1
|
Bing XL, Liang ZJ, Tian J, Gong X, Huang SQ, Chen J, Hong XY. The influence of Acetobacter pomorum bacteria on the developmental progression of Drosophila suzukii via gluconic acid secretion. Mol Ecol 2024; 33:e17202. [PMID: 37947376 DOI: 10.1111/mec.17202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Insects are rich in various microorganisms, which play diverse roles in affecting host biology. Although most Drosophila species prefer rotten fruits, the agricultural pest Drosophila suzukii attacks ripening fruits before they are harvested. We have reported that the microbiota has positive and negative impacts on the agricultural pest D. suzukii on nutrient-poor and -rich diets, respectively. On nutrient-poor diets, microbes provide protein to facilitate larval development. But how they impede D. suzukii development on nutrient-rich diets is unknown. Here we report that Acetobacter pomorum (Apo), a commensal bacterium in many Drosophila species and rotting fruit, has several detrimental effects in D. suzukii. Feeding D. suzukii larvae nutrient-rich diets containing live Apo significantly delayed larval development and reduced the body weight of emerged adults. Apo induced larval immune responses and downregulated genes of digestion and juvenile hormone metabolism. Knockdown of these genes in germ-free larvae reproduced Apo-like weakened phenotypes. Apo was confirmed to secrete substantial amounts of gluconic acid. Adding gluconic acid to the D. suzukii larval diet hindered larval growth and decreased adult body weight. Moreover, the dose of gluconic acid that adversely affected D. suzukii did not negatively affect Drosophila melanogaster, suggesting that D. suzukii is less tolerant to acid than D. melanogaster. Taken together, these findings indicate that D. suzukii is negatively affected by gluconic acid, which may explain why it prefers ripening fruit over Apo-rich rotting fruit. These results show an insect's tolerance to microbes can influence its ecological niche.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zi-Jian Liang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia Tian
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xue Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shao-Qiu Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Lei X, Zhang F, Zhang J. Gut Microbiota Accelerate the Insecticidal Activity of Plastid-Expressed Bacillus thuringiensis Cry3Bb to a Leaf Beetle, Plagiodera versicolora. Microbiol Spectr 2023; 11:e0504922. [PMID: 36976001 PMCID: PMC10101071 DOI: 10.1128/spectrum.05049-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Bacillus thuringiensis is widely used as a biopesticide, and its crystal protein expressed in transgenic crops has been successfully used for the management of insect pests. However, whether the midgut microbiota contribute to the Bt insecticidal mechanism remains controversial. We previously demonstrated that transplastomic poplar plants expressing Bt Cry3Bb are highly lethal to willow leaf beetle (Plagiodera versicolora), one of the major pests causing severe damage to Salicaceae plants such as willows and poplars. Here, we demonstrate that feeding poplar leaves expressing Cry3Bb to nonaxenic P. versicolora larvae leads to significantly accelerated mortality, and overgrowth and dysbiosis of the gut microbiota, compared with axenic larvae. Corroborating work done with Lepidopteran insects, plastid-expressed Cry3Bb can cause the lysis of the beetle's intestinal cells, lead to the entry of intestinal bacteria into the body cavity, and thus cause the dynamic changes in the flora of the midgut and blood cavity in P. versicolora. Reintroduction of Pseudomonas putida, a gut bacterium of P. versicolora, into axenic P. versicolora larvae further enhances mortality upon feeding on Cry3Bb-expressing poplar. Our results indicate the important contribution of host gut microbiota in promoting the B. thuringiensis crystal protein insecticidal activity and provide new insights into the mechanism of pest control by Bt-transplastomic approaches. IMPORTANCE The contribution of gut microbiota to Bacillus thuringiensis Cry3Bb insecticidal activity in a leaf beetle was demonstrated using transplastomic poplar plants, providing a potential new approach to improve the efficiency of plastid transformation technology for pest control by expression of Bt toxins.
