vianney ON. Salmonella Promotes Its Own Survival in B Cells by Inhibiting Autophagy. Cells 2022; 11:cells11132061. [PMID: 35805144 PMCID: PMC9266210 DOI: 10.3390/cells11132061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella is a Gram-negative bacterium known to be the major cause of gastrointestinal diseases and systemic infections. During infection of murine B cells, Salmonella activates the PI3K/Akt pathway through its effector, SopB. This signaling pathway induces the downregulation of NLRC4 transcription, resulting in reduced secretion of IL-1β. Thus, Salmonella-infected B cells do not progress to pyroptosis; consequently, the bacteria can survive inside these cells. However, the mechanism by which Salmonella evades the control of B cells has not yet been elucidated. In this study, we found that SopB activates mTORC1, which is necessary for bacterial survival, since B cells cultured with the mTORC1 inhibitor rapamycin and B cells lacking raptor can control Salmonella infection. A similar result was observed in B cells when they were infected with the Salmonella SopB mutant (Δsopb). Salmonella also promoted the phosphorylation of the ULK1 complex at serine 757 (Ser757) by mTORC1, resulting in decreased levels of LC3-II in infected B cells. In this study, we did not observe these results when B cells were infected with Δsopb Salmonella. Our results demonstrated that Salmonella survival within B cells depends on the inhibition of autophagy by mTORC1 activation.
Collapse
Affiliation(s)
- Lopez-Bailon Luis
- Departamento y Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico 11350, Mexico; (L.-B.L.); (E.-G.I.); (M.-L.M.)
| | - Gonzalez-Telona Ana
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico 07360, Mexico; (G.-T.A.); (G.-E.C.); (G.-G.A.)
| | - Galán-Enríquez Carlos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico 07360, Mexico; (G.-T.A.); (G.-E.C.); (G.-G.A.)
| | - García-Gil Abraham
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico 07360, Mexico; (G.-T.A.); (G.-E.C.); (G.-G.A.)
| | - Estrada-García Iris
- Departamento y Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico 11350, Mexico; (L.-B.L.); (E.-G.I.); (M.-L.M.)
| | - Moreno-Lafont Martha
- Departamento y Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico 11350, Mexico; (L.-B.L.); (E.-G.I.); (M.-L.M.)
| | - Ortiz-Navarrete Vianney
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico 07360, Mexico; (G.-T.A.); (G.-E.C.); (G.-G.A.)
- Correspondence:
| |
Collapse
|
17
|
Walpole GFW, Pacheco J, Chauhan N, Clark J, Anderson KE, Abbas YM, Brabant-Kirwan D, Montaño-Rendón F, Liu Z, Zhu H, Brumell JH, Deiters A, Stephens LR, Hawkins PT, Hammond GRV, Grinstein S, Fairn GD. Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase. Nat Cell Biol 2022; 24:708-722. [PMID: 35484249 PMCID: PMC9107517 DOI: 10.1038/s41556-022-00895-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
Despite their low abundance, phosphoinositides play a central role in membrane traffic and signalling. PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are uniquely important, as they promote cell growth, survival and migration. Pathogenic organisms have developed means to subvert phosphoinositide metabolism to promote successful infection and their survival in host organisms. We demonstrate that PtdIns(3,4)P2 is a major product generated in host cells by the effectors of the enteropathogenic bacteria Salmonella and Shigella. Pharmacological, gene silencing and heterologous expression experiments revealed that, remarkably, the biosynthesis of PtdIns(3,4)P2 occurs independently of phosphoinositide 3-kinases. Instead, we found that the Salmonella effector SopB, heretofore believed to be a phosphatase, generates PtdIns(3,4)P2 de novo via a phosphotransferase/phosphoisomerase mechanism. Recombinant SopB is capable of generating PtdIns(3,4,5)P3 and PtdIns(3,4)P2 from PtdIns(4,5)P2 in a cell-free system. Through a remarkable instance of convergent evolution, bacterial effectors acquired the ability to synthesize 3-phosphorylated phosphoinositides by an ATP- and kinase-independent mechanism, thereby subverting host signalling to gain entry and even provoke oncogenic transformation.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Pacheco
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neha Chauhan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | - Yazan M Abbas
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Fernando Montaño-Rendón
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zetao Liu
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hongxian Zhu
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John H Brumell
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
18
|
Petit TJ, Lebreton A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. Trends Microbiol 2022; 30:736-748. [DOI: 10.1016/j.tim.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022]
|
19
|
Shu J, Liu H, Liu Y, Chen X, Yu Y, Lv Q, Wang J, Deng X, Guo Z, Qiu J. Tannic Acid Inhibits Salmonella enterica Serovar Typhimurium Infection by Targeting the Type III Secretion System. Front Microbiol 2022; 12:784926. [PMID: 35145491 PMCID: PMC8822118 DOI: 10.3389/fmicb.2021.784926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that can cause food poisoning and diarrhea in both humans and animals worldwide. The Salmonella pathogenicity island (SPI) genes encoded type III secretion system (T3SS) is important for S. Typhimurium invasion and replication in host cells. Due to the increasing problem of antibiotic resistance, antibiotic treatment for clinical Salmonella infection has gradually been limited. Anti-virulence inhibitors are a promising alternative to antibiotics because they do not easily induce bacterial antibiotic resistance. Here, we systematically evaluated the therapeutic effect of tannic acid (TA) on Salmonella-infected mice and elucidated its anti-infection mechanism. TA treatment improved the survival rate of S. Typhimurium-infected mice and alleviated cecum pathological lesions. In addition, TA inhibited S. Typhimurium invasion to HeLa cells without affecting their growth. Further studies showed that TA could inhibit the expression of sipA and sipB. This inhibition may be implemented by inhibiting the transcription of key regulatory and structural genes of the T3SS. This study provides an alternative anti-virulence strategy for Salmonella infection treatment.
