1
|
Kaur M, Mozaheb N, Paiva TO, Herent MF, Goormaghtigh F, Paquot A, Terrasi R, Mignolet E, Décout JL, Lorent JH, Larondelle Y, Muccioli GG, Quetin-Leclercq J, Dufrêne YF, Mingeot-Leclercq MP. Insight into the outer membrane asymmetry of P. aeruginosa and the role of MlaA in modulating the lipidic composition, mechanical, biophysical, and functional membrane properties of the cell envelope. Microbiol Spectr 2024; 12:e0148424. [PMID: 39373473 PMCID: PMC11537012 DOI: 10.1128/spectrum.01484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
In Gram-negative bacteria, the outer membrane (OM) is asymmetric, with lipopolysaccharides (LPS) in the outer leaflet and glycerophospholipids (GPLs) in the inner leaflet. The asymmetry is maintained by the Mla system (MlaA-MlaBCDEF), which contributes to lipid homeostasis by removing mislocalized GPLs from the outer leaflet of the OM. Here, we ascribed how Pseudomonas aeruginosa ATCC 27853 coordinately regulates pathways to provide defense against the threats posed by the deletion of mlaA. Especially, we explored (i) the effects on membrane lipid composition including LPS, GPLs, and lysophospholipids, (ii) the biophysical properties of the OM such as stiffness and fluidity, and (iii) the impact of these changes on permeability, antibiotic susceptibility, and membrane vesicles (MVs) generation. Deletion of mlaA induced an increase in total GPLs and a decrease in LPS level while also triggering alterations in lipid A structures (arabinosylation and palmitoylation), likely to be induced by a two-component system (PhoPQ-PmrAB). Altered lipid composition may serve a physiological purpose in regulating the mechanobiological and functional properties of P. aeruginosa. We demonstrated an increase in cell stiffness without alteration of turgor pressure and inner membrane (IM) fluidity in ∆mlaA. In addition, membrane vesiculation increased without any change in OM/IM permeability. An amphiphilic aminoglycoside derivative (3',6-dinonyl neamine) that targets P. aeruginosa membranes induced an opposite effect on ∆mlaA strain with a trend toward a return to the situation observed for the WT strain. Efforts dedicated to understanding the crosstalk between the OM lipid composition, and the mechanical behavior of bacterial envelope, is one needed step for designing new targets or new drugs to fight P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium responsible for severe hospital-acquired infections. The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore, compromising this structure could increase sensitivity to antibiotics. The OM is asymmetric with the highly packed lipopolysaccharide monolayer at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. In this study, we show that deleting mlaA, the membrane component of Mla system located at the OM, affects the mechanical and functional properties of P. aeruginosa cell envelope. Our results provide insights into the role of MlaA, involved in the Mla transport pathway in P. aeruginosa.
Collapse
Affiliation(s)
- M. Kaur
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - N. Mozaheb
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - T. O. Paiva
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-F. Herent
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - F. Goormaghtigh
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - A. Paquot
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - R. Terrasi
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - E. Mignolet
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - J.-L. Décout
- Université Grenoble Alpes, CNRS, DPM, Grenoble, France
| | - J. H. Lorent
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - Y. Larondelle
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - G. G. Muccioli
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - J. Quetin-Leclercq
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - Y. F. Dufrêne
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-P. Mingeot-Leclercq
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| |
Collapse
|
2
|
James VK, Voss BJ, Helms A, Trent MS, Brodbelt JS. Investigating Lipid Transporter Protein and Lipid Interactions Using Variable Temperature Electrospray Ionization, Ultraviolet Photodissociation Mass Spectrometry, and Collision Cross Section Analysis. Anal Chem 2024; 96:12676-12683. [PMID: 39038171 PMCID: PMC11533218 DOI: 10.1021/acs.analchem.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Gram-negative bacteria develop and exhibit resistance to antibiotics, owing to their highly asymmetric outer membrane maintained by a group of six proteins comprising the Mla (maintenance of lipid asymmetry) pathway. Here, we investigate the lipid binding preferences of one Mla protein, MlaC, which transports lipids through the periplasm. We used ultraviolet photodissociation (UVPD) to identify and characterize modifications of lipids endogenously bound to MlaC expressed in three different bacteria strains. UVPD was also used to localize lipid binding to MlaC residues 130-140, consistent with the crystal structure reported for lipid-bound MlaC. The impact of removing the bound lipid from MlaC on its structure was monitored based on collision cross section measurements, revealing that the protein unfolded prior to release of the lipid. The lipid selectivity of MlaC was evaluated based on titrimetric experiments, indicating that MlaC-bound lipids in various classes (sphingolipids, glycerophospholipids, and fatty acids) as long as they possessed no more than two acyl chains.
Collapse
Affiliation(s)
- Virginia K. James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bradley J. Voss
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Amanda Helms
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine and Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Ravindranath BS, Ananya G, Hema Kumar C, Ramirez DC, Gomez Mejiba SE. Computational prediction of crucial genes involved in gonorrhea infection and neoplastic cell transformation: A multiomics approach. Microb Pathog 2024; 193:106770. [PMID: 38960215 PMCID: PMC11558249 DOI: 10.1016/j.micpath.2024.106770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/24/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Neisseria gonorrheae, the causative agent of genitourinary infections, has been associated with asymptomatic or recurrent infections and has the potential to form biofilms and induce inflammation and cell transformation. Herein, we aimed to use computational analysis to predict novel associations between chronic inflammation caused by gonorrhea infection and neoplastic transformation. Prioritization and gene enrichment strategies based on virulence and resistance genes utilizing essential genes from the DEG and PANTHER databases, respectively, were performed. Using the STRING database, protein‒protein interaction networks were constructed with 55 nodes of bacterial proteins and 72 nodes of proteins involved in the host immune response. MCODE and cytoHubba were used to identify 12 bacterial hub proteins (murA, murB, murC, murD, murE, purN, purL, thyA, uvrB, kdsB, lpxC, and ftsH) and 19 human hub proteins, of which TNF, STAT3 and AKT1 had high significance. The PPI networks are based on the connectivity degree (K), betweenness centrality (BC), and closeness centrality (CC) values. Hub genes are vital for cell survival and growth, and their significance as potential drug targets is discussed. This computational study provides a comprehensive understanding of inflammation and carcinogenesis pathways that are activated during gonorrhea infection.