Collapse
Affiliation(s)
- Xiaoyu Lei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
3
|
Vector-Borne Diseases in Ruminants. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
4
|
Dieng MM, Augustinos AA, Demirbas-Uzel G, Doudoumis V, Parker AG, Tsiamis G, Mach RL, Bourtzis K, Abd-Alla AMM. Interactions between Glossina pallidipes salivary gland hypertrophy virus and tsetse endosymbionts in wild tsetse populations. Parasit Vectors 2022; 15:447. [PMID: 36447246 PMCID: PMC9707009 DOI: 10.1186/s13071-022-05536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence. Tsetse flies can be infected with microorganisms, including the primary and obligate Wigglesworthia glossinidia, the commensal Sodalis glossinidius, and Wolbachia pipientis. In addition, tsetse populations often carry a pathogenic DNA virus, the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) that hinders tsetse fertility and fecundity. Interactions between symbionts and pathogens might affect the performance of the insect host. METHODS In the present study, we assessed associations of GpSGHV and tsetse endosymbionts under field conditions to decipher the possible bidirectional interactions in different Glossina species. We determined the co-infection pattern of GpSGHV and Wolbachia in natural tsetse populations. We further analyzed the interaction of both Wolbachia and GpSGHV infections with Sodalis and Wigglesworthia density using qPCR. RESULTS The results indicated that the co-infection of GpSGHV and Wolbachia was most prevalent in Glossina austeni and Glossina morsitans morsitans, with an explicit significant negative correlation between GpSGHV and Wigglesworthia density. GpSGHV infection levels > 103.31 seem to be absent when Wolbachia infection is present at high density (> 107.36), suggesting a potential protective role of Wolbachia against GpSGHV. CONCLUSION The result indicates that Wolbachia infection might interact (with an undefined mechanism) antagonistically with SGHV infection protecting tsetse fly against GpSGHV, and the interactions between the tsetse host and its associated microbes are dynamic and likely species specific; significant differences may exist between laboratory and field conditions.
Collapse
Affiliation(s)
- Mouhamadou M. Dieng
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Antonios A. Augustinos
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization-Demeter, 26442 Patras, Greece
| | - Güler Demirbas-Uzel
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Vangelis Doudoumis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Andrew G. Parker
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Roppersbergweg 15, 2381 Laab im Walde, Austria
| | - George Tsiamis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Robert L. Mach
- grid.5329.d0000 0001 2348 4034Institute of Chemical, Environmental, and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Kostas Bourtzis
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Adly M. M. Abd-Alla
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| |
Collapse
|
5
|
Tsakeng CUB, Tanekou TTM, Soffack SF, Tirados I, Noutchih C, Njiokou F, Bigoga JD, Wondji CS. Assessing the Tsetse Fly Microbiome Composition and the Potential Association of Some Bacteria Taxa with Trypanosome Establishment. Microorganisms 2022; 10:1141. [PMID: 35744659 PMCID: PMC9229743 DOI: 10.3390/microorganisms10061141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
The tsetse flies, biological vectors of African trypanosomes, harbour a variety of bacteria involved in their vector competence that may help in developing novel vector control tools. This study provides an inventory of tsetse bacterial communities in Cameroon and explores their possible associations with trypanosome establishment in Glossina palpalis palpalis. High throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, with subsequent metagenomic, multivariate, and association analyses, were used to investigate the levels and patterns of microbial diversity in four tsetse species. Overall, 31 bacterial genera and four phyla were identified. The primary symbiont Wigglesworthia dominated almost all the samples, with an overall relative abundance of 47.29%, and seemed to be replaced by Serratia or Burkholderia in some G. tachinoides flies. Globally, significant differences were observed in the microbiome diversity and composition among tsetse species and between teneral and non-teneral flies, or between flies displaying or not displaying mature trypanosome infections. In addition, differential abundance testing showed some OTUs, or some bacteria taxa, associated with trypanosome maturation in tsetse flies. These bacteria could be further investigated for an understanding of their mechanism of action and alternatively, transformed and used to block trypanosome development in tsetse flies.
