1
|
Foster AJ, Li H, Drougkas P, Schuurman-Wolters GK, Ten Kate J, Paulino C, Poolman B. Membrane-embedded CdaA is required for efficient synthesis of second messenger cyclic di-AMP. Commun Biol 2024; 7:1710. [PMID: 39739009 DOI: 10.1038/s42003-024-07420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Cyclic di-adenylate monophosphate (cyclic di-AMP) is an important second messenger in microorganisms. Cyclic di-AMP regulates bacterial cell volume and turgor via control of potassium and compatible solute transport but is also involved in many other processes, including the activation of the metazoan innate immune response to bacterial infections. We compare the activity of full-length membrane-embedded CdaA, the enzyme that synthesizes cyclic di-AMP, with the water-soluble catalytic domain CdaA-DAC. Purified CdaA from L. lactis was studied in the detergent-solubilized state, and in lipid nanodiscs and vesicles. We show that CdaA is tetrameric and the membrane-bound complex has more than 2-orders of magnitude higher activity than soluble CdaA-DAC. CdaA activity increases with pH but does not strongly depend on the salt or lipid content, factors that are crucial for the control of osmoregulatory transporters. Cryo-EM and in-silico structure prediction of CdaA show that the two DAC dimers engage in a head-to-head interaction, leading to cyclic-di-AMP formation. The inhibitor phosphoglucomutase prevents this active conformation. We observe dynamic flexibility between the catalytic and membrane domains, even in the presence of ATP or non-hydrolyzable substrate ApCpp. This is the first comprehensive functional and structural characterization of a full-length cyclic di-AMP-specific cyclase.
Collapse
Affiliation(s)
- Alexander J Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands
| | - Haoyang Li
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands
| | - Panagiotis Drougkas
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Gea K Schuurman-Wolters
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands
| | - Joeri Ten Kate
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands
| | - Cristina Paulino
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany.
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands.
| |
Collapse
|
2
|
Lee J, Ouellette SP. Cyclic di-AMP drives developmental cycle progression in Chlamydia trachomatis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595738. [PMID: 38826436 PMCID: PMC11142226 DOI: 10.1101/2024.05.24.595738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The obligate intracellular bacterium Chlamydia alternates between two functional forms during its developmental cycle: elementary body (EB) and reticulate body (RB). However, the molecular mechanisms governing the transitions between these forms are unknown. Here, we present evidence cyclic di-AMP (c-di-AMP) is a key factor in triggering the transition from RB to EB (i.e., secondary differentiation) in the chlamydial developmental cycle. By overexpressing or knocking down expression of c-di-AMP synthase genes, we made strains producing different levels of c-di-AMP, which we linked to changes in secondary differentiation status. Increases in c-di-AMP resulted in an earlier increase in transcription of EB-associated genes, and this was further manifested in earlier production of EBs. In contrast, when c-di-AMP levels were decreased, secondary differentiation was delayed. Based on these data, we conclude there is a threshold level of c-di-AMP needed to trigger secondary differentiation in Chlamydia . This is the first study to identify a mechanism by which secondary differentiation is initiated in Chlamydia and reveals a critical role for the second messenger signaling molecule c-di-AMP in this process.
Collapse
|
3
|
Kviatkovski I, Zhong Q, Vaidya S, Gründling A. Identification of novel genetic factors that regulate c-di-AMP production in Staphylococcus aureus using a riboswitch-based biosensor. mSphere 2024; 9:e0032124. [PMID: 39287429 PMCID: PMC11520302 DOI: 10.1128/msphere.00321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
Nucleotide secondary messengers regulate various processes in bacteria allowing them to rapidly respond to changes in environmental conditions. c-di-AMP is an essential second messenger required for the growth of the human pathogen Staphylococcus aureus, regulating potassium, osmolyte uptake, and beta-lactam resistance. Cellular concentrations of c-di-AMP are regulated by the activities of two enzymes, DacA and GdpP, which synthesize and hydrolyze c-di-AMP, respectively. Besides these, only a limited number of other factors are known to regulate c-di-AMP levels. Using a c-di-AMP biosensor consisting of the Bacillus subtilis c-di-AMP-binding kimA riboswitch and yfp, we were able to efficiently detect differences in cellular c-di-AMP levels in S. aureus. To identify novel factors that regulate c-di-AMP levels, we introduced the biosensor into a library of S. aureus transposon mutants. In this manner, we obtained mutants with increased c-di-AMP levels that contained insertions in gdpP coding for the c-di-AMP hydrolase and ybbR (cdaR) coding for a c-di-AMP cyclase regulator, thus validating our screen. We also identified two high c-di-AMP mutants with insertions upstream of the nrdIEF operon coding for the ribonucleotide reductase enzyme. Further analysis revealed that the insertion down-regulated nrdIEF expression, indicating that the enzyme is a negative regulator of c-di-AMP production. This negative regulation was dependent on rsh, encoding for the synthase of the endogenous GdpP inhibitor (p)ppGpp. The methods established in this work can be readily adapted for use in other bacteria to uncover genetic or environmental factors regulating c-di-AMP levels.IMPORTANCEc-di-AMP is an important secondary messenger, produced by many bacterial species including the opportunistic pathogen Staphylococcus aureus. In this bacterium, c-di-AMP controls cell wall homeostasis, cell size, and osmotic balance. In addition, it has been shown that strains with high c-di-AMP levels exhibit increased resistance to beta-lactam antibiotics. Here, we developed a biosensor-based method for the rapid detection of c-di-AMP levels in S. aureus. We utilized the biosensor in a genetic screen for the identification of novel factors that impact cellular c-di-AMP. In this manner, we identified the ribonucleotide reductase as a novel factor altering cellular c-di-AMP levels and showed that reducing its expression leads to increased cellular c-di-AMP levels. As methicillin-resistant S. aureus strains are considered as a global health threat, it is important to study processes that dictate cellular c-di-AMP levels, which are associated with antibiotic resistance.