Collapse
Affiliation(s)
- Jingyan Shu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xindi Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianghua Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
- Zhimin Guo,
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Jiazhang Qiu,
| |
Collapse
|
20
|
Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate. Sci Rep 2021; 11:22803. [PMID: 34815429 PMCID: PMC8611075 DOI: 10.1038/s41598-021-02054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
Numerous studies have demonstrated the key role of the Salmonella Pathogenicity Island 1-encoded type III secretion system (T3SS1) apparatus as well as its associated effectors in the invasion and intracellular fate of Salmonella in the host cell. Several T3SS1 effectors work together to control cytoskeleton networks and induce massive membrane ruffles, allowing pathogen internalization. Salmonella resides in a vacuole whose maturation requires that the activity of T3SS1 subverts early stages of cell signaling. Recently, we identified five cell lines in which Salmonella Typhimurium enters without using its three known invasion factors: T3SS1, Rck and PagN. The present study investigated the intracellular fate of Salmonella Typhimurium in one of these models, the murine hepatocyte cell line AML12. We demonstrated that both wild-type Salmonella and T3SS1-invalidated Salmonella followed a common pathway leading to the formation of a Salmonella containing vacuole (SCV) without classical recruitment of Rho-GTPases. Maturation of the SCV continued through an acidified phase that led to Salmonella multiplication as well as the formation of a tubular network resembling Salmonella induced filaments (SIF). The fact that in the murine AML12 hepatocyte, the T3SS1 mutant induced an intracellular fate resembling to the wild-type strain highlights the fact that Salmonella Typhimurium invasion and intracellular survival can be completely independent of T3SS1.
Collapse
|
21
|
Lisowski C, Dias J, Costa S, Silva RJ, Mano M, Eulalio A. Dysregulated endolysosomal trafficking in cells arrested in the G 1 phase of the host cell cycle impairs Salmonella vacuolar replication. Autophagy 2021; 18:1785-1800. [PMID: 34781820 DOI: 10.1080/15548627.2021.1999561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Modulation of the host cell cycle has emerged as a common theme among the pathways regulated by bacterial pathogens, arguably to promote host cell colonization. However, in most cases the exact benefit ensuing from such interference to the infection process remains unclear. Previously, we have shown that Salmonella actively induces G2/M arrest of host cells, and that infection is severely inhibited in cells arrested in G1. In this study, we demonstrate that Salmonella vacuolar replication is inhibited in host cells blocked in G1, whereas the cytosolic replication of the closely related pathogen Shigella is not affected. Mechanistically, we show that cells arrested in G1, but not cells arrested in G2, present dysregulated endolysosomal trafficking, displaying an abnormal accumulation of vesicles positive for late endosomal and lysosomal markers. In addition, the macroautophagic/autophagic flux and degradative lysosomal function are strongly impaired. This endolysosomal trafficking dysregulation results in sustained activation of the SPI-1 type III secretion system and lack of vacuole repair by the autophagy pathway, ultimately compromising the maturation and integrity of the Salmonella-containing vacuole. As such, Salmonella is released in the host cytosol. Collectively, our findings demonstrate that the modulation of the host cell cycle occurring during Salmonella infection is related to a disparity in the permissivity of cells arrested in G1 and G2/M, due to their intrinsic characteristics.
Collapse
Affiliation(s)
- Clivia Lisowski
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jane Dias
- RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Susana Costa
- RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ricardo Jorge Silva
- Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Chu BX, Li YN, Liu N, Yuan LX, Chen SY, Zhu YH, Wang JF. Salmonella Infantis Delays the Death of Infected Epithelial Cells to Aggravate Bacterial Load by Intermittent Phosphorylation of Akt With SopB. Front Immunol 2021; 12:757909. [PMID: 34804044 PMCID: PMC8602575 DOI: 10.3389/fimmu.2021.757909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella Infantis has emerged as a major clinical pathogen causing gastroenteritis worldwide in recent years. As an intracellular pathogen, Salmonella has evolved to manipulate and benefit from the cell death signaling pathway. In this study, we discovered that S. Infantis inhibited apoptosis of infected Caco-2 cells by phosphorylating Akt. Notably, Akt phosphorylation was observed in a discontinuous manner: immediately 0.5 h after the invasion, then before peak cytosolic replication. Single-cell analysis revealed that the second phase was only induced by cytosolic hyper-replicating bacteria at 3-4 hpi. Next, Akt-mediated apoptosis inhibition was found to be initiated by Salmonella SopB. Furthermore, Akt phosphorylation increased mitochondrial localization of Bcl-2 to prevent Bax oligomerization on the mitochondrial membrane, maintaining the mitochondrial network homeostasis to resist apoptosis. In addition, S. Infantis induced pyroptosis, as evidenced by increased caspase-1 (p10) and GSDMS-N levels. In contrast, cells infected with the ΔSopB strain displayed faster but less severe pyroptosis and had less bacterial load. The results indicated that S. Infantis SopB-mediated Akt phosphorylation delayed pyroptosis, but aggravated its severity. The wild-type strain also caused more severe diarrhea and intestinal inflammatory damage than the ΔSopB strain in mice. These findings revealed that S. Infantis delayed the cells' death by intermittent activation of Akt, allowing sufficient time for replication, thereby causing more severe inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiu-Feng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Fattinger SA, Sellin ME, Hardt WD. Salmonella effector driven invasion of the gut epithelium: breaking in and setting the house on fire. Curr Opin Microbiol 2021; 64:9-18. [PMID: 34492596 DOI: 10.1016/j.mib.2021.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022]
Abstract
Salmonella Typhimurium (S.Tm) is a major cause of diarrheal disease. The invasion into intestinal epithelial cells (IECs) is a central step in the infection cycle. It is associated with gut inflammation and thought to benefit S.Tm proliferation also in the intestinal lumen. Importantly, it is still not entirely clear how inflammation is elicited and to which extent it links to IEC invasion efficiency in vivo. In this review, we summarize recent findings explaining IEC invasion by type-three-secretion-system-1 (TTSS-1) effector proteins and discuss their effects on invasion and gut inflammation. In non-polarized tissue culture cells, the TTSS-1 effectors (mainly SopB/E/E2) elicit large membrane ruffles fueling cooperative invasion, and can directly trigger pro-inflammatory signaling. By contrast, in the murine gut, we observe discreet-invasion (mainly via the TTSS-1 effector SipA) and a prominent pro-inflammatory role of the host?"s epithelial inflammasome(s), which sense pathogen associated molecular patterns (PAMPs). We discuss why it has remained a major challenge to tease apart direct and indirect inflammatory effects of TTSS-1 effectors and explain why further research will be needed to fully determine their inflammation-modulating role(s).