Collapse
Affiliation(s)
- B S Ravindranath
- Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
| | - G Ananya
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - C Hema Kumar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bangalore, 560111, Karnataka, India
| | - D C Ramirez
- Laboratory of Experimental and Translational Medicine, CCT-San Luis-National University of San Luis, San Luis, 5700, San Luis, Argentina.
| | - S E Gomez Mejiba
- Laboratory of Nutrition and Experimental Therapeutics, CCT-San Luis-National University of San Luis, San Luis, 5700, San Luis, Argentina.
| |
Collapse
|
4
|
Dhital S, Deo P, Stuart I, Huang C, Zavan L, Han ML, Kaparakis-Liaskos M, Ramm G, Schittenhelm RB, Howden B, Naderer T. Characterization of outer membrane vesicles released by clinical isolates of Neisseria gonorrhoeae. Proteomics 2024; 24:e2300087. [PMID: 38059892 DOI: 10.1002/pmic.202300087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The sexually transmitted pathogen Neisseria gonorrhoeae releases membrane vesicles including outer membrane vesicles (OMVs) during infections. OMVs traffic outer membrane molecules, such as the porin PorB and lipo-oligosaccharide (LOS), into host innate immune cells, eliciting programmed cell death pathways, and inflammation. Little is known, however, about the proteome and LOS content of OMVs released by clinical strains isolated from different infection sites, and whether these vesicles similarly activate immune responses. Here, we characterized OMVs from four N. gonorrhoeae isolates and determined their size, abundance, proteome, LOS content, and activation of inflammatory responses in macrophages. The overall proteome of the OMVs was conserved between the four different isolates, which included major outer membrane and periplasm proteins. Despite this, we observed differences in the rate of OMV biogenesis and the relative abundance of membrane proteins and LOS. Consequently, OMVs from clinical isolates induced varying rates of macrophage cell death and the secretion of interleukin-1 family members, such as IL-1α and IL-1β. Overall, these findings demonstrate that clinical isolates of N. gonorrhoeae utilize membrane vesicles to release proteins and lipids, which affects innate immune responses.
Collapse
Affiliation(s)
- Subhash Dhital
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Pankaj Deo
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Isabella Stuart
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Lauren Zavan
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Mei-Ling Han
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Georg Ramm
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thomas Naderer
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Kaur M, Mingeot-Leclercq MP. Maintenance of bacterial outer membrane lipid asymmetry: insight into MlaA. BMC Microbiol 2024; 24:186. [PMID: 38802775 PMCID: PMC11131202 DOI: 10.1186/s12866-023-03138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 05/29/2024] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier to protect against toxic compounds. By nature, the OM is asymmetric with the highly packed lipopolysaccharide (LPS) at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla system, in which is responsible for the retrograde transport of glycerophospholipids from the OM to the inner membrane. This system is comprised of six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids that are mis-localized at the outer leaflet of the OM. Interestingly, MlaA was initially identified - and called VacJ - based on its role in the intracellular spreading of Shigella flexneri.Many open questions remain with respect to the Mla system and the mechanism involved in the translocation of mislocated glycerophospholipids at the outer leaflet of the OM, by MlaA. After summarizing the current knowledge on MlaA, we focus on the impact of mlaA deletion on OM lipid composition and biophysical properties of the OM. How changes in OM lipid composition and biophysical properties can impact the generation of membrane vesicles and membrane permeability is discussed. Finally, we explore whether and how MlaA might be a candidate for improving the activity of antibiotics and as a vaccine candidate.Efforts dedicated to understanding the relationship between the OM lipid composition and the mechanical strength of the bacterial envelope and, in turn, how such properties act against external stress, are needed for the design of new targets or drugs for Gram-negative infections.
Collapse
Affiliation(s)
- M Kaur
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium
| | - M-P Mingeot-Leclercq
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium.
| |
Collapse
|
6
|
Noel HR, Keerthi S, Ren X, Winkelman JD, Troutman JM, Palmer LD. Genetic synergy between Acinetobacter baumannii undecaprenyl phosphate biosynthesis and the Mla system impacts cell envelope and antimicrobial resistance. mBio 2024; 15:e0280423. [PMID: 38364179 PMCID: PMC10936186 DOI: 10.1128/mbio.02804-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacterial pathogen that poses a major health concern due to increasing multidrug resistance. The Gram-negative cell envelope is a key barrier to antimicrobial entry and includes an inner and outer membrane. The maintenance of lipid asymmetry (Mla) system is the main homeostatic mechanism by which Gram-negative bacteria maintain outer membrane asymmetry. Loss of the Mla system in A. baumannii results in attenuated virulence and increased susceptibility to membrane stressors and some antibiotics. We recently reported two strain variants of the A. baumannii type strain ATCC 17978: 17978VU and 17978UN. Here, ∆mlaF mutants in the two ATCC 17978 strains display different phenotypes for membrane stress resistance, antibiotic resistance, and pathogenicity in a murine pneumonia model. Although allele differences in obgE were previously reported to synergize with ∆mlaF to affect growth and stringent response, obgE alleles do not affect membrane stress resistance. Instead, a single-nucleotide polymorphism (SNP) in the essential gene encoding undecaprenyl pyrophosphate (Und-PP) synthase, uppS, results in decreased enzymatic rate and decrease in total Und-P levels in 17978UN compared to 17978VU. The UppSUN variant synergizes with ∆mlaF to reduce capsule and lipooligosaccharide (LOS) levels, increase susceptibility to membrane stress and antibiotics, and reduce persistence in a mouse lung infection. Und-P is a lipid glycan carrier required for the biosynthesis of A. baumannii capsule, cell wall, and glycoproteins. These findings uncover synergy between Und-P and the Mla system in maintaining the A. baumannii cell envelope and antibiotic resistance.IMPORTANCEAcinetobacter baumannii is a critical threat to global public health due to its multidrug resistance and persistence in hospital settings. Therefore, novel therapeutic approaches are urgently needed. We report that a defective undecaprenyl pyrophosphate synthase (UppS) paired with a perturbed Mla system leads to synthetically sick cells that are more susceptible to clinically relevant antibiotics and show reduced virulence in a lung infection model. These results suggest that targeting UppS or undecaprenyl species and the Mla system may resensitize A. baumannii to antibiotics in combination therapies. This work uncovers a previously unknown synergistic relationship in cellular envelope homeostasis that could be leveraged for use in combination therapy against A. baumannii.
Collapse
Affiliation(s)
- Hannah R. Noel
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sowmya Keerthi
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Jerry M. Troutman
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Coves X, Mamat U, Conchillo-Solé O, Huedo P, Bravo M, Gómez AC, Krohn I, Streit WR, Schaible UE, Gibert I, Daura X, Yero D. The Mla system and its role in maintaining outer membrane barrier function in Stenotrophomonas maltophilia. Front Cell Infect Microbiol 2024; 14:1346565. [PMID: 38469346 PMCID: PMC10925693 DOI: 10.3389/fcimb.2024.1346565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Stenotrophomonas maltophilia are ubiquitous Gram-negative bacteria found in both natural and clinical environments. It is a remarkably adaptable species capable of thriving in various environments, thanks to the plasticity of its genome and a diverse array of genes that encode a wide range of functions. Among these functions, one notable trait is its remarkable ability to resist various antimicrobial agents, primarily through mechanisms that regulate the diffusion across cell membranes. We have investigated the Mla ABC transport system of S. maltophilia, which in other Gram-negative bacteria is known to transport phospholipids across the periplasm and is involved in maintaining outer membrane homeostasis. First, we structurally and functionally characterized the periplasmic substrate-binding protein MlaC, which determines the specificity of this system. The predicted structure of the S. maltophilia MlaC protein revealed a hydrophobic cavity of sufficient size to accommodate the phospholipids commonly found in this species. Moreover, recombinant MlaC produced heterologously demonstrated the ability to bind phospholipids. Gene knockout experiments in S. maltophilia K279a revealed that the Mla system is involved in baseline resistance to antimicrobial and antibiofilm agents, especially those with divalent-cation chelating activity. Co-culture experiments with Pseudomonas aeruginosa also showed a significant contribution of this system to the cooperation between both species in the formation of polymicrobial biofilms. As suggested for other Gram-negative pathogenic microorganisms, this system emerges as an appealing target for potential combined antimicrobial therapies.