Collapse
Affiliation(s)
- Igor Kviatkovski
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Qiyun Zhong
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Sanika Vaidya
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Angelika Gründling
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Moylan AD, Patel DT, O’Brien C, Schuler EJA, Hinson AN, Marconi RT, Miller DP. Characterization of c-di-AMP signaling in the periodontal pathobiont, Treponema denticola. Mol Oral Microbiol 2024; 39:354-367. [PMID: 38436552 PMCID: PMC11368658 DOI: 10.1111/omi.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Pathobionts associated with periodontitis, such as Treponema denticola, must possess numerous sensory transduction systems to adapt to the highly dynamic subgingival environment. To date, the signaling pathways utilized by T. denticola to rapidly sense and respond to environmental stimuli are mainly unknown. Bis-(3'-5') cyclic diadenosine monophosphate (c-di-AMP) is a nucleotide secondary messenger that regulates osmolyte transport, central metabolism, biofilm development, and pathogenicity in many bacteria but is uncharacterized in T. denticola. Here, we studied c-di-AMP signaling in T. denticola to understand how it contributes to T. denticola physiology. We demonstrated that T. denticola produces c-di-AMP and identified enzymes that function in the synthesis (TDE1909) and hydrolysis (TDE0027) of c-di-AMP. To investigate how c-di-AMP may impact T. denticola cellular processes, a screening assay was performed to identify putative c-di-AMP receptor proteins. This approach identified TDE0087, annotated as a potassium uptake protein, as the first T. denticola c-di-AMP binding protein. As potassium homeostasis is critical for maintaining turgor pressure, we demonstrated that T. denticola c-di-AMP concentrations are impacted by osmolarity, suggesting that c-di-AMP negatively regulates potassium uptake in hypoosmotic solutions. Collectively, this study demonstrates T. denticola utilizes c-di-AMP signaling, identifies c-di-AMP metabolism proteins, identifies putative receptor proteins, and correlates c-di-AMP signaling to osmoregulation.
Collapse
Affiliation(s)
- Aidan D. Moylan
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dhara T. Patel
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Claire O’Brien
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward J. A. Schuler
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Annie N. Hinson
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniel P. Miller
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Dentistry, Richmond, VA, USA
| |
Collapse
|
5
|
Agarwal M, Bhaskar A, Singha B, Mukhopadhyay S, Pahuja I, Singh A, Chaturvedi S, Agarwal N, Dwivedi VP, Nandicoori VK. Depletion of essential mycobacterial gene glmM reduces pathogen survival and induces host-protective immune responses against tuberculosis. Commun Biol 2024; 7:949. [PMID: 39107377 PMCID: PMC11303689 DOI: 10.1038/s42003-024-06620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The limitations of TB treatment are the long duration and immune-dampening effects of anti-tuberculosis therapy. The Cell wall plays a crucial role in survival and virulence; hence, enzymes involved in its biosynthesis are good therapeutic targets. Here, we identify Mycobacterium tuberculosis (Mtb) GlmM, (GlmMMtb) engaged in the UDP-GlcNAc synthesis pathway as an essential enzyme. We generated a conditional knockdown strain, Rv-glmMkD using the CRISPR interference-mediated gene silencing approach. Depletion of GlmMMtb affects the morphology and thickness of the cell wall. The Rv-glmMkD strain attenuated Mtb survival in vitro, in the host macrophages (ex vivo), and in a murine mice infection model (in vivo). Results suggest that the depletion of GlmMMtb induces M1 macrophage polarization, prompting a pro-inflammatory cytokine response, apparent from the upregulation of activation markers, including IFNɣ and IL-17 that resists the growth of Mtb. These observations provide a rationale for exploring GlmMMtb as a potential therapeutic target.
Collapse
Affiliation(s)
- Meetu Agarwal
- Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India.
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India.
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Biplab Singha
- Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India
| | - Suparba Mukhopadhyay
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Archna Singh
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Shivam Chaturvedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vinay Kumar Nandicoori
- Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India.