Collapse
Affiliation(s)
- Stefan A Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland; Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Powers TR, Haeberle AL, Predeus AV, Hammarlöf DL, Cundiff JA, Saldaña-Ahuactzi Z, Hokamp K, Hinton JCD, Knodler LA. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog 2021; 17:e1009280. [PMID: 34460873 PMCID: PMC8432900 DOI: 10.1371/journal.ppat.1009280] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.
Collapse
Affiliation(s)
- TuShun R. Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
25
|
Chong A, Cooper KG, Kari L, Nilsson OR, Hillman C, Fleming BA, Wang Q, Nair V, Steele-Mortimer O. Cytosolic replication in epithelial cells fuels intestinal expansion and chronic fecal shedding of Salmonella Typhimurium. Cell Host Microbe 2021; 29:1177-1185.e6. [PMID: 34043959 DOI: 10.1016/j.chom.2021.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Persistent and intermittent fecal shedding, hallmarks of Salmonella infections, are important for fecal-oral transmission. In the intestine, Salmonella enterica serovar Typhimurium (STm) actively invades intestinal epithelial cells (IECs) and survives in the Salmonella-containing vacuole (SCV) and the cell cytosol. Cytosolic STm replicate rapidly, express invasion factors, and induce extrusion of infected epithelial cells into the intestinal lumen. Here, we engineered STm that self-destruct in the cytosol (STmCytoKill), but replicates normally in the SCV, to examine the role of cytosolic STm in infection. Intestinal expansion and fecal shedding of STmCytoKill are impaired in mouse models of infection. We propose a model whereby repeated rounds of invasion, cytosolic replication, and release of invasive STm from extruded IECs fuels the high luminal density required for fecal shedding.
Collapse
Affiliation(s)
- Audrey Chong
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kendal G Cooper
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Laszlo Kari
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Olof R Nilsson
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Chad Hillman
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brittany A Fleming
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Qinlu Wang
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Vinod Nair
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
26
|
Interactions between Salmonella and host macrophages - Dissecting NF-κB signaling pathway responses. Microb Pathog 2021; 154:104846. [PMID: 33711426 DOI: 10.1016/j.micpath.2021.104846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 01/07/2023]
Abstract
Salmonella not only invades host cells, but also replicates intracellularly to cause a range of diseases, including gastroenteritis and systemic infections such as typhoid fever. The body's first line of defense against pathogens is the innate immune response system that can protect against Salmonella invasion and replication. Nuclear factor κB (NF-κB) is an important transcriptional regulator that plays an important role in host inflammatory responses to pathogens. Both the canonical and non-canonical NF-κB signaling pathways are activated by Salmonella in many different ways through its virulence factors, leading to the release of inflammatory factors and the activation of inflammatory responses in mammalian hosts. Equally, Salmonella, as an enteropathogen, has accordingly evolved strategies to disturb NF-κB activation, such as secreting some effector proteins by type III secretion systems as well as inducing host cells to express NF-κB pathway inhibitors, allowing it to colonize and persistently infect the hosts. This review focuses on how Salmonella activates NF-κB signaling pathway and the strategies used by Salmonella to interfere with the NF-κB pathway activation.
Collapse
|
27
|
Zheng DJ, Abou Taka M, Heit B. Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens 2021; 10:134. [PMID: 33572846 PMCID: PMC7912081 DOI: 10.3390/pathogens10020134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia and inflammatory diseases of the pulmonary system such as chronic obstructive pulmonary disease and asthma continue to cause significant morbidity and mortality globally. While the etiology of these diseases is highly different, they share a number of similarities in the underlying inflammatory processes driving disease pathology. Multiple recent studies have identified failures in efferocytosis-the phagocytic clearance of apoptotic cells-as a common driver of inflammation and tissue destruction in these diseases. Effective efferocytosis has been shown to be important for resolving inflammatory diseases of the lung and the subsequent restoration of normal lung function, while many pneumonia-causing pathogens manipulate the efferocytic system to enhance their growth and avoid immunity. Moreover, some treatments used to manage these patients, such as inhaled corticosteroids for chronic obstructive pulmonary disease and the prevalent use of statins for cardiovascular disease, have been found to beneficially alter efferocytic activity in these patients. In this review, we provide an overview of the efferocytic process and its role in the pathophysiology and resolution of pneumonia and other inflammatory diseases of the lungs, and discuss the utility of existing and emerging therapies for modulating efferocytosis as potential treatments for these diseases.
Collapse
Affiliation(s)
- David Jiao Zheng
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Maria Abou Taka
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
28
|
Bajunaid W, Haidar-Ahmad N, Kottarampatel AH, Ourida Manigat F, Silué N, F. Tchagang C, Tomaro K, Campbell-Valois FX. The T3SS of Shigella: Expression, Structure, Function, and Role in Vacuole Escape. Microorganisms 2020; 8:microorganisms8121933. [PMID: 33291504 PMCID: PMC7762205 DOI: 10.3390/microorganisms8121933] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Shigella spp. are one of the leading causes of infectious diarrheal diseases. They are Escherichia coli pathovars that are characterized by the harboring of a large plasmid that encodes most virulence genes, including a type III secretion system (T3SS). The archetypal element of the T3SS is the injectisome, a syringe-like nanomachine composed of approximately 20 proteins, spanning both bacterial membranes and the cell wall, and topped with a needle. Upon contact of the tip of the needle with the plasma membrane, the injectisome secretes its protein substrates into host cells. Some of these substrates act as translocators or effectors whose functions are key to the invasion of the cytosol and the cell-to-cell spread characterizing the lifestyle of Shigella spp. Here, we review the structure, assembly, function, and methods to measure the activity of the injectisome with a focus on Shigella, but complemented with data from other T3SS if required. We also present the regulatory cascade that controls the expression of T3SS genes in Shigella. Finally, we describe the function of translocators and effectors during cell-to-cell spread, particularly during escape from the vacuole, a key element of Shigella’s pathogenesis that has yet to reveal all of its secrets.