Collapse
Affiliation(s)
- Calmes Ursain Bouaka Tsakeng
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Biological Sciences, Faculty of Science, University of Bamenda, Bamenda P.O. Box 39, Cameroon
| | - Steve Feudjio Soffack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Inaki Tirados
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK;
| | - Cedrique Noutchih
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Jude Daiga Bigoga
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK;
| |
Collapse
|
6
|
Savio C, Mugo-Kamiri L, Upfold JK. Bugs in Bugs: The Role of Probiotics and Prebiotics in Maintenance of Health in Mass-Reared Insects. INSECTS 2022; 13:376. [PMID: 35447818 PMCID: PMC9025317 DOI: 10.3390/insects13040376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Interactions between insects and their microbiota affect insect behaviour and evolution. When specific microorganisms are provided as a dietary supplement, insect reproduction, food conversion and growth are enhanced and health is improved in cases of nutritional deficiency or pathogen infection. The purpose of this review is to provide an overview of insect-microbiota interactions, to review the role of probiotics, their general use in insects reared for food and feed, and their interactions with the host microbiota. We review how bacterial strains have been selected for insect species reared for food and feed and discuss methods used to isolate and measure the effectiveness of a probiotic. We outline future perspectives on probiotic applications in mass-reared insects.
Collapse
Affiliation(s)
- Carlotta Savio
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Laboratory of Entomology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Loretta Mugo-Kamiri
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS-University of Tours, 37200 Tours, France;
- Centre for Ecology and Conservation, Penryn Campus, College of Life and Environmental Science, University of Exeter, Cornwall TR10 9FE, UK
| | - Jennifer K. Upfold
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaildsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
7
|
Complete Genome Sequence of SMBL-WEM22, a Halotolerant Strain of Kosakonia cowanii Isolated from Hong Kong Seawater. Microbiol Resour Announc 2021; 10:e0089121. [PMID: 34647797 PMCID: PMC8515891 DOI: 10.1128/mra.00891-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kosakonia cowanii is a Gram-negative, motile, facultative anaerobic enterobacterium that is found in soil, water, and sewage. K. cowanii SMBL-WEM22 is a halotolerant strain that was isolated from seawater in Hong Kong. The complete genome of SMBL-WEM22 (5,037,617 bp, with a GC content of 55.02%) was determined by hybrid assembly of short- and long-read DNA sequences.
Collapse
|
8
|
Son JH, Weiss BL, Schneider DI, Dera KSM, Gstöttenmayer F, Opiro R, Echodu R, Saarman NP, Attardo GM, Onyango M, Abd-Alla AMM, Aksoy S. Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLoS Pathog 2021; 17:e1009539. [PMID: 34529715 PMCID: PMC8478229 DOI: 10.1371/journal.ppat.1009539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/28/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly's resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse's viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse's reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.
Collapse
Affiliation(s)
- Jae Hak Son
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Daniela I. Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Kiswend-sida M. Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Insectarium de Bobo-Dioulasso—Campagne d’Eradication de la mouche Tse´-tse´ et de la Trypanosomiase (IBD-CETT), Bobo-Dioulasso, Burkina Faso
| | - Fabian Gstöttenmayer
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Norah P. Saarman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Maria Onyango
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
9
|
Yang L, Weiss BL, Williams AE, Aksoy E, de Silva Orfano A, Son JH, Wu Y, Vigneron A, Karakus M, Aksoy S. Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly's midgut environment. PLoS Pathog 2021; 17:e1009475. [PMID: 34107000 PMCID: PMC8216540 DOI: 10.1371/journal.ppat.1009475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022] Open
Abstract
Tsetse flies are vectors of parasitic African trypanosomes, the etiological agents of human and animal African trypanosomoses. Current disease control methods include fly-repelling pesticides, fly trapping, and chemotherapeutic treatment of infected people and animals. Inhibiting tsetse's ability to transmit trypanosomes by strengthening the fly's natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines the insect midgut and serves as a protective barrier that inhibits infection with pathogens. African trypanosomes must cross tsetse's PM in order to establish an infection in the fly, and PM structural integrity negatively correlates with trypanosome infection outcomes. Bloodstream form trypanosomes shed variant surface glycoproteins (VSG) into tsetse's gut lumen early during the infection establishment, and free VSG molecules are internalized by the fly's PM-producing cardia. This process results in a reduction in the expression of a tsetse microRNA (miR275) and a sequential molecular cascade that compromises PM integrity. miRNAs are small non-coding RNAs that are critical in regulating many physiological processes. In the present study, we investigated the role(s) of tsetse miR275 by developing a paratransgenic expression system that employs tsetse's facultative bacterial endosymbiont, Sodalis glossinidius, to express tandem antagomir-275 repeats (or miR275 sponges). This system induces a constitutive, 40% reduction in miR275 transcript abundance in the fly's midgut and results in obstructed blood digestion (gut weights increased by 52%), a significant increase (p-value < 0.0001) in fly survival following infection with an entomopathogenic bacteria, and a 78% increase in trypanosome infection prevalence. RNA sequencing of cardia and midgut tissues from paratransgenic tsetse confirmed that miR275 regulates processes related to the expression of PM-associated proteins and digestive enzymes as well as genes that encode abundant secretory proteins. Our study demonstrates that paratransgenesis can be employed to study microRNA regulated pathways in arthropods that house symbiotic bacteria.