Collapse
Affiliation(s)
- Xavier Coves
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Leibniz Research Alliance INFECTIONS, Borstel, Germany
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Marc Bravo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Andromeda-Celeste Gómez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ines Krohn
- Department of Microbiology and Biotechnology, University Institute of Plant Science and Microbiology, of Hamburg, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University Institute of Plant Science and Microbiology, of Hamburg, Hamburg, Germany
| | - Ulrich E. Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Leibniz Research Alliance INFECTIONS, Borstel, Germany
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, Spain
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
Gao S, Gao L, Yuan D, Lin X, van der Veen S. Gonococcal OMV-delivered PorB induces epithelial cell mitophagy. Nat Commun 2024; 15:1669. [PMID: 38396029 PMCID: PMC10891091 DOI: 10.1038/s41467-024-45961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The bacterial pathogen Neisseria gonorrhoeae is able to invade epithelial cells and survive intracellularly. During this process, it secretes outer membrane vesicles (OMVs), however, the mechanistic details for interactions between gonococcal OMVs and epithelial cells and their impact on intracellular survival are currently not established. Here, we show that gonococcal OMVs induce epithelial cell mitophagy to reduce mitochondrial secretion of reactive oxygen species (ROS) and enhance intracellular survival. We demonstrate that OMVs deliver PorB to mitochondria to dissipate the mitochondrial membrane potential, resulting in mitophagy induction through a conventional PINK1 and OPTN/NDP52 mechanism. Furthermore, PorB directly recruits the E3 ubiquitin ligase RNF213, which decorates PorB lysine residue 171 with K63-linked polyubiquitin to induce mitophagy in a p62-dependent manner. These results demonstrate a mechanism in which polyubiquitination of a bacterial virulence factor that targets mitochondria directs mitophagy processes to this organelle to prevent its secretion of deleterious ROS.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Lingyu Gao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Dailin Yuan
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, PR China
| | - Xu'ai Lin
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Stijn van der Veen
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, PR China.
| |
Collapse
|
9
|
Gomes LGR, Dutra JCF, Profeta R, Dias MV, García GJY, Rodrigues DLN, Goés Neto A, Aburjaile FF, Tiwari S, Soares SC, Azevedo V, Jaiswal AK. Systematic review of reverse vaccinology and immunoinformatics data for non-viral sexually transmitted infections. AN ACAD BRAS CIENC 2023; 95:e20230617. [PMID: 38055447 DOI: 10.1590/0001-3765202320230617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/27/2023] [Indexed: 12/08/2023] Open
Abstract
Sexually Transmitted Infections (STIs) are a public health burden rising in developed and developing nations. The World Health Organization estimates nearly 374 million new cases of curable STIs yearly. Global efforts to control their spread have been insufficient in fulfilling their objective. As there is no vaccine for many of these infections, these efforts are focused on education and condom distribution. The development of vaccines for STIs is vital for successfully halting their spread. The field of immunoinformatics is a powerful new tool for vaccine development, allowing for the identification of vaccine candidates within a bacterium's genome and allowing for the design of new genome-based vaccine peptides. The goal of this review was to evaluate the usage of immunoinformatics in research focused on non-viral STIs, identifying fields where research efforts are concentrated. Here we describe gaps in applying these techniques, as in the case of Treponema pallidum and Trichomonas vaginalis.
Collapse
Affiliation(s)
- Lucas Gabriel R Gomes
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Joyce C F Dutra
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Microbiologia, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Rodrigo Profeta
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Mariana V Dias
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Glen J Y García
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Bioinformática, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Diego Lucas N Rodrigues
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Universidade Federal de Minas Gerais (UFMG), Escola de Veterinária, Departamento de Medicina Veterinária, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Aristóteles Goés Neto
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Biologia Molecular e Computacional de Fungos, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Flávia F Aburjaile
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Universidade Federal de Minas Gerais (UFMG), Escola de Veterinária, Departamento de Medicina Veterinária, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Universidade Federal da Bahia, Instituto de Biologia, Rua Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, BA, Brazil
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n, Vale do Canela, 40110-902 Salvador, BA, Brazil
| | - Siomar C Soares
- Universidade Federal do Triângulo Mineiro (UFTM), Instituto de Ciências Biológicas e Naturais, Departamento de Microbiologia, Imunologia, e Parasitologia, Rua Vigário Carlos, 100, Abadia, 38025-180 Uberaba, MG, Brazil
| | - Vasco Azevedo
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Arun K Jaiswal
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Grasekamp KP, Beaud Benyahia B, Taib N, Audrain B, Bardiaux B, Rossez Y, Izadi-Pruneyre N, Lejeune M, Trivelli X, Chouit Z, Guerardel Y, Ghigo JM, Gribaldo S, Beloin C. The Mla system of diderm Firmicute Veillonella parvula reveals an ancestral transenvelope bridge for phospholipid trafficking. Nat Commun 2023; 14:7642. [PMID: 37993432 PMCID: PMC10665443 DOI: 10.1038/s41467-023-43411-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
E. coli and most other diderm bacteria (those with two membranes) have an inner membrane enriched in glycerophospholipids (GPLs) and an asymmetric outer membrane (OM) containing GPLs in its inner leaflet and primarily lipopolysaccharides in its outer leaflet. In E. coli, this lipid asymmetry is maintained by the Mla system which consists of six proteins: the OM lipoprotein MlaA extracts GPLs from the outer leaflet, and the periplasmic chaperone MlaC transfers them across the periplasm to the inner membrane complex MlaBDEF. However, GPL trafficking still remains poorly understood, and has only been studied in a handful of model species. Here, we investigate GPL trafficking in Veillonella parvula, a diderm Firmicute with an Mla system that lacks MlaA and MlaC, but contains an elongated MlaD. V. parvula mla mutants display phenotypes characteristic of disrupted lipid asymmetry which can be suppressed by mutations in tamB, supporting that these two systems have opposite GPL trafficking functions across diverse bacterial lineages. Structural modelling and subcellular localisation assays suggest that V. parvula MlaD forms a transenvelope bridge, comprising a typical inner membrane-localised MCE domain and, in addition, an outer membrane ß-barrel. Phylogenomic analyses indicate that this elongated MlaD type is widely distributed across diderm bacteria and likely forms part of the ancestral functional core of the Mla system, which would be composed of MlaEFD only.
Collapse
Affiliation(s)
- Kyrie P Grasekamp
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France
| | - Basile Beaud Benyahia
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Najwa Taib
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Bianca Audrain
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, Structural Bioinformatics Unit, CNRS UMR 3528, Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Yannick Rossez
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, Structural Bioinformatics Unit, CNRS UMR 3528, Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Maylis Lejeune
- Institut Pasteur, Université Paris Cité, Structural Bioinformatics Unit, CNRS UMR 3528, Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille, 59000, France
| | - Zina Chouit
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France.
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, Paris, France.
| |
Collapse
|
11
|
Mathur S, Erickson SK, Goldberg LR, Hills S, Radin AGB, Schertzer JW. OprF functions as a latch to direct Outer Membrane Vesicle release in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566662. [PMID: 37986865 PMCID: PMC10659412 DOI: 10.1101/2023.11.12.566662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Bacterial Outer Membrane Vesicles (OMVs) contribute to virulence, competition, immune avoidance and communication. This has led to great interest in how they are formed. To date, investigation has focused almost exclusively on what controls the initiation of OMV biogenesis. Regardless of the mechanism of initiation, all species face a similar challenge before an OMV can be released: How does the OM detach from the underlying peptidoglycan (PG) in regions that will ultimately bulge and then vesiculate? The OmpA family of OM proteins (OprF in P. aeruginosa) is widely conserved and unusually abundant in OMVs across species considering their major role in PG attachment. OmpA homologs also have the interesting ability to adopt both PG-bound (two-domain) and PG-released (one-domain) conformations. Using targeted deletion of the PG-binding domain we showed that loss of cell wall association, and not general membrane destabilization, is responsible for hypervesiculation in OprF-modified strains. We therefore propose that OprF functions as a 'latch', capable of releasing PG in regions destined to become OMVs. To test this hypothesis, we developed a protocol to assess OprF conformation in live cells and purified OMVs. While >90% of OprF proteins exist in the two-domain conformation in the OM of cells, we show that the majority of OprF in OMVs is present in the one-domain conformation. With this work, we take some of the first steps in characterizing late-stage OMV biogenesis and identify a family of proteins whose critical role can be explained by their unique ability to fold into two distinct conformations.
Collapse
Affiliation(s)
- Shrestha Mathur
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| | - Susan K Erickson
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| | - Leah R Goldberg
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| | - Sonia Hills
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| | - Abigail G B Radin
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| | - Jeffrey W Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902
| |
Collapse
|
12
|
Kaur M, Buyck JM, Goormaghtigh F, Decout JL, Mozaheb N, Mingeot-Leclercq MP. Deficient Pseudomonas aeruginosa in MlaA/VacJ outer membrane lipoprotein shows decrease in rhamnolipids secretion, motility, and biofilm formation, and increase in fluoroquinolones susceptibility and innate immune response. Res Microbiol 2023; 174:104132. [PMID: 37660742 DOI: 10.1016/j.resmic.2023.104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital acquired infections poses threat by its ability for adaptation to various growth modes and environmental conditions and by its intrinsic resistance to antibiotics. The latter is mainly due to the outer membrane (OM) asymmetry which is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. It comprises six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids mislocalized at the outer leaflet of OM. To investigate the role of P. aeruginosa OM asymmetry especially MlaA, this study investigated the effect of mlaA deletion on (i) the susceptibility to antibiotics, (ii) the secretion of virulence factors, the motility, biofilm formation, and (iii) the inflammatory response. mlaA deletion in P. aeruginosa ATCC27853 results in phenotypic changes including, an increase in fluoroquinolones susceptibility and in PQS (Pseudomonas Quinolone Signal) and TNF-α release and a decrease in rhamnolipids secretion, motility and biofilm formation. Investigating how the mlaA knockout impacts on antibiotic susceptibility, bacterial virulence and innate immune response will help to elucidate the biological significance of the Mla system and contribute to the understanding of MlaA in P. aeruginosa OM asymmetry.
Collapse
Affiliation(s)
- M Kaur
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| | - J M Buyck
- University of Poitiers, INSERM U1070, Poitiers, France.
| | - F Goormaghtigh
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| | - J-L Decout
- Université Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire, Rue de la Chimie, F-38041 Grenoble, France.
| | - N Mozaheb
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| | - M-P Mingeot-Leclercq
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| |
Collapse
|
13
|
Noel HR, Keerthi S, Ren X, Winkelman JD, Troutman JM, Palmer LD. Genetic synergy in Acinetobacter baumannii undecaprenyl biosynthesis and maintenance of lipid asymmetry impacts outer membrane and antimicrobial resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.556980. [PMID: 37790371 PMCID: PMC10542541 DOI: 10.1101/2023.09.22.556980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Acinetobacter baumannii is a Gram-negative healthcare-associated pathogen that poses a major health concern due to increasing multidrug resistance. The Gram-negative cell envelope is a key barrier to antimicrobial entry and includes an inner and outer membrane. The outer membrane has an asymmetric composition that is important for structural integrity and barrier to the environment. Therefore, Gram-negative bacteria have mechanisms to uphold this asymmetry such as the maintenance of lipid asymmetry system (Mla), which removes glycerophospholipids from the outer leaflet of the outer membrane and transports them to the inner membrane. Loss of this system in A. baumannii results in attenuated virulence and increased susceptibility to membrane stressors and some antibiotics. We recently reported two strain variants of the A. baumannii type strain ATCC 17978, 17978VU and 17978UN. We show here that ΔmlaF mutants in the two strains display different phenotypes for membrane stress resistance, antibiotic resistance, and pathogenicity in a murine pneumonia model. We used comparative genetics to identify interactions between ATCC 17978 strain alleles and mlaF to uncover the cause behind the phenotypic differences. Although allele differences in obgE were previously reported to synergize with ΔmlaF to affect growth and stringent response, we show that obgE alleles do not affect membrane stress resistance. Instead, a single nucleotide polymorphism (SNP) in the essential gene encoding undecaprenyl pyrophosphate (Und-PP) synthase, uppS, synergizes with ΔmlaF to increase susceptibility to membrane stress and antibiotics, and reduce persistence in a mouse lung infection. Und-P is a lipid glycan carrier known to be required for biosynthesis of A. baumannii capsule, cell wall, and glycoproteins. Our data suggest that in the absence of the Mla system, the cellular level of Und-P is critical for envelope integrity, antibiotic resistance, and lipooligosaccharide abundance. These findings uncover synergy between Und-P and the Mla system in maintaining the A. baumannii outer membrane and stress resistance.
Collapse
Affiliation(s)
- Hannah R. Noel
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Sowmya Keerthi
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC, USA
| | - Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Jerry M. Troutman
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
de Jonge EF, Vogrinec L, van Boxtel R, Tommassen J. Inactivation of the Mla system and outer-membrane phospholipase A results in disrupted outer-membrane lipid asymmetry and hypervesiculation in Bordetella pertussis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100172. [DOI: 10.1016/j.crmicr.2022.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Knockout of mlaA increases Escherichia coli virulence in a silkworm infection model. PLoS One 2022; 17:e0270166. [PMID: 35830444 PMCID: PMC9278758 DOI: 10.1371/journal.pone.0270166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
The mlaA gene encodes a lipoprotein to maintain an outer membrane lipid asymmetry in gram-negative bacteria. Although the role of mlaA in bacterial virulence has been studied in several bacterial species, there are no reports of its role in E. coli virulence. In this study, we found that knockout of mlaA in E. coli increased its virulence against silkworms. The mlaA-knockout mutant was sensitive to several antibiotics and detergents, but resistant to vancomycin and chlorhexidine. The mlaA-knockout mutant grew faster than the parent strain in the presence of silkworm hemolymph. The mlaA-knockout mutant also produced a larger amount of outer membrane vesicles than the parent strain. These findings suggest that mlaA knockout causes E. coli resistance to specific antimicrobial substances and increases outer membrane vesicle production, thereby enhancing E. coli virulence properties in the silkworm infection model.