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Kim J, Lee Y, Kim I, Chang J, Hong S, Lee NK, Shum D, Baek S, Kim W, Jang S, Lee W. Reducing Peptidoglycan Crosslinking by Chemical Modulator Reverts β-lactam Resistance in Methicillin-Resistant Staphylococcus aureus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400858. [PMID: 38747156 PMCID: PMC11267302 DOI: 10.1002/advs.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/11/2024] [Indexed: 07/25/2024]
Abstract
Small molecule can be utilized to restore the effectiveness of existing major classes of antibiotics against antibiotic-resistant bacteria. In this study, it is demonstrated that celastrol, a natural compound, can modify the bacterial cell wall and subsequently render bacteria more suceptible to β-lactam antibiotics. It is shown that celastrol leads to incomplete cell wall crosslinking by modulating levels of c-di-AMP, a secondary messenger, in methicillin-resistant Staphylococcus aureus (MRSA). This mechanism enables celastrol to act as a potentiator, effectively rendering MRSA susceptible to a range of penicillins and cephalosporins. Restoration of in vivo susceptibility of MRSA to methicillin is also demonstrated using a sepsis animal model by co-administering methicillin along with celastrol at a much lower amount than that of methicillin. The results suggest a novel approach for developing potentiators for major classes of antibiotics by exploring molecules that re-program metabolic pathways to reverse β-lactam-resistant strains to susceptible strains.
Collapse
Affiliation(s)
- Ji‐Hoon Kim
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Yunmi Lee
- Antibacterial Resistance LaboratoryInstitut Pasteur KoreaSeongnam13488Republic of Korea
| | - Inseo Kim
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| | - JuOae Chang
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Subin Hong
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Na Kyung Lee
- Screening Discovery PlatformInstitut Pasteur KoreaSeongnam13488Republic of Korea
| | - David Shum
- Screening Discovery PlatformInstitut Pasteur KoreaSeongnam13488Republic of Korea
| | - Seongeun Baek
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Wooseong Kim
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Soojin Jang
- Antibacterial Resistance LaboratoryInstitut Pasteur KoreaSeongnam13488Republic of Korea
| | - Wonsik Lee
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
7
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Brissac T, Guyonnet C, Sadouni A, Hernández-Montoya A, Jacquemet E, Legendre R, Sismeiro O, Trieu-Cuot P, Lanotte P, Tazi A, Firon A. Coordinated regulation of osmotic imbalance by c-di-AMP shapes ß-lactam tolerance in Group B Streptococcus. MICROLIFE 2024; 5:uqae014. [PMID: 38993744 PMCID: PMC11238645 DOI: 10.1093/femsml/uqae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Streptococcus agalactiae is among the few pathogens that have not developed resistance to ß-lactam antibiotics despite decades of clinical use. The molecular basis of this long-lasting susceptibility has not been investigated, and it is not known whether specific mechanisms constrain the emergence of resistance. In this study, we first report ß-lactam tolerance due to the inactivation of the c-di-AMP phosphodiesterase GdpP. Mechanistically, tolerance depends on antagonistic regulation by the repressor BusR, which is activated by c-di-AMP and negatively regulates ß-lactam susceptibility through the BusAB osmolyte transporter and the AmaP/Asp23/GlsB cell envelope stress complex. The BusR transcriptional response is synergistic with the simultaneous allosteric inhibition of potassium and osmolyte transporters by c-di-AMP, which individually contribute to low-level ß-lactam tolerance. Genome-wide transposon mutagenesis confirms the role of GdpP and highlights functional interactions between a lysozyme-like hydrolase, the KhpAB RNA chaperone and the protein S immunomodulator in the response of GBS to ß-lactam. Overall, we demonstrate that c-di-AMP acts as a turgor pressure rheostat, coordinating an integrated response at the transcriptional and post-translational levels to cell wall weakening caused by ß-lactam activity, and reveal additional mechanisms that could foster resistance.
Collapse
Affiliation(s)
- Terry Brissac
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Cécile Guyonnet
- Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, 75015, Paris, France
- Department of Bacteriology, French National Reference Center for Streptococci, Assistance Publique-Hôpitaux de Paris Hôpitaux Universitaires Paris Centre, Hôpital Cochin, 75005, Paris, France
- Fédération Hospitalo-Universitaire Fighting Prematurity, 75005, Paris, France
| | - Aymane Sadouni
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Ariadna Hernández-Montoya
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Elise Jacquemet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Odile Sismeiro
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Patrick Trieu-Cuot
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Philippe Lanotte
- Université de Tours, INRAE, UMR 1282 ISP, 3700, Tours, France
- CHRU de Tours, Service de Bactériologie-Virologie, 37044, Tours, France
| | - Asmaa Tazi
- Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, 75015, Paris, France
- Department of Bacteriology, French National Reference Center for Streptococci, Assistance Publique-Hôpitaux de Paris Hôpitaux Universitaires Paris Centre, Hôpital Cochin, 75