Collapse
Affiliation(s)
- Liu Yang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Adeline E. Williams
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Alessandra de Silva Orfano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Jae Hak Son
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Yineng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Mehmet Karakus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Medical Microbiology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
10
|
Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep 2021; 35:108992. [PMID: 33882310 PMCID: PMC8116483 DOI: 10.1016/j.celrep.2021.108992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/06/2020] [Accepted: 03/24/2021] [Indexed: 12/30/2022] Open
Abstract
Plant-nectar-derived sugar is the major energy source for mosquitoes, but its influence on vector competence for malaria parasites remains unclear. Here, we show that Plasmodium berghei infection of Anopheles stephensi results in global metabolome changes, with the most significant impact on glucose metabolism. Feeding on glucose or trehalose (the main hemolymph sugars) renders the mosquito more susceptible to Plasmodium infection by alkalizing the mosquito midgut. The glucose/trehalose diets promote proliferation of a commensal bacterium, Asaia bogorensis, that remodels glucose metabolism in a way that increases midgut pH, thereby promoting Plasmodium gametogenesis. We also demonstrate that the sugar composition from different natural plant nectars influences A. bogorensis growth, resulting in a greater permissiveness to Plasmodium. Altogether, our results demonstrate that dietary glucose is an important determinant of mosquito vector competency for Plasmodium, further highlighting a key role for mosquito-microbiota interactions in regulating the development of the malaria parasite.
Collapse
|
11
|
Saraiva RG, Dimopoulos G. Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Nat Prod Rep 2021; 37:338-354. [PMID: 31544193 DOI: 10.1039/c9np00042a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Covering: up to 2019 Secondary metabolites of microbial origin have long been acknowledged as medically relevant, but their full potential remains largely unexploited. Of the countless natural compounds discovered thus far, only 5-10% have been isolated from microorganisms. At the same time, while whole-genome sequencing has demonstrated that bacteria and fungi often encode natural products, only a few genera have yet been mined for new compounds. This review explores the contributions of bacterial natural products to combatting infection by malaria parasites, filarial worms, and arboviruses such as dengue, Zika, Chikungunya, and West Nile. It highlights how molecules isolated from microorganisms ranging from marine cyanobacteria to mosquito endosymbionts can be exploited as antimicrobials and antivirals. Pursuit of this mostly untapped source of chemical entities will potentially result in new interventions against these tropical diseases, which are urgently needed to combat the increase in the incidence of resistance.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
Zhang R, Zhang Q, Yu G, Zhang Z. Metagenomic deep sequencing obtains taxonomic and functional profiles of Haemaphysalis longicornis that vary in response to different developmental stages and sexes. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 83:285-300. [PMID: 33386513 DOI: 10.1007/s10493-020-00582-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Ticks can transmit numerous pathogens and harbor diverse microbial communities. Considerable progress has been made in the characterization of the bacterial profiles of ticks, whereas other members of tick microbiota (such as fungi and viruses) and the functional characteristics of ticks warrant further exploration. To investigate the taxonomic and functional profiles and explore potential pathogens they were carrying, samples of different developmental stages and of both sexes of Haemaphysalis longicornis were collected in the present study and the metagenomic deep sequencing method was applied. Metagenomic deep sequencing results revealed that bacteria were predominant, followed by fungi, viruses, archaea and metazoans. Proteobacteria was the dominant phylum in the microbiota of H. longicornis. The abundance of microbial species varied significantly among groups, the bacteria of nymphs and female adults demonstrated unique characteristics, and the microbial community of males overlapped with those of nymphs and females. Functional annotation results demonstrated that the metagenomic sequences of the three groups were classified under metabolism, genetic information processing, environmental information processing and cellular processes. Differences in functional characteristics were observed in both the pathways composition and abundance of carbohydrate-active enzymes. Furthermore, whole metagenome sequencing helped to elucidate the diversity of pathogens carried by H. longicornis, which may facilitate further research attempting to prevent and control tick-borne diseases.