Collapse
Affiliation(s)
- Waad Bajunaid
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nathaline Haidar-Ahmad
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anwer Hasil Kottarampatel
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caetanie F. Tchagang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kyle Tomaro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| |
Collapse
|
29
|
Bianchi F, van den Bogaart G. Vacuolar escape of foodborne bacterial pathogens. J Cell Sci 2020; 134:134/5/jcs247221. [PMID: 32873733 DOI: 10.1242/jcs.247221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intracellular pathogens Listeria monocytogenes, Salmonella enterica, Shigella spp. and Staphylococcus aureus are major causes of foodborne illnesses. Following the ingestion of contaminated food or beverages, pathogens can invade epithelial cells, immune cells and other cell types. Pathogens survive and proliferate intracellularly via two main strategies. First, the pathogens can remain in membrane-bound vacuoles and tailor organellar trafficking to evade host-cell defenses and gain access to nutrients. Second, pathogens can rupture the vacuolar membrane and proliferate within the nutrient-rich cytosol of the host cell. Although this virulence strategy of vacuolar escape is well known for L. monocytogenes and Shigella spp., it has recently become clear that S. aureus and Salmonella spp. also gain access to the cytosol, and that this is important for their survival and growth. In this Review, we discuss the molecular mechanisms of how these intracellular pathogens rupture the vacuolar membrane by secreting a combination of proteins that lyse the membranes or that remodel the lipids of the vacuolar membrane, such as phospholipases. In addition, we also propose that oxidation of the vacuolar membrane also contributes to cytosolic pathogen escape. Understanding these escape mechanisms could aid in the identification of new therapeutic approaches to combat foodborne pathogens.
Collapse
Affiliation(s)
- Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands .,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 9625GA Nijmegen, The Netherlands
| |
Collapse
|
30
|
Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M, Shkarina K, Heilig R, Chen KW, Lim RYH, Broz P. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat Commun 2020; 11:3276. [PMID: 32581219 PMCID: PMC7314798 DOI: 10.1038/s41467-020-16889-z] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 01/16/2023] Open
Abstract
The human non-canonical inflammasome controls caspase-4 activation and gasdermin-D-dependent pyroptosis in response to cytosolic bacterial lipopolysaccharide (LPS). Since LPS binds and oligomerizes caspase-4, the pathway is thought to proceed without dedicated LPS sensors or an activation platform. Here we report that interferon-induced guanylate-binding proteins (GBPs) are required for non-canonical inflammasome activation by cytosolic Salmonella or upon cytosolic delivery of LPS. GBP1 associates with the surface of cytosolic Salmonella seconds after bacterial escape from their vacuole, initiating the recruitment of GBP2-4 to assemble a GBP coat. The GBP coat then promotes the recruitment of caspase-4 to the bacterial surface and caspase activation, in absence of bacteriolysis. Mechanistically, GBP1 binds LPS with high affinity through electrostatic interactions. Our findings indicate that in human epithelial cells GBP1 acts as a cytosolic LPS sensor and assembles a platform for caspase-4 recruitment and activation at LPS-containing membranes as the first step of non-canonical inflammasome signaling. Detection of LPS derived from Gram-negative bacteria by innate immune receptors is a critical step in the host response. Here Santos and colleagues show human GBP1 binds to LPS resulting in non-canonical inflammasome activation.
Collapse
Affiliation(s)
- José Carlos Santos
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Dave Boucher
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | | | - Benjamin Demarco
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Marisa Dilucca
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Kateryna Shkarina
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Rosalie Heilig
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Kaiwen W Chen
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Roderick Y H Lim
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
31
|
Lv Q, Li S, Wei H, Wen Z, Wang Y, Tang T, Wang J, Xia L, Deng X. Identification of the natural product paeonol derived from peony bark as an inhibitor of the Salmonella enterica serovar Typhimurium type III secretion system. Appl Microbiol Biotechnol 2020; 104:1673-1682. [PMID: 31897522 DOI: 10.1007/s00253-019-10290-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic pathogen in public health and food safety. The type III secretion system (T3SS) encoded by Salmonella pathogenicity island (SPI) is a sophisticated molecular machine that facilitates active invasion, intracellular replication, and host inflammation. Due to increasing antibiotic resistance, new therapeutic strategies that target the Salmonella T3SS have received considerable attention. In this study, paeonol was identified as an inhibitor of the S. Typhimurium T3SS. Paeonol significantly blocked the translocation of SipA into host cells and suppressed the expression of effector proteins without affecting bacterial growth in the effective concentration range. Additionally, S. Typhimurium-mediated cell injury and invasion levels were significantly reduced after treatment with paeonol, without cytotoxicity. Most importantly, the comprehensive protective effect of paeonol was confirmed in an S. Typhimurium mouse infection model. Preliminary mechanistic studies suggest that paeonol inhibits the expression of effector proteins by reducing the transcription level of the SPI-1 regulatory pathway gene hilA. This work provides proof that paeonol could be used as a potential drug to treat infections caused by Salmonella.