Collapse
|
16
|
A New Class of Cell Wall-Recycling l,d-Carboxypeptidase Determines β-Lactam Susceptibility and Morphogenesis in Acinetobacter baumannii. mBio 2021; 12:e0278621. [PMID: 34872350 PMCID: PMC8649774 DOI: 10.1128/mbio.02786-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hospital-acquired pathogen Acinetobacter baumannii possesses a complex cell envelope that is key to its multidrug resistance and virulence. The bacterium, however, lacks many canonical enzymes that build the envelope in model organisms. Instead, A. baumannii contains a number of poorly annotated proteins that may allow alternative mechanisms of envelope biogenesis. We demonstrated previously that one of these unusual proteins, ElsL, is required for maintaining a characteristic short rod shape and for withstanding antibiotics that attack the septal cell wall. Curiously, ElsL is composed of a leaderless YkuD-family domain usually found in secreted, cell wall-modifying l,d-transpeptidases (LDTs). Here, we show that, rather than being an LDT, ElsL is actually a new class of cytoplasmic l,d-carboxypeptidase (LDC) that provides a critical step in cell wall recycling previously thought to be missing from A. baumannii. Absence of ElsL impairs cell wall integrity, morphology, and intrinsic resistance due to buildup of murein tetrapeptide precursors, toxicity of which is bypassed by preventing muropeptide recycling. Multiple pathways in the cell become sites of vulnerability when ElsL is inactivated, including l,d-cross-link formation, cell division, and outer membrane lipid homoeostasis, reflecting its pleiotropic influence on envelope physiology. We thus reveal a novel class of cell wall-recycling LDC critical to growth and homeostasis of A. baumannii and likely many other bacteria.
Collapse
|
17
|
Laumen JGE, Van Dijck C, Manoharan-Basil SS, Abdellati S, De Baetselier I, Cuylaerts V, De Block T, Van den Bossche D, Xavier BB, Malhotra-Kumar S, Kenyon C. Sub-Inhibitory Concentrations of Chlorhexidine Induce Resistance to Chlorhexidine and Decrease Antibiotic Susceptibility in Neisseria gonorrhoeae. Front Microbiol 2021; 12:776909. [PMID: 34899659 PMCID: PMC8660576 DOI: 10.3389/fmicb.2021.776909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives: Chlorhexidine digluconate (chlorhexidine) and Listerine® mouthwashes are being promoted as alternative treatment options to prevent the emergence of antimicrobial resistance in Neisseria gonorrhoeae. We performed in vitro challenge experiments to assess induction and evolution of resistance to these two mouthwashes and potential cross-resistance to other antimicrobials. Methods: A customized morbidostat was used to subject N. gonorrhoeae reference strain WHO-F to dynamically sustained Listerine® or chlorhexidine pressure for 18 days and 40 days, respectively. Cultures were sampled twice a week and minimal inhibitory concentrations (MICs) of Listerine®, chlorhexidine, ceftriaxone, ciprofloxacin, cefixime and azithromycin were determined using the agar dilution method. Isolates with an increased MIC for Listerine® or chlorhexidine were subjected to whole genome sequencing to track the evolution of resistance. Results: We were unable to increase MICs for Listerine®. Three out of five cultures developed a 10-fold increase in chlorhexidine MIC within 40 days compared to baseline (from 2 to 20 mg/L). Increases in chlorhexidine MIC were positively associated with increases in the MICs of azithromycin and ciprofloxacin. Low-to-higher-level chlorhexidine resistance (2–20 mg/L) was associated with mutations in NorM. Higher-level resistance (20 mg/L) was temporally associated with mutations upstream of the MtrCDE efflux pump repressor (mtrR) and the mlaA gene, part of the maintenance of lipid asymmetry (Mla) system. Conclusion: Exposure to sub-lethal chlorhexidine concentrations may not only enhance resistance to chlorhexidine itself but also cross-resistance to other antibiotics in N. gonorrhoeae. This raises concern regarding the widespread use of chlorhexidine as an oral antiseptic, for example in the field of dentistry.
Collapse
Affiliation(s)
- Jolein G E Laumen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - Saïd Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Irith De Baetselier
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Vicky Cuylaerts
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tessa De Block
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dorien Van den Bossche
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Basil B Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Dell’Annunziata F, Folliero V, Giugliano R, De Filippis A, Santarcangelo C, Izzo V, Daglia M, Galdiero M, Arciola CR, Franci G. Gene Transfer Potential of Outer Membrane Vesicles of Gram-Negative Bacteria. Int J Mol Sci 2021; 22:ijms22115985. [PMID: 34205995 PMCID: PMC8198371 DOI: 10.3390/ijms22115985] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
The increasing spread of multidrug-resistant pathogenic bacteria is one of the major threats to public health worldwide. Bacteria can acquire antibiotic resistance and virulence genes through horizontal gene transfer (HGT). A novel horizontal gene transfer mechanism mediated by outer membrane vesicles (OMVs) has been recently identified. OMVs are rounded nanostructures released during their growth by Gram-negative bacteria. Biologically active toxins and virulence factors are often entrapped within these vesicles that behave as molecular carriers. Recently, OMVs have been reported to contain DNA molecules, but little is known about the vesicle packaging, release, and transfer mechanisms. The present review highlights the role of OMVs in HGT processes in Gram-negative bacteria.
Collapse
Affiliation(s)
- Federica Dell’Annunziata
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.); (V.F.); (R.G.); (A.D.F.); (M.G.)
| | - Veronica Folliero
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.); (V.F.); (R.G.); (A.D.F.); (M.G.)
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.); (V.F.); (R.G.); (A.D.F.); (M.G.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.); (V.F.); (R.G.); (A.D.F.); (M.G.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy; (C.S.); (M.D.)
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, 84081 Salerno, Italy;
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy; (C.S.); (M.D.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.D.); (V.F.); (R.G.); (A.D.F.); (M.G.)
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
- Correspondence: (C.R.A.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, 84081 Salerno, Italy;
- Correspondence: (C.R.A.); (G.F.)
| |
Collapse
|
19
|
Abstract
The outer membrane of Gram-negative bacteria is essential for their survival in harsh environments and provides intrinsic resistance to many antibiotics. This membrane is remarkable; it is a highly asymmetric lipid bilayer. The inner leaflet of the outer membrane contains phospholipids, whereas the fatty acyl chains attached to lipopolysaccharide (LPS) comprise the hydrophobic portion of the outer leaflet. This lipid asymmetry, and in particular the exclusion of phospholipids from the outer leaflet, is key to creating an almost impenetrable barrier to hydrophobic molecules that can otherwise pass through phospholipid bilayers. It has long been known that these lipids are not made in the outer membrane. It is now believed that conserved multisubunit protein machines extract these lipids after their synthesis is completed at the inner membrane and transport them to the outer membrane. A longstanding question is how the cell builds and maintains this asymmetric lipid bilayer in coordination with the assembly of the other components of the cell envelope. This Review describes the trans-envelope lipid transport systems that have been identified to participate in outer-membrane biogenesis: LPS transport via the Lpt machine, and phospholipid transport via the Mla pathway and several recently proposed transporters.
Collapse
Affiliation(s)
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
20
|
The Pseudomonas aeruginosa substrate-binding protein Ttg2D functions as a general glycerophospholipid transporter across the periplasm. Commun Biol 2021; 4:448. [PMID: 33837253 PMCID: PMC8035174 DOI: 10.1038/s42003-021-01968-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
In Pseudomonas aeruginosa, Ttg2D is the soluble periplasmic phospholipid-binding component of an ABC transport system thought to be involved in maintaining the asymmetry of the outer membrane. Here we use the crystallographic structure of Ttg2D at 2.5 Å resolution to reveal that this protein can accommodate four acyl chains. Analysis of the available structures of Ttg2D orthologs shows that they conform a new substrate-binding-protein structural cluster. Native and denaturing mass spectrometry experiments confirm that Ttg2D, produced both heterologously and homologously and isolated from the periplasm, can carry two diacyl glycerophospholipids as well as one cardiolipin. Binding is notably promiscuous, allowing the transport of various molecular species. In vitro binding assays coupled to native mass spectrometry show that binding of cardiolipin is spontaneous. Gene knockout experiments in P. aeruginosa multidrug-resistant strains reveal that the Ttg2 system is involved in low-level intrinsic resistance against certain antibiotics that use a lipid-mediated pathway to permeate through membranes. Yero et al. elucidate the function of Ttg2D, a Pseudomonas aeruginosa periplasmic protein, in maintaining phospholipid asymmetry between the outer and inner membrane. Gram negative bacteria have inner and outer membranes that differ in phospholipd composition. Using X-ray crystallography and mass spectrometry, the authors show that Ttg2D can carry two diacyl glycerophospholipids or a cardiolipin. The authors also identify a role for Ttg2D in resistance against antibiotics that use a lipid-mediated pathway into the cell.
Collapse
|
21
|
Bitto NJ, Cheng L, Johnston EL, Pathirana R, Phan TK, Poon IKH, O'Brien‐Simpson NM, Hill AF, Stinear TP, Kaparakis‐Liaskos M. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles 2021; 10:e12080. [PMID: 33815695 PMCID: PMC8015888 DOI: 10.1002/jev2.12080] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to biological functions, our knowledge regarding their composition and immunogenicity remains limited. Here we examine the morphology, contents and immunostimulatory functions of MVs produced by three Staphylococcus aureus strains; a methicillin resistant clinical isolate, a methicillin sensitive clinical isolate and a laboratory-adapted strain. We observed differences in the number and morphology of MVs produced by each strain and showed that they contain microbe-associated molecular patterns (MAMPs) including protein, nucleic acids and peptidoglycan. Analysis of MV-derived RNA indicated the presence of small RNA (sRNA). Furthermore, we detected variability in the amount and composition of protein, nucleic acid and peptidoglycan cargo carried by MVs from each S. aureus strain. S. aureus MVs activated Toll-like receptor (TLR) 2, 7, 8, 9 and nucleotide-binding oligomerization domain containing protein 2 (NOD2) signalling and promoted cytokine and chemokine release by epithelial cells, thus identifying that MV-associated MAMPs including DNA, RNA and peptidoglycan are detected by pattern recognition receptors (PRRs). Moreover, S. aureus MVs induced the formation of and colocalized with autophagosomes in epithelial cells, while inhibition of lysosomal acidification using bafilomycin A1 resulted in accumulation of autophagosomal puncta that colocalized with MVs, revealing the ability of the host to degrade MVs via autophagy. This study reveals the ability of DNA, RNA and peptidoglycan associated with MVs to activate PRRs in host epithelial cells, and their intracellular degradation via autophagy. These findings advance our understanding of the immunostimulatory roles of Gram-positive bacterial MVs in mediating pathogenesis, and their intracellular fate within the host.
Collapse
Affiliation(s)
- Natalie J. Bitto
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Lesley Cheng
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Ella L. Johnston
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Rishi Pathirana
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Thanh Kha Phan
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Ivan K. H. Poon
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Neil M. O'Brien‐Simpson
- Centre for Oral Health ResearchMelbourne Dental SchoolBio21 InstituteThe University of MelbourneParkvilleVictoria3010Australia
| | - Andrew F. Hill
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Timothy P. Stinear
- Department of Microbiology and ImmunologyDoherty InstituteUniversity of MelbourneParkvilleVictoria3010Australia
| | - Maria Kaparakis‐Liaskos
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| |
Collapse
|
22
|
Comprehensive Bioinformatic Assessments of the Variability of Neisseria gonorrhoeae Vaccine Candidates. mSphere 2021; 6:6/1/e00977-20. [PMID: 33536323 PMCID: PMC7860988 DOI: 10.1128/msphere.00977-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A protective vaccine is the only viable way to stop the spread of gonorrhea in the face of rising antibiotic resistance. However, the notorious phase and antigenic variation of Neisseria gonorrhoeae surface proteins remains one of the challenges in vaccine development. To facilitate vaccine advancement efforts, we carried out comprehensive bioinformatic analyses of sequence variation by comparing 34 gonorrhea antigen candidates among >5,000 clinical N. gonorrhoeae isolates deposited in the Neisseria PubMLST database. Eight protein antigens showed exceptional conservation by having a single allele variant distributed in >80% of isolates. An additional 18 vaccine candidates were represented by ≤3 alleles in >50% of N. gonorrhoeae isolates globally. Phylogenetic analyses highlighted closely related antigen variants and additionally showed that AniA and FetB were the closest between N. gonorrhoeae and N. meningitidis Up to 44% of N. meningitidis alleles for both antigens have premature stop codons, suggesting differential expression. Mapping polymorphisms to the available three-dimensional structures of 12 antigens revealed low-frequency surface polymorphisms. PorB and TbpB possessed numerous high-prevalence polymorphic sites. While TbpA was also highly variable, conserved loops were nonetheless identified. A high degree of sequence conservation, the distribution of a single antigen variant among N. gonorrhoeae strains globally, or low-frequency sequence polymorphisms in surface loops make ACP, AniA, BamA, BamE, MtrE, NspA, NGO0778, NGO1251, NGO1985, OpcA, PldA, Slam2, and ZnuD promising candidates for a gonorrhea vaccine. Finally, the commonly used N. gonorrhoeae FA1090 strain emerges as a vaccine prototype, as it carries antigen sequence types identical to the most broadly distributed antigen variants.IMPORTANCE Neisseria gonorrhoeae, the Gram-negative bacterium responsible for the sexually transmitted infection gonorrhea, is categorized as a high-priority pathogen for research and development efforts. N. gonorrhoeae's "superbug" status, its high morbidity, and the serious health impact associated with gonorrhea highlight the importance of vaccine development. One of the longstanding barriers to developing an effective vaccine against N. gonorrhoeae is the remarkable variability of surface-exposed antigens. In this report, we addressed this roadblock by applying extensive bioinformatic analyses to 34 gonorrhea antigen candidates among >5,000 clinical N. gonorrhoeae isolates. Our studies are important, as they reveal promising, conserved gonorrhea vaccine candidates and aid structural vaccinology. Moreover, these approaches are broadly applicable to other infectious diseases where surface antigen variability impedes successful vaccine design.
Collapse
|
23
|
Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB. Nat Struct Mol Biol 2020; 28:81-91. [PMID: 33199922 DOI: 10.1038/s41594-020-00532-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023]
Abstract
The highly asymmetric outer membrane of Gram-negative bacteria functions in the defense against cytotoxic substances, such as antibiotics. The Mla pathway maintains outer membrane lipid asymmetry by transporting phospholipids between the inner and outer membranes. It comprises six Mla proteins, MlaFEDBCA, including the ABC transporter MlaFEDB, which functions via an unknown mechanism. Here we determine cryo-EM structures of Escherichia coli MlaFEDB in an apo state and bound to phospholipid, ADP or AMP-PNP to a resolution of 3.3-4.1 Å and establish a proteoliposome-based transport system that includes MlaFEDB, MlaC and MlaA-OmpF to monitor the transport direction of phospholipids. In vitro transport assays and in vivo membrane permeability assays combined with mutagenesis identify functional residues that not only recognize and transport phospholipids but also regulate the activity and structural stability of the MlaFEDB complex. Our results provide mechanistic insights into the Mla pathway, which could aid antimicrobial drug development.
Collapse
|
24
|
Abstract
Most bacterial species express one or more extracellular organelles called pili/fimbriae that are required for many properties of each bacterial cell. The Neisseria gonorrhoeae type IV pilus is a major virulence and colonization factor for the sexually transmitted infection gonorrhea. We have discovered a new protein of Neisseria gonorrhoeae called TfpC that is required to maintain type IV pili on the bacterial cell surface. There are similar proteins found in other members of the Neisseria genus and many other bacterial species important for human health. Neisseria gonorrhoeae relies on type IV pili (T4p) to promote colonization of their human host and to cause the sexually transmitted infection gonorrhea. This organelle cycles through a process of extension and retraction back into the bacterial cell. Through a genetic screen, we identified the NGO0783 locus of N. gonorrhoeae strain FA1090 as containing a gene encoding a protein required to stabilize the type IV pilus in its extended, nonretracted conformation. We have named the gene tfpC and the protein TfpC. Deletion of tfpC produces a nonpiliated colony morphology, and immuno-transmission electron microscopy confirms that the pili are lost in the ΔtfpC mutant, although there is some pilin detected near the bacterial cell surface. A copy of the tfpC gene expressed from a lac promoter restores pilus expression and related phenotypes. A ΔtfpC mutant shows reduced levels of pilin protein, but complementation with a tfpC gene restored pilin to normal levels. Bioinformatic searches show that there are orthologues in numerous bacterial species, but not all type IV pilin-expressing bacteria contain orthologous genes. Coevolution and nuclear magnetic resonance (NMR) analysis indicates that TfpC contains an N-terminal transmembrane helix, a substantial extended/unstructured region, and a highly charged C-terminal coiled-coil domain.
Collapse
|
25
|
Palmer LD, Minor KE, Mettlach JA, Rivera ES, Boyd KL, Caprioli RM, Spraggins JM, Dalebroux ZD, Skaar EP. Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress. Cell Rep 2020; 32:108129. [PMID: 32905776 PMCID: PMC7519801 DOI: 10.1016/j.celrep.2020.108129] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia and a critical threat due to multidrug resistance. The A. baumannii outer membrane is an asymmetric lipid bilayer composed of inner leaflet glycerophospholipids and outer leaflet lipooligosaccharides. Deleting mlaF of the maintenance of lipid asymmetry (Mla) system causes A. baumannii to become more susceptible to pulmonary surfactants and antibiotics and decreases bacterial survival in the lungs of mice. Spontaneous suppressor mutants isolated from infected mice contain an ISAba11 insertion upstream of the ispB initiation codon, an essential isoprenoid biosynthesis gene. The insertion restores antimicrobial resistance and virulence to ΔmlaF. The suppressor strain increases lipooligosaccharides, suggesting that the mechanism involves balancing the glycerophospholipids/lipooligosaccharides ratio on the bacterial surface. An identical insertion exists in an extensively drug-resistant A. baumannii isolate, demonstrating its clinical relevance. These data show that the stresses bacteria encounter during infection select for genomic rearrangements that increase resistance to antimicrobials.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Keaton E Minor
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joshua A Mettlach
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Emilio S Rivera
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Zachary D Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Powers MJ, Simpson BW, Trent MS. The Mla pathway in Acinetobacter baumannii has no demonstrable role in anterograde lipid transport. eLife 2020; 9:56571. [PMID: 32880370 PMCID: PMC7500953 DOI: 10.7554/elife.56571] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The asymmetric outer membrane (OM) of Gram-negative bacteria functions as a selective permeability barrier to the environment. Perturbations to OM lipid asymmetry sensitize the cell to antibiotics. As such, mechanisms involved in lipid asymmetry are fundamental to our understanding of OM lipid homeostasis. One such mechanism, the Maintenance of lipid asymmetry (Mla) pathway has been proposed to extract mislocalized glycerophospholipids from the outer leaflet of the OM and return them to the inner membrane (IM). Work on this pathway in Acinetobacter baumannii support conflicting models for the directionality of the Mla system being retrograde (OM to IM) or anterograde (IM to OM). Here, we show conclusively that A. baumannii mla mutants exhibit no defects in anterograde transport. Furthermore, we identify an allele of the GTPase obgE that is synthetically sick in the absence of Mla; providing another link between cell envelope homeostasis and stringent response.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, United States.,Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, United States
| | - Brent W Simpson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, United States
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, United States.,Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, United States
| |
Collapse
|
27
|
Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infect Immun 2020; 88:IAI.00920-19. [PMID: 32253250 DOI: 10.1128/iai.00920-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM's ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation.
Collapse
|
28
|
Batista JH, Leal FC, Fukuda TTH, Alcoforado Diniz J, Almeida F, Pupo MT, da Silva Neto JF. Interplay between two quorum sensing-regulated pathways, violacein biosynthesis and VacJ/Yrb, dictates outer membrane vesicle biogenesis in Chromobacterium violaceum. Environ Microbiol 2020; 22:2432-2442. [PMID: 32329144 DOI: 10.1111/1462-2920.15033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Outer membrane vesicles (OMVs) are lipid nanoparticles released by Gram-negative bacteria, which play multiple roles in bacterial physiology and adaptation to diverse environments. In this work, we demonstrate that OMVs released by the environmental pathogen Chromobacterium violaceum deliver the antimicrobial compound violacein to competitor bacteria, mediating its toxicity in vivo at a long distance. OMVs purified by ultracentrifugation from the wild-type strain, but not from a violacein-abrogated mutant ΔvioABCDE, contained violacein and inhibited several Gram-positive bacteria. Competition tests using co-culture and transwell assays indicated that the C. violaceum wild-type strain killed Staphylococcus aureus better than the ΔvioABCDE mutant strain. We found that C. violaceum achieves growth phase-dependent OMV release by the concerted expression of two quorum sensing (QS)-regulated pathways, namely violacein biosynthesis and VacJ/Yrb system. Although both pathways were activated at high cell density in a QS-dependent manner, the effect on vesiculation was the opposite. While the ΔvioABCDE mutant produced twofold fewer vesicles than the wild-type strain, indicating that violacein induces OMV biogenesis for its own delivery, the ΔvacJ and ΔyrbE mutants were hypervesiculating strains. Our findings uncovered QS-regulated pathways involved in OMV biogenesis used by C. violaceum to package violacein into OMVs for interbacterial competition.
Collapse
Affiliation(s)
- Juliana H Batista
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda C Leal
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Taise T H Fukuda
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Alcoforado Diniz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mônica T Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
29
|
Verma S, Prescott RA, Ingano L, Nickerson KP, Hill E, Faherty CS, Fasano A, Senger S, Cherayil BJ. The YrbE phospholipid transporter of Salmonella enterica serovar Typhi regulates the expression of flagellin and influences motility, adhesion and induction of epithelial inflammatory responses. Gut Microbes 2020; 11:526-538. [PMID: 31829769 PMCID: PMC7527071 DOI: 10.1080/19490976.2019.1697593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
serovar Typhi is the etiologic agent of typhoid fever, a major public health problem in the developing world. Moving toward and adhering to the intestinal epithelium represents key initial steps of infection by S. Typhi. We examined the role of the S. Typhi yrbE gene, which encodes an inner membrane phospholipid transporter, in these interactions with epithelial cells. Disruption of yrbE resulted in elevated expression of flagellin and a hypermotile phenotype. It also significantly reduced the ability of S. Typhi to adhere to the HeLa epithelial cell line and to polarized primary epithelial cells derived from human ileal organoids. Interestingly, the yrbE-deficient strain of S. Typhi induced higher production of interleukin-8 from the primary human ileal epithelial cell monolayers compared to the wild-type bacteria. Deletion of the flagellin gene (fliC) in the yrbE-deficient S. Typhi inhibited motility and attenuated interleukin-8 production, but it did not correct the defect in adhesion. We also disrupted yrbE in S. Typhimurium. In contrast to the results in S. Typhi, the deficiency of yrbE in S. Typhimurium had no significant effect on flagellin expression, motility or adhesion to HeLa cells. Correspondingly, the lack of yrbE also had no effect on association with the intestine or the severity of intestinal inflammation in the mouse model of S. Typhimurium infection. Thus, our results point to an important and serovar-specific role played by yrbE in the early stages of intestinal infection by S. Typhi.
Collapse
Affiliation(s)
- Smriti Verma
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rachel A. Prescott
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Laura Ingano
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kourtney P. Nickerson
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Emily Hill
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA,CONTACT Bobby J. Cherayil Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
30
|
Diao N, Yan G, Yang Y, Dong Y, Wang Y, Gu W. Comparative Proteomics of Extended-Spectrum Cephalosporin-Resistant Neisseria gonorrhoeae Isolates Demonstrates Altered Protein Synthesis, Metabolism, Substance Transport, and Membrane Permeability. Front Microbiol 2020; 11:169. [PMID: 32140142 PMCID: PMC7042406 DOI: 10.3389/fmicb.2020.00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Neisseria gonorrhoeae isolates exhibit resistance to extended-spectrum cephalosporins (ESCs), the last remaining option for first-line empirical monotherapy. Here, we investigated the proteomic profiles of N. gonorrhoeae clinical isolates with ESC-resistance to support exploration of the antimicrobial resistance mechanisms for N. gonorrhoeae. We used comparative iTRAQ quantitative proteomics to investigate differential protein expression of three ESC-resistant N. gonorrhoeae clinical isolates using N. gonorrhoeae ATCC49226 as a reference strain. The expression of 40 proteins was downregulated and expression of 56 proteins was upregulated in all three ESC-resistant N. gonorrhoeae isolates. Proteins with predicted function of translation, ribosomal structure and biogenesis, as well as components of the Type IV secretory systems, were significantly upregulated. Two differentially expressed proteins of ABC transporters were also reported by other teams in proteomics studies of N. gonorrhoeae isolates under antimicrobial stress conditions. Differentially expressed proteins are involved in energy production and metabolism of carbohydrates and amino acids. Our results indicated that amino acid and carbohydrate metabolism, cell membrane structure, interbacterial DNA transfer, and ribosome components might be involved in mediating ESC-resistance in N. gonorrhoeae. These findings facilitate a better understanding of the mechanisms of ESC-resistance in N. gonorrhoeae and provide useful information for identifying novel targets in the development of antimicrobials against N. gonorrhoeae.
Collapse
Affiliation(s)
- Nannan Diao
- Department of Clinical Laboratory, Shanghai Skin Disease Hospital, Shanghai, China
| | - Guoquan Yan
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Yang Yang
- Department of Clinical Laboratory, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yuan Dong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Ying Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Weiming Gu
- Department of Clinical Laboratory, Shanghai Skin Disease Hospital, Shanghai, China
| |
Collapse
|
31
|
Intermembrane transport: Glycerophospholipid homeostasis of the Gram-negative cell envelope. Proc Natl Acad Sci U S A 2019; 116:17147-17155. [PMID: 31420510 PMCID: PMC6717313 DOI: 10.1073/pnas.1902026116] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This perspective addresses recent advances in lipid transport across the Gram-negative inner and outer membranes. While we include a summary of previously existing literature regarding this topic, we focus on the maintenance of lipid asymmetry (Mla) pathway. Discovered in 2009 by the Silhavy group [J. C. Malinverni, T. J. Silhavy, Proc. Natl. Acad. Sci. U.S.A. 106, 8009–8014 (2009)], Mla has become increasingly appreciated for its role in bacterial cell envelope physiology. Through the work of many, we have gained an increasingly mechanistic understanding of the function of Mla via genetic, biochemical, and structural methods. Despite this, there is a degree of controversy surrounding the directionality in which Mla transports lipids. While the initial discovery and subsequent studies have posited that it mediated retrograde lipid transport (removing glycerophospholipids from the outer membrane and returning them to the inner membrane), others have asserted the opposite. This Perspective aims to lay out the evidence in an unbiased, yet critical, manner for Mla-mediated transport in addition to postulation of mechanisms for anterograde lipid transport from the inner to outer membranes.
Collapse
|