Collapse
Affiliation(s)
- Ruiling Zhang
- School of Basic Medical Science, Shandong First Medical University, Taian, China.
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Taian, China.
| | - Qian Zhang
- School of Basic Medical Science, Shandong First Medical University, Taian, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Taian, China
| | - Guangfu Yu
- School of Basic Medical Science, Shandong First Medical University, Taian, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Taian, China
| | - Zhong Zhang
- School of Basic Medical Science, Shandong First Medical University, Taian, China.
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Taian, China.
| |
Collapse
|
13
|
Schmidt K, Engel P. Mechanisms underlying gut microbiota-host interactions in insects. J Exp Biol 2021; 224:224/2/jeb207696. [PMID: 33509844 DOI: 10.1242/jeb.207696] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insects are the most diverse group of animals and colonize almost all environments on our planet. This diversity is reflected in the structure and function of the microbial communities inhabiting the insect digestive system. As in mammals, the gut microbiota of insects can have important symbiotic functions, complementing host nutrition, facilitating dietary breakdown or providing protection against pathogens. There is an increasing number of insect models that are experimentally tractable, facilitating mechanistic studies of gut microbiota-host interactions. In this Review, we will summarize recent findings that have advanced our understanding of the molecular mechanisms underlying the symbiosis between insects and their gut microbiota. We will open the article with a general introduction to the insect gut microbiota and then turn towards the discussion of particular mechanisms and molecular processes governing the colonization of the insect gut environment as well as the diverse beneficial roles mediated by the gut microbiota. The Review highlights that, although the gut microbiota of insects is an active field of research with implications for fundamental and applied science, we are still in an early stage of understanding molecular mechanisms. However, the expanding capability to culture microbiomes and to manipulate microbe-host interactions in insects promises new molecular insights from diverse symbioses.
Collapse
Affiliation(s)
- Konstantin Schmidt
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
14
|
Heliconius Butterflies Host Characteristic and Phylogenetically Structured Adult-Stage Microbiomes. Appl Environ Microbiol 2020; 86:AEM.02007-20. [PMID: 33008816 DOI: 10.1128/aem.02007-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Lepidoptera (butterflies and moths) are diverse and ecologically important, yet we know little about how they interact with microbes as adults. Due to metamorphosis, the form and function of their adult-stage microbiomes might be very different from those of microbiomes in the larval stage (caterpillars). We studied adult-stage microbiomes of Heliconius and closely related passion-vine butterflies (Heliconiini), which are an important model system in evolutionary biology. To characterize the structure and dynamics of heliconiine microbiomes, we used field collections of wild butterflies, 16S rRNA gene sequencing, quantitative PCR, and shotgun metagenomics. We found that Heliconius butterflies harbor simple and abundant bacterial communities that are moderately consistent among conspecific individuals and over time. Heliconiine microbiomes also exhibited a strong signal of the host phylogeny, with a major distinction between Heliconius and other butterflies. These patterns were largely driven by differing relative abundances of bacterial phylotypes shared among host species and genera, as opposed to the presence or absence of host-specific phylotypes. We suggest that the phylogenetic structure in heliconiine microbiomes arises from conserved host traits that differentially filter microbes from the environment. While the relative importance of different traits remains unclear, our data indicate that pollen feeding (unique to Heliconius) is not a primary driver. Using shotgun metagenomics, we also discovered trypanosomatids and microsporidia to be prevalent in butterfly guts, raising the possibility of antagonistic interactions between eukaryotic parasites and colocalized gut bacteria. Our discovery of characteristic and phylogenetically structured microbiomes provides a foundation for tests of adult-stage microbiome function, a poorly understood aspect of lepidopteran biology.IMPORTANCE Many insects host microbiomes with important ecological functions. However, the prevalence of this phenomenon is unclear because in many insect taxa, microbiomes have been studied in only part of the life cycle, if at all. A prominent example is butterflies and moths, in which the composition and functional role of adult-stage microbiomes are largely unknown. We comprehensively characterized microbiomes in adult passion-vine butterflies. Butterfly-associated bacterial communities are generally abundant in guts, consistent within populations, and composed of taxa widely shared among hosts. More closely related butterflies harbor more similar microbiomes, with the most dramatic shift in microbiome composition occurring in tandem with a suite of ecological and life history traits unique to the genus Heliconius Butterflies are also frequently infected with previously undescribed eukaryotic parasites, which may interact with bacteria in important ways. These findings advance our understanding of butterfly biology and insect-microbe interactions generally.