Collapse
Affiliation(s)
- Qianghua Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shufang Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hanlu Wei
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yanling Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.,Qingdao Vland Biological Limited Co., Ltd., Qingdao, 266001, Shandong, China
| | - Tianzhong Tang
- Hubei Wudang Animal Pharmaceutical Co., Ltd., Shiyan, 442100, Hubei, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
32
|
Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella Typhimurium due to site-specific bacterial PAMP expression. Mucosal Immunol 2020; 13:530-544. [PMID: 31953493 PMCID: PMC7181392 DOI: 10.1038/s41385-019-0247-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes can prevent systemic dissemination of enteropathogenic bacteria. As adapted pathogens including Salmonella Typhimurium (S. Tm) have evolved evasion strategies, it has remained unclear when and where inflammasomes restrict their dissemination. Bacterial population dynamics establish that the NAIP/NLRC4 inflammasome specifically restricts S. Tm migration from the gut to draining lymph nodes. This is solely attributable to NAIP/NLRC4 within intestinal epithelial cells (IECs), while S. Tm evades restriction by phagocyte NAIP/NLRC4. NLRP3 and Caspase-11 also fail to restrict S. Tm mucosa traversal, migration to lymph nodes, and systemic pathogen growth. The ability of IECs (not phagocytes) to mount a NAIP/NLRC4 defense in vivo is explained by particularly high NAIP/NLRC4 expression in IECs and the necessity for epithelium-invading S. Tm to express the NAIP1-6 ligands-flagella and type-III-secretion-system-1. Imaging reveals both ligands to be promptly downregulated following IEC-traversal. These results highlight the importance of intestinal epithelial NAIP/NLRC4 in blocking bacterial dissemination in vivo, and explain why this constitutes a uniquely evasion-proof defense against the adapted enteropathogen S. Tm.
Collapse
|
33
|
Chong A, Starr T, Finn CE, Steele-Mortimer O. A role for the Salmonella Type III Secretion System 1 in bacterial adaptation to the cytosol of epithelial cells. Mol Microbiol 2019; 112:1270-1283. [PMID: 31370104 DOI: 10.1111/mmi.14361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that invades the intestinal epithelium. Following invasion of epithelial cells, Salmonella survives and replicates within two distinct intracellular niches. While all of the bacteria are initially taken up into a membrane bound vacuole, the Salmonella-containing vacuole or SCV, a significant proportion of them promptly escape into the cytosol. Cytosolic Salmonella replicates more rapidly compared to the vacuolar population, although the reasons for this are not well understood. SipA, a multi-function effector protein, has been shown to affect intracellular replication and is secreted by cytosolic Salmonella via the invasion-associated Type III Secretion System 1 (T3SS1). Here, we have used a multipronged microscopy approach to show that SipA does not affect bacterial replication rates per se, but rather mediates intra-cytosolic survival and/or initiation of replication following bacterial egress from the SCV. Altogether, our findings reveal an important role for SipA in the early survival of cytosolic Salmonella.
Collapse
Affiliation(s)
- Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tregei Starr
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ciaran E Finn
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
34
|
Lau N, Haeberle AL, O’Keeffe BJ, Latomanski EA, Celli J, Newton HJ, Knodler LA. SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole. PLoS Pathog 2019; 15:e1007959. [PMID: 31339948 PMCID: PMC6682159 DOI: 10.1371/journal.ppat.1007959] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/05/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
The enteric bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), utilizes two type III secretion systems (T3SSs) to invade host cells, survive and replicate intracellularly. T3SS1 and its dedicated effector proteins are required for bacterial entry into non-phagocytic cells and establishment and trafficking of the nascent Salmonella-containing vacuole (SCV). Here we identify the first T3SS1 effector required to maintain the integrity of the nascent SCV as SopF. SopF associates with host cell membranes, either when translocated by bacteria or ectopically expressed. Recombinant SopF binds to multiple phosphoinositides in protein-lipid overlays, suggesting that it targets eukaryotic cell membranes via phospholipid interactions. In yeast, the subcellular localization of SopF is dependent on the activity of Mss4, a phosphatidylinositol 4-phosphate 5-kinase that generates PI(4,5)P2 from PI(4)P, indicating that membrane recruitment of SopF requires specific phospholipids. Ectopically expressed SopF partially colocalizes with specific phosphoinositide pools present on the plasma membrane in mammalian cells and with cytoskeletal-associated markers at the leading edge of cells. Translocated SopF concentrates on plasma membrane ruffles and around intracellular bacteria, presumably on the SCV. SopF is not required for bacterial invasion of non-phagocytic cells but is required for maintenance of the internalization vacuole membrane as infection with a S. Typhimurium ΔsopF mutant led to increased lysis of the SCV compared to wild type bacteria. Our structure-function analysis shows that the carboxy-terminal seven amino acids of SopF are essential for its membrane association in host cells and to promote SCV membrane stability. We also describe that SopF and another T3SS1 effector, SopB, act antagonistically to modulate nascent SCV membrane dynamics. In summary, our study highlights that a delicate balance of type III effector activities regulates the stability of the Salmonella internalization vacuole.
Collapse
Affiliation(s)
- Nicole Lau
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Brittany J. O’Keeffe
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Eleanor A. Latomanski
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Hayley J. Newton
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (LAK); (HJN)
| | - Leigh A. Knodler
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- * E-mail: (LAK); (HJN)
| |
Collapse
|
35
|
Behar SM, Briken V. Apoptosis inhibition by intracellular bacteria and its consequence on host immunity. Curr Opin Immunol 2019; 60:103-110. [PMID: 31228759 DOI: 10.1016/j.coi.2019.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 02/08/2023]
Abstract
Regulated cell death via apoptosis not only is important for organismal homeostasis but also serves as an innate defense mechanism. The engulfment of apoptotic infected cells, a process known as efferocytosis, is a common pathway for the destruction of many intracellular bacteria. Some pathogens take advantage of efferocytosis to prevent activation of macrophages and thereby facilitate their dissemination. Conversely, many obligate intracellular bacterial pathogens and some facultative-intracellular bacteria inhibit apoptosis, preventing efferocytosis, and evading innate host defenses. The molecular mechanism of bacterial effectors includes secreted proteins that bind to and inhibit apoptosis cell signaling pathways. We provide an overview of the known bacterial effectors, their host cell targets and their importance for the virulence of human pathogens.
