1
|
Sridhar S, Zhou Y, Ibrahim A, Bertazzo S, Wyss T, Swain A, Maheshwari U, Huang SF, Colonna M, Keller A. Targeting TREM2 signaling shows limited impact on cerebrovascular calcification. Life Sci Alliance 2025; 8:e202402796. [PMID: 39467636 PMCID: PMC11519321 DOI: 10.26508/lsa.202402796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Brain calcification, the ectopic mineral deposits of calcium phosphate, is a frequent radiological finding and a diagnostic criterion for primary familial brain calcification. We previously showed that microglia curtail the growth of small vessel calcification via the triggering receptor expressed in myeloid 2 (TREM2) in the Pdgfb ret/ret mouse model of primary familial brain calcification. Because boosting TREM2 function using activating antibodies has been shown to be beneficial in other disease conditions by aiding in microglial clearance of diverse pathologies, we investigated whether administration of a TREM2-activating antibody could mitigate vascular calcification in Pdgfb ret/ret mice. Single-nucleus RNA-sequencing analysis showed that calcification-associated microglia share transcriptional similarities to disease-associated microglia and exhibited activated TREM2 and TGFβ signaling. Administration of a TREM2-activating antibody increased TREM2-dependent microglial deposition of cathepsin K, a collagen-degrading protease, onto calcifications. However, this did not ameliorate the calcification load or alter the mineral composition and the microglial phenotype around calcification. We therefore conclude that targeting microglia with TREM2 agonistic antibodies is insufficient to demineralize and clear vascular calcifications.
Collapse
Affiliation(s)
- Sucheta Sridhar
- https://ror.org/02crff812 Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- https://ror.org/02crff812 Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Adiljan Ibrahim
- https://ror.org/03vagve85 Alector, South San Francisco, CA, USA
| | - Sergio Bertazzo
- https://ror.org/02jx3x895 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tania Wyss
- TDS-facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Upasana Maheshwari
- https://ror.org/02crff812 Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sheng-Fu Huang
- https://ror.org/02crff812 Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Annika Keller
- https://ror.org/02crff812 Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- https://ror.org/02crff812 Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Kushwaha R, Li Y, Makarava N, Pandit NP, Molesworth K, Birukov KG, Baskakov IV. Reactive astrocytes associated with prion disease impair the blood brain barrier. Neurobiol Dis 2023; 185:106264. [PMID: 37597815 PMCID: PMC10494928 DOI: 10.1016/j.nbd.2023.106264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Impairment of the blood-brain barrier (BBB) is considered to be a common feature among neurodegenerative diseases, including Alzheimer's, Parkinson's and prion diseases. In prion disease, increased BBB permeability was reported 40 years ago, yet the mechanisms behind the loss of BBB integrity have never been explored. Recently, we showed that reactive astrocytes associated with prion diseases are neurotoxic. The current work examines the potential link between astrocyte reactivity and BBB breakdown. RESULTS In prion-infected mice, the loss of BBB integrity and aberrant localization of aquaporin 4 (AQP4), a sign of retraction of astrocytic endfeet from blood vessels, were noticeable prior to disease onset. Gaps in cell-to-cell junctions along blood vessels, together with downregulation of Occludin, Claudin-5 and VE-cadherin, which constitute tight and adherens junctions, suggested that loss of BBB integrity is linked with degeneration of vascular endothelial cells. In contrast to cells isolated from non-infected adult mice, endothelial cells originating from prion-infected mice displayed disease-associated changes, including lower levels of Occludin, Claudin-5 and VE-cadherin expression, impaired tight and adherens junctions, and reduced trans-endothelial electrical resistance (TEER). Endothelial cells isolated from non-infected mice, when co-cultured with reactive astrocytes isolated from prion-infected animals or treated with media conditioned by the reactive astrocytes, developed the disease-associated phenotype observed in the endothelial cells from prion-infected mice. Reactive astrocytes were found to produce high levels of secreted IL-6, and treatment of endothelial monolayers originating from non-infected animals with recombinant IL-6 alone reduced their TEER. Remarkably, treatment with extracellular vesicles produced by normal astrocytes partially reversed the disease phenotype of endothelial cells isolated from prion-infected animals. CONCLUSIONS To our knowledge, the current work is the first to illustrate early BBB breakdown in prion disease and to document that reactive astrocytes associated with prion disease are detrimental to BBB integrity. Moreover, our findings suggest that the harmful effects are linked to proinflammatory factors secreted by reactive astrocytes.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Yue Li
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Narayan P Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Konstantin G Birukov
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| |
Collapse
|
3
|
Kushwaha R, Li Y, Makarava N, Pandit NP, Molesworth K, Birukov KG, Baskakov IV. Reactive astrocytes associated with prion disease impair the blood brain barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533684. [PMID: 36993690 PMCID: PMC10055297 DOI: 10.1101/2023.03.21.533684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Background Impairment of the blood-brain barrier (BBB) is considered to be a common feature among neurodegenerative diseases, including Alzheimer's, Parkinson's and prion diseases. In prion disease, increased BBB permeability was reported 40 years ago, yet the mechanisms behind the loss of BBB integrity have never been explored. Recently, we showed that reactive astrocytes associated with prion diseases are neurotoxic. The current work examines the potential link between astrocyte reactivity and BBB breakdown. Results In prion-infected mice, the loss of BBB integrity and aberrant localization of aquaporin 4 (AQP4), a sign of retraction of astrocytic endfeet from blood vessels, were noticeable prior to disease onset. Gaps in cell-to-cell junctions along blood vessels, together with downregulation of Occludin, Claudin-5 and VE-cadherin, which constitute tight and adherens junctions, suggested that loss of BBB integrity is linked with degeneration of vascular endothelial cells. In contrast to cells isolated from non-infected adult mice, endothelial cells originating from prion-infected mice displayed disease-associated changes, including lower levels of Occludin, Claudin-5 and VE-cadherin expression, impaired tight and adherens junctions, and reduced trans-endothelial electrical resistance (TEER). Endothelial cells isolated from non-infected mice, when co-cultured with reactive astrocytes isolated from prion-infected animals or treated with media conditioned by the reactive astrocytes, developed the disease-associated phenotype observed in the endothelial cells from prion-infected mice. Reactive astrocytes were found to produce high levels of secreted IL-6, and treatment of endothelial monolayers originating from non-infected animals with recombinant IL-6 alone reduced their TEER. Remarkably, treatment with extracellular vesicles produced by normal astrocytes partially reversed the disease phenotype of endothelial cells isolated from prion-infected animals. Conclusions To our knowledge, the current work is the first to illustrate early BBB breakdown in prion disease and to document that reactive astrocytes associated with prion disease are detrimental to BBB integrity. Moreover, our findings suggest that the harmful effects are linked to proinflammatory factors secreted by reactive astrocytes.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Yue Li
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Narayan P. Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Konstantin G. Birukov
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| |
Collapse
|
4
|
Novel regulators of PrPC biosynthesis revealed by genome-wide RNA interference. PLoS Pathog 2021; 17:e1010013. [PMID: 34705895 PMCID: PMC8575309 DOI: 10.1371/journal.ppat.1010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
The cellular prion protein PrPC is necessary for prion replication, and its reduction greatly increases life expectancy in animal models of prion infection. Hence the factors controlling the levels of PrPC may represent therapeutic targets against human prion diseases. Here we performed an arrayed whole-transcriptome RNA interference screen to identify modulators of PrPC expression. We cultured human U251-MG glioblastoma cells in the presence of 64’752 unique siRNAs targeting 21’584 annotated human genes, and measured PrPC using a one-pot fluorescence-resonance energy transfer immunoassay in 51’128 individual microplate wells. This screen yielded 743 candidate regulators of PrPC. When downregulated, 563 of these candidates reduced and 180 enhanced PrPC expression. Recursive candidate attrition through multiple secondary screens yielded 54 novel regulators of PrPC, 9 of which were confirmed by CRISPR interference as robust regulators of PrPC biosynthesis and degradation. The phenotypes of 6 of the 9 candidates were inverted in response to transcriptional activation using CRISPRa. The RNA-binding post-transcriptional repressor Pumilio-1 was identified as a potent limiter of PrPC expression through the degradation of PRNP mRNA. Because of its hypothesis-free design, this comprehensive genetic-perturbation screen delivers an unbiased landscape of the genes regulating PrPC levels in cells, most of which were unanticipated, and some of which may be amenable to pharmacological targeting in the context of antiprion therapies. The cellular prion protein (PrPC) acts as both, the substrate for prion formation and mediator of prion toxicity during the progression of all prion diseases. Suppressing the levels of PrPC is a viable therapeutic strategy as PRNP null animals are resistant to prion disease and the knockout of PRNP is not associated with any severe phenotypes. Motivated by the scarcity of knowledge regarding the molecular regulators of PrPC biosynthesis and degradation, which might serve as valuable targets to control its expression, here, we present a cell-based genome wide RNAi screen in arrayed format. The screening effort led to the identification of 54 regulators, nine of which were confirmed by an independent CRISPR-based method. Among the final nine targets, we identified PUM1 as a regulator of PRNP mRNA by acting on the 3’UTR promoting its degradation. The newly identified factors involved in the life cycle of PrPC provided by our study may also represent themselves as therapeutic targets for the intervention of prion diseases.
Collapse
|
5
|
Abstract
The CNS vasculature tightly regulates the passage of circulating molecules and leukocytes into the CNS. In the neuroinflammatory disease multiple sclerosis (MS), these regulatory mechanisms fail, and autoreactive T cells invade the CNS via blood vessels, leading to neurological deficits depending on where the lesions are located. The region-specific mechanisms directing the development of such lesions are not well understood. In this study, we investigated whether pericytes regulate CNS endothelial cell permissiveness toward leukocyte trafficking into the brain parenchyma. By using a pericyte-deficient mouse model, we show that intrinsic changes in the brain vasculature due to absence of pericytes facilitate the neuroinflammatory cascade and can influence the localization of the neuroinflammatory lesions. Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood–brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfbret/ret), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfbret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti–ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfbret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfbret/ret;2D2tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder.
Collapse
|
6
|
Abstract
Chronic wasting disease (CWD) is an emerging and fatal contagious prion disease that affects cervids, including mule deer, white-tailed deer, black-tailed deer, red deer reindeer, elk, and moose. CWD prions are widely distributed throughout the bodies of CWD-infected animals and are found in the nervous system, lymphoid tissues, muscle, blood, urine, feces, and antler velvet. The mechanism of CWD transmission in natural settings is unknown. Potential mechanisms of transmission include horizontal, maternal, or environmental routes. Due to the presence of prions in the blood of CWD-infected animals, the potential exists for invertebrates that feed on mammalian blood to contribute to the transmission of CWD. The geographic range of the Rocky Mountain Wood tick, Dermancentor andersoni, overlaps with CWD throughout the northwest United States and southwest Canada, raising the possibility that D. andersoni parasitization of cervids may be involved in CWD transmission. We investigated this possibility by examining the blood meal of D. andersoni that fed upon prion-infected hamsters for the presence of prion infectivity by animal bioassay. None of the hamsters inoculated with a D. andersoni blood meal that had been ingested from prion-infected hamsters developed clinical signs of prion disease or had evidence for a subclinical prion infection. Overall, the data do not demonstrate a role for D. andersoni in the transmission of prion disease.IMPORTANCE Chronic wasting disease (CWD) is an emerging prion disease that affects cervids, including mule deer, white-tailed deer, black-tailed deer, red deer reindeer, elk, and moose. The mechanism of CWD transmission in unknown. Due to the presence of prions in the blood of CWD-infected animals, it is possible for invertebrates that feed on cervid blood to contribute to the transmission of CWD. We examined the blood meal of D. andersoni, a tick with a similar geographic range as cervids, that fed upon prion-infected hamsters for the presence of prion infectivity by animal bioassay. None of the D. andersoni blood meals that had been ingested from prion-infected hamsters yielded evidence of prion infection. Overall, the data do not support a role of D. andersoni in the transmission of prion disease.
Collapse
|
7
|
Cain MD, Salimi H, Diamond MS, Klein RS. Mechanisms of Pathogen Invasion into the Central Nervous System. Neuron 2020; 103:771-783. [PMID: 31487528 DOI: 10.1016/j.neuron.2019.07.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/09/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
CNS infections continue to rise in incidence in conjunction with increases in immunocompromised populations or conditions that contribute to the emergence of pathogens, such as global travel, climate change, and human encroachment on animal territories. The severity and complexity of these diseases is impacted by the diversity of etiologic agents and their routes of neuroinvasion. In this review, we present historical, clinical, and molecular concepts regarding the mechanisms of pathogen invasion of the CNS. We also discuss the structural components of CNS compartments that influence pathogen entry and recent discoveries of the pathways exploited by pathogens to facilitate CNS infections. Advances in our understanding of the CNS invasion mechanisms of different neurotropic pathogens may enable the development of strategies to control their entry and deliver drugs to mitigate established infections.
Collapse
Affiliation(s)
- Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hamid Salimi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
mSphere of Influence: Clearing a Path for High-Resolution Visualization of Host-Pathogen Interactions In Vivo. mSphere 2019; 4:4/4/e00308-19. [PMID: 31292229 PMCID: PMC6620373 DOI: 10.1128/msphere.00308-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shumin Tan works in the field of Mycobacterium tuberculosis-host interactions. In this mSphere of Influence article, she reflects on how the paper "Single-cell phenotyping within transparent intact tissue through whole-body clearing" by B. Yang et al. (Cell 158:945-958, 2014, https://doi.org/10.1016/j.cell.2014.07.017) impacted her ideas on approaches to visualize and understand heterogeneous host-pathogen interactions in vivo in 3-dimensional space at the single-cell level, through the tractable and broadly compatible tissue optical clearing methods developed.
Collapse
|