Collapse
|
15
|
Medina Munoz M, Spencer N, Enomoto S, Dale C, Rio RVM. Quorum sensing sets the stage for the establishment and vertical transmission of Sodalis praecaptivus in tsetse flies. PLoS Genet 2020; 16:e1008992. [PMID: 32797092 PMCID: PMC7449468 DOI: 10.1371/journal.pgen.1008992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/26/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Bacterial virulence factors facilitate host colonization and set the stage for the evolution of parasitic and mutualistic interactions. The Sodalis-allied clade of bacteria exhibit striking diversity in the range of both plant and animal feeding insects they inhabit, suggesting the appropriation of universal molecular mechanisms that facilitate establishment. Here, we report on the infection of the tsetse fly by free-living Sodalis praecaptivus, a close relative of many Sodalis-allied symbionts. Key genes involved in quorum sensing, including the homoserine lactone synthase (ypeI) and response regulators (yenR and ypeR) are integral for the benign colonization of S. praecaptivus. Mutants lacking ypeI, yenR and ypeR compromised tsetse survival as a consequence of their inability to repress virulence. Genes under quorum sensing, including homologs of the binary insecticidal toxin PirAB and a putative symbiosis-promoting factor CpmAJ, demonstrated negative and positive impacts, respectively, on tsetse survival. Taken together with results obtained from experiments involving weevils, this work shows that quorum sensing virulence suppression plays an integral role in facilitating the establishment of Sodalis-allied symbionts in diverse insect hosts. This knowledge contributes to the understanding of the early evolutionary steps involved in the formation of insect-bacterial symbiosis. Further, despite having no established history of interaction with tsetse, S. praecaptivus can infect reproductive tissues, enabling vertical transmission through adenotrophic viviparity within a single host generation. This creates an option for the use of S. praecaptivus in the biocontrol of insect disease vectors via paratransgenesis.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States of America
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States of America
| | - Shinichiro Enomoto
- Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| | - Colin Dale
- Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| | - Rita V. M. Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
16
|
Pilotte N, Cook DA, Pryce J, Zulch MF, Minetti C, Reimer LJ, Williams SA. Laboratory evaluation of molecular xenomonitoring using mosquito and tsetse fly excreta/feces to amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res 2020; 3:1734. [PMID: 32596646 PMCID: PMC7308644 DOI: 10.12688/gatesopenres.13093.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods: Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent and incompetent vector species, and effects of additional blood feedings post parasite-exposure were evaluated. Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR (dPCR)) were also compared, with strengths and weaknesses examined for each. Results: Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent and incompetent vector mosquito species. Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible. However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei. Testing also suggested that dPCR may facilitate detection through its increased sensitivity. Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions: By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible. However, translation of this methodology from the lab to the field will first require field-based pilot studies aimed at assessing the efficacy of E/F screening.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Darren A.N. Cook
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Michael F. Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
17
|
Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies. Sci Rep 2020; 10:5005. [PMID: 32193415 PMCID: PMC7081217 DOI: 10.1038/s41598-020-61817-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/28/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse flies are the vectors of African trypanosomiasis affecting 36 sub-Saharan countries. Both wild and domestic animals play a crucial role in maintaining the disease-causing parasites (trypanosomes). Thus, the identification of animal reservoirs of trypanosomes is vital for the effective control of African trypanosomiasis. Additionally, the biotic and abiotic factors that drive gut microbiome diversity in tsetse flies are primarily unresolved, especially under natural, field conditions. In this study, we present a comprehensive DNA metabarcoding approach for individual tsetse fly analysis in the identification of mammalian blood meal sources and fly bacterial microbiome composition. We analyzed samples from two endemic foci, Kafue, Zambia collected in June 2017, and Hurungwe, Zimbabwe sampled in April 2014 (pilot study) and detected DNA of various mammals including humans, wild animals, domestic animals and small mammals (rat and bat). The bacterial diversity was relatively similar in flies with different mammalian species DNA, trypanosome infected and uninfected flies, and female and male flies. This study is the first report on bat DNA detection in wild tsetse flies. This study reveals that small mammals such as bats and rats are among the opportunistic blood meal sources for tsetse flies in the wild, and the implication on tsetse biology and ecology needs to be studied.