Collapse
Affiliation(s)
- Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
36
|
Lv Q, Chu X, Yao X, Ma K, Zhang Y, Deng X. Inhibition of the type III secretion system by syringaldehyde protects mice from Salmonella enterica serovar Typhimurium. J Cell Mol Med 2019; 23:4679-4688. [PMID: 31066220 PMCID: PMC6584516 DOI: 10.1111/jcmm.14354] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 11/28/2022] Open
Abstract
The invasiveness of Salmonella enterica serovar Typhimurium (S. Typhimurium) is closely associated with the Salmonella pathogenicity island (SPI)‐encoded type Ⅲ secretion system (T3SS), which can directly inject a series of effector proteins into eukaryotic cells to enable bacterial infection. In this study, syringaldehyde was identified as an effective inhibitor of the S. Typhimurium T3SS using an effector protein‐lactamase fusion reporter system. Syringaldehyde treatment could inhibit the expression of important effector proteins (SipA, SipB and SipC) at a concentration of 0.18 mM without affecting bacterial growth. Additionally, significant inhibition of bacterial invasion and cellular injury was observed following the syringaldehyde treatment in the co‐infection system of HeLa cells and S. Typhimurium. Furthermore, treatment with syringaldehyde provided systemic protection to mice infected with S. Typhimurium, reducing mortality (40.00%) and bacterial loads and relieving caecal damage and systemic inflammation. The results presented in this study indicate that syringaldehyde significantly affects T3SS activity and is a potential leading compound for treating S. Typhimurium infections.
Collapse
Affiliation(s)
- Qianghua Lv
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xinyu Yao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Kelong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yong Zhang
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
37
|
The Role of the Host in Driving Phenotypic Heterogeneity in Salmonella. Trends Microbiol 2019; 27:508-523. [PMID: 30755344 DOI: 10.1016/j.tim.2019.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
The complex infection environment within hosts exerts unique stresses across tissues and cell types, selecting for phenotypic heterogeneity in bacterial populations. Pathogens maintain variability during infection as a strategy to cope with fluctuating host immune conditions, leading to diversification of virulence phenotypes. Recent improvements in single-cell analyses have revealed that distinct bacterial subpopulations contribute unique colonization and growth strategies across infection sites. We discuss several examples of host-driven phenotypic heterogeneity in Salmonella populations throughout the course of infection, highlighting how variation in gene expression, growth rate, immune evasion, and metabolic activity contribute to overall bacterial success at the population level. We additionally focus our discussion on the implications of diversity within bacterial communities for antimicrobial efficacy.
Collapse
|
38
|
Brink T, Leiss V, Siegert P, Jehle D, Ebner JK, Schwan C, Shymanets A, Wiese S, Nürnberg B, Hensel M, Aktories K, Orth JHC. Salmonella Typhimurium effector SseI inhibits chemotaxis and increases host cell survival by deamidation of heterotrimeric Gi proteins. PLoS Pathog 2018; 14:e1007248. [PMID: 30102745 PMCID: PMC6107295 DOI: 10.1371/journal.ppat.1007248] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/23/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium (S. Typhimurium) is one of the most frequent causes of food-borne illness in humans and usually associated with acute self-limiting gastroenteritis. However, in immunocompromised patients, the pathogen can disseminate and lead to severe systemic diseases. S. Typhimurium are facultative intracellular bacteria. For uptake and intracellular life, Salmonella translocate numerous effector proteins into host cells using two type-III secretion systems (T3SS), which are encoded within Salmonella pathogenicity islands 1 (SPI-1) and 2 (SPI-2). While SPI-1 effectors mainly promote initial invasion, SPI-2 effectors control intracellular survival and proliferation. Here, we elucidate the mode of action of Salmonella SPI-2 effector SseI, which is involved in control of systemic dissemination of S. Typhimurium. SseI deamidates a specific glutamine residue of heterotrimeric G proteins of the Gαi family, resulting in persistent activation of the G protein. Gi activation inhibits cAMP production and stimulates PI3-kinase γ by Gαi-released Gβγ subunits, resulting in activation of survival pathways by phosphorylation of Akt and mTOR. Moreover, SseI-induced deamidation leads to non-polarized activation of Gαi and, thereby, to loss of directed migration of dendritic cells. Salmonella Typhimurium is one of the most common causes of gastroenteritis in humans. In immunocompromised patients, the pathogen can cause systemic infections. Crucial virulence factors are encoded on two Salmonella pathogenicity islands SPI-1 and SPI-2. While SPI-1 encodes virulence factors essential for host cell invasion, intracellular proliferation of the pathogen depends mainly on SPI-2 effectors. Here, we elucidate the mode of action of Salmonella SPI-2 effector SseI. SseI activates heterotrimeric G proteins of the Gαi family by deamidation of a specific glutamine residue. Deamidation blocks GTP hydrolysis by Gαi, resulting in a persistently active G protein. Gi activation inhibits cAMP production and stimulates PI3Kγ by Gαi-released Gβγ subunits, resulting in activation of survival pathways by phosphorylation of Akt and mTOR. Moreover, deamidation of Gαi leads to a loss of directed migration in dendritic cells. The data offers a new perspective in the understanding of the actions of SseI.
Collapse
Affiliation(s)
- Thorsten Brink
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Veronika Leiss
- Abteilung für Pharmakologie und Experimentelle Therapie, Medizinische Fakultät und ICePhA, Eberhard-Karls-Universität Tübingen, Germany
| | - Peter Siegert
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Doris Jehle
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Julia K. Ebner
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Aliaksei Shymanets
- Abteilung für Pharmakologie und Experimentelle Therapie, Medizinische Fakultät und ICePhA, Eberhard-Karls-Universität Tübingen, Germany
| | - Sebastian Wiese
- Zentrum für Biosystemanalyse, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Bernd Nürnberg
- Abteilung für Pharmakologie und Experimentelle Therapie, Medizinische Fakultät und ICePhA, Eberhard-Karls-Universität Tübingen, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- * E-mail:
| | - Joachim H. C. Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
39
|
Johnson R, Mylona E, Frankel G. TyphoidalSalmonella: Distinctive virulence factors and pathogenesis. Cell Microbiol 2018; 20:e12939. [DOI: 10.1111/cmi.12939] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Rebecca Johnson
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| | - Elli Mylona
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| |
Collapse
|
40
|
Ingram JP, Tursi S, Zhang T, Guo W, Yin C, A Wynosky-Dolfi M, van der Heijden J, Cai KQ, Yamamoto M, Finlay BB, Brodsky IE, Grivennikov SI, Tükel Ç, Balachandran S. A Nonpyroptotic IFN-γ-Triggered Cell Death Mechanism in Nonphagocytic Cells Promotes Salmonella Clearance In Vivo. THE JOURNAL OF IMMUNOLOGY 2018; 200:3626-3634. [PMID: 29654208 DOI: 10.4049/jimmunol.1701386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/21/2018] [Indexed: 01/14/2023]
Abstract
The cytokine IFN-γ has well-established antibacterial properties against the bacterium Salmonella enterica in phagocytes, but less is known about the effects of IFN-γ on Salmonella-infected nonphagocytic cells, such as intestinal epithelial cells (IECs) and fibroblasts. In this article, we show that exposing human and murine IECs and fibroblasts to IFN-γ following infection with Salmonella triggers a novel form of cell death that is neither pyroptosis nor any of the major known forms of programmed cell death. Cell death required IFN-γ-signaling via STAT1-IRF1-mediated induction of guanylate binding proteins and the presence of live Salmonella in the cytosol. In vivo, ablating IFN-γ signaling selectively in murine IECs led to higher bacterial burden in colon contents and increased inflammation in the intestine of infected mice. Together, these results demonstrate that IFN-γ signaling triggers release of Salmonella from the Salmonella-containing vacuole into the cytosol of infected nonphagocytic cells, resulting in a form of nonpyroptotic cell death that prevents bacterial spread in the gut.
Collapse
Affiliation(s)
- Justin P Ingram
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Sarah Tursi
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Wei Guo
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111.,Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Chaoran Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Meghan A Wynosky-Dolfi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Joris van der Heijden
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111; and
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University Suita, Osaka 565-0871, Japan
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111;
| |
Collapse
|
41
|
Fredlund J, Santos JC, Stévenin V, Weiner A, Latour-Lambert P, Rechav K, Mallet A, Krijnse-Locker J, Elbaum M, Enninga J. The entry ofSalmonellain a distinct tight compartment revealed at high temporal and ultrastructural resolution. Cell Microbiol 2018; 20. [DOI: 10.1111/cmi.12816] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jennifer Fredlund
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - José Carlos Santos
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - Virginie Stévenin
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - Allon Weiner
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | | | - Katya Rechav
- Department of Interfaces; The Weizmann Institute of Sciences; Rehovot Israel
| | | | | | - Michael Elbaum
- Department of Interfaces; The Weizmann Institute of Sciences; Rehovot Israel
| | - Jost Enninga
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| |
Collapse
|
42
|
Li YA, Ji Z, Wang X, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector delivering SaoA antigen confers protection against Streptococcus suis serotypes 2 and 7 in mice and pigs. Vet Res 2017; 48:89. [PMID: 29268787 PMCID: PMC5740921 DOI: 10.1186/s13567-017-0494-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Streptococcus suis is one of the major pathogens that cause economic losses in the swine industry worldwide. However, current bacterins only provide limited prophylactic protection in the field. An ideal vaccine against S. suis should protect pigs against the clinical diseases caused by multiple serotypes, or at least protect against the dominant serotype in a given geographic region. A new recombinant Salmonella enterica serotype Choleraesuis vaccine vector, rSC0011, that is based on the regulated delayed attenuation system and regulated delayed antigen synthesis system, was developed recently. In this study, an improved recombinant attenuated Salmonella Choleraesuis vector, rSC0016, was developed by incorporating a sopB mutation to ensure adequate safety and maximal immunogenicity. In the spleens of mice, rSC0016 colonized less than rSC0011. rSC0016 and rSC0011 colonized similarly in Peyer's patches of mice. The recombinant vaccine rSC0016(pS-SaoA) induced stronger cellular, humoral, and mucosal immune responses in mice and swine against SaoA, a conserved surface protein that is present in many S. suis serotypes, than did rSC0011(pS-SaoA) without sopB or rSC0018(pS-SaoA), which is an avirulent, chemically attenuated vaccine strain. rSC0016(pS-SaoA) provided 100% protection against S. suis serotype 2 in mice and pigs, and full cross-protection against SS7 in pigs. This new vaccine vector provides a foundation for the development of a universal vaccine against multiple serotypes of S. suis in pigs.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhenying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
43
|
Mambu J, Virlogeux-Payant I, Holbert S, Grépinet O, Velge P, Wiedemann A. An Updated View on the Rck Invasin of Salmonella: Still Much to Discover. Front Cell Infect Microbiol 2017; 7:500. [PMID: 29276700 PMCID: PMC5727353 DOI: 10.3389/fcimb.2017.00500] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022] Open
Abstract
Salmonella is a facultative intracellular Gram-negative bacterium, responsible for a wide range of food- and water-borne diseases ranging from gastroenteritis to typhoid fever depending on hosts and serotypes. Salmonella thus represents a major threat to public health. A key step in Salmonella pathogenesis is the invasion of phagocytic and non-phagocytic host cells. To trigger its own internalization into non-phagocytic cells, Salmonella has developed different mechanisms, involving several invasion factors. For decades, it was accepted that Salmonella could only enter cells through a type three secretion system, called T3SS-1. Recent research has shown that this bacterium expresses outer membrane proteins, such as the Rck protein, which is able to induce Salmonella entry mechanism. Rck mimics natural host cell ligands and triggers engulfment of the bacterium by interacting with the epidermal growth factor receptor. Salmonella is thus able to use multiple entry pathways during the Salmonella infection process. However, it is unclear how and when Salmonella exploits the T3SS-1 and Rck entry mechanisms. As a series of reviews have focused on the T3SS-1, this review aims to describe the current knowledge and the limitations of our understanding of the Rck outer membrane protein. The regulatory cascade which controls Rck expression and the molecular mechanisms underlying Rck-mediated invasion into cells are summarized. The potential role of Rck-mediated invasion in Salmonella pathogenesis and the intracellular behavior of the bacteria following a Salmonella Rck-dependent entry are discussed.
Collapse
Affiliation(s)
- Julien Mambu
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Sébastien Holbert
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Olivier Grépinet
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| |
Collapse
|
44
|
Controlled Activity of the Salmonella Invasion-Associated Injectisome Reveals Its Intracellular Role in the Cytosolic Population. mBio 2017; 8:mBio.01931-17. [PMID: 29208746 PMCID: PMC5717391 DOI: 10.1128/mbio.01931-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Salmonella invasion-associated type III secretion system (T3SS1) is an essential virulence factor required for entry into nonphagocytic cells and consequent uptake into a Salmonella-containing vacuole (SCV). While Salmonella is typically regarded as a vacuolar pathogen, a subset of bacteria escape from the SCV in epithelial cells and eventually hyperreplicate in the cytosol. T3SS1 is downregulated following bacterial entry into mammalian cells, but cytosolic Salmonella cells are T3SS1 induced, suggesting prolonged or resurgent activity of T3SS1 in this population. In order to investigate the postinternalization contributions of T3SS1 to the Salmonella infectious cycle in epithelial cells, we bypassed its requirement for bacterial entry by tagging the T3SS1-energizing ATPase InvC at the C terminus with peptides that are recognized by bacterial tail-specific proteases. This caused a dramatic increase in InvC turnover which rendered even assembled injectisomes inactive. Bacterial strains conditionally expressing these unstable InvC variants were proficient for invasion but underwent rapid and sustained intracellular inactivation of T3SS1 activity when InvC expression ceased. This allowed us to directly implicate T3SS1 activity in cytosolic colonization and bacterial egress. We subsequently identified two T3SS1-delivered effectors, SopB and SipA, that are required for efficient colonization of the epithelial cell cytosol. Overall, our findings support a multifaceted, postinvasion role for T3SS1 and its effectors in defining the cytosolic population of intracellular Salmonella. A needle-like apparatus, the type III secretion system (T3SS) injectisome, is absolutely required for Salmonella enterica to enter epithelial cells; this requirement has hampered the analysis of its postentry contributions. To identify T3SS1-dependent intracellular activities, in this study we overcame this limitation by developing a conditional inactivation in the T3SS whereby T3SS activity is chemically induced during culture in liquid broth, permitting bacterial entry into epithelial cells, but is quickly and perpetually inactivated in the absence of inducer. In this sense, the mutant acts like wild-type bacteria when extracellular and as a T3SS mutant once it enters a host cell. This “conditional” mutant allowed us to directly link activity of this T3SS with nascent vacuole lysis, cytosolic proliferation, and cellular egress, demonstrating that the invasion-associated T3SS also contributes to essential intracellular stages of the S. enterica infectious cycle.
Collapse
|
45
|
Cooper KG, Chong A, Starr T, Finn CE, Steele-Mortimer O. Predictable, Tunable Protein Production in Salmonella for Studying Host-Pathogen Interactions. Front Cell Infect Microbiol 2017; 7:475. [PMID: 29201859 PMCID: PMC5696353 DOI: 10.3389/fcimb.2017.00475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022] Open
Abstract
Here we describe the use of synthetic genetic elements to improve the predictability and tunability of episomal protein production in Salmonella. We used a multi-pronged approach, in which a series of variable-strength synthetic promoters were combined with a synthetic transcriptional terminator, and plasmid copy number variation. This yielded a series of plasmids that drive uniform production of fluorescent and endogenous proteins, over a wide dynamic range. We describe several examples where this system is used to fine-tune constitutive expression in Salmonella, providing an efficient means to titrate out toxic effects of protein production.
Collapse
Affiliation(s)
- Kendal G Cooper
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Tregei Starr
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Ciaran E Finn
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
46
|
Castanheira S, García-Del Portillo F. Salmonella Populations inside Host Cells. Front Cell Infect Microbiol 2017; 7:432. [PMID: 29046870 PMCID: PMC5632677 DOI: 10.3389/fcimb.2017.00432] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the Salmonella genus cause diseases ranging from gastroenteritis to life-threatening typhoid fever and are among the most successful intracellular pathogens known. After the invasion of the eukaryotic cell, Salmonella exhibits contrasting lifestyles with different replication rates and subcellular locations. Although Salmonella hyper-replicates in the cytosol of certain host cell types, most invading bacteria remain within vacuoles in which the pathogen proliferates at moderate rates or persists in a dormant-like state. Remarkably, these cytosolic and intra-vacuolar intracellular lifestyles are not mutually exclusive and can co-exist in the same infected host cell. The mechanisms that direct the invading bacterium to follow the cytosolic or intra-vacuolar “pathway” remain poorly understood. In vitro studies show predominance of either the cytosolic or the intra-vacuolar population depending on the host cell type invaded by the pathogen. The host and pathogen factors controlling phagosomal membrane integrity and, as consequence, the egress into the cytosol, are intensively investigated. Other aspects of major interest are the host defenses that may affect differentially the cytosolic and intra-vacuolar populations and the strategies used by the pathogen to circumvent these attacks. Here, we summarize current knowledge about these Salmonella intracellular subpopulations and discuss how they emerge during the interaction of this pathogen with the eukaryotic cell.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
47
|
Young AM, Palmer AE. Methods to Illuminate the Role of Salmonella Effector Proteins during Infection: A Review. Front Cell Infect Microbiol 2017; 7:363. [PMID: 28848721 PMCID: PMC5554337 DOI: 10.3389/fcimb.2017.00363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
Intracellular bacterial pathogens like Salmonella enterica use secretion systems, such as the Type III Secretion System, to deliver virulence factors into host cells in order to invade and colonize these cells. Salmonella virulence factors include a suite of effector proteins that remodel the host cell to facilitate bacterial internalization, replication, and evasion of host immune surveillance. A number of diverse and innovative approaches have been used to identify and characterize the role of effector proteins during infection. Recent techniques for studying infection using single cell and animal models have illuminated the contribution of individual effector proteins in infection. This review will highlight the techniques applied to study Salmonella effector proteins during infection. It will describe how different approaches have revealed mechanistic details for effectors in manipulating host cellular processes including: the dynamics of effector translocation into host cells, cytoskeleton reorganization, membrane trafficking, gene regulation, and autophagy.
Collapse
Affiliation(s)
- Alexandra M Young
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado BoulderBoulder, CO, United States
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado BoulderBoulder, CO, United States
| |
Collapse
|