Collapse
|
18
|
Pilotte N, Cook DA, Pryce J, Zulch MF, Minetti C, Reimer LJ, Williams SA. Laboratory evaluation of molecular xenomonitoring using mosquito excreta/feces to amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res 2019; 3:1734. [PMID: 32596646 PMCID: PMC7308644 DOI: 10.12688/gatesopenres.13093.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 03/30/2024] Open
Abstract
Background: Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods: Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent- and incompetent-vector species, and effects of additional blood feedings post parasite-exposure were evaluated. Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR [dPCR]) were also compared, with strengths and weaknesses examined for each. Results: Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent- and incompetent-vector mosquito species. Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible. However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei. Testing also suggested that dPCR may facilitate detection through its increased sensitivity. Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions: By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible. However, translation of this methodology from the lab to the field will first require the completion of field-based pilot studies aimed at assessing the efficacy of E/F screening.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Darren A.N. Cook
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Michael F. Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
19
|
Landesman WJ, Mulder K, Fredericks LP, Allan BF. Cross-kingdom analysis of nymphal-stage Ixodes scapularis microbial communities in relation to Borrelia burgdorferi infection and load. FEMS Microbiol Ecol 2019; 95:fiz167. [PMID: 31722384 PMCID: PMC6859517 DOI: 10.1093/femsec/fiz167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
The tick microbiota may influence the colonization of Ixodes scapularis by Borrelia burgdorferi, the Lyme disease bacterium. Using conserved and pathogen-specific primers we performed a cross-kingdom analysis of bacterial, fungal, protistan and archaeal communities of I. scapularis nymphs (N = 105) collected from southern Vermont, USA. The bacterial community was dominated by a Rickettsia and several environmental taxa commonly reported in I. scapularis, as well as the human pathogens B. burgdorferi and Anaplasma phagocytophilum, agent of human granulocytic anaplasmosis. With the fungal primer set we detected primarily plant- and litter-associated taxa and >18% of sequences were Malassezia, a fungal genus associated with mammalian skin. Two 18S rRNA gene primer sets, intended to target protistan communities, returned mostly Ixodes DNA as well as the wildlife pathogen Babesia odocoilei (7% of samples), a Gregarines species (14%) and a Spirurida nematode (18%). Data from pathogen-specific and conserved primers were consistent in terms of prevalence and identification. We measured B. burgdorferi presence/absence and load and found that bacterial beta diversity varied based on B. burgdorferi presence/absence. Load was weakly associated with bacterial community composition. We identified taxa associated with B. burgdorferi infection that should be evaluated for their role in vector colonization by pathogens.
Collapse
Affiliation(s)
- William J Landesman
- Department of Biology, University of Bridgeport, Charles Dana Hall, 169 University Ave., Bridgeport, CT 06604, USA
| | - Kenneth Mulder
- Department of Mathematics, The Long Trail School, 1045 Kirby Hollow Road, Dorset, VT 05251, USA
| | - L Page Fredericks
- Department of Entomology, University of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Brian F Allan
- Department of Entomology, University of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
20
|
Blocking pathogen transmission. Nat Rev Microbiol 2019; 17:267. [DOI: 10.1038/s41579-019-0184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Weiss BL, Maltz MA, Vigneron A, Wu Y, Walter KS, O'Neill MB, Wang J, Aksoy S. Correction: Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLoS Pathog 2019; 15:e1007688. [PMID: 30958865 PMCID: PMC6453440 DOI: 10.1371/journal.ppat.1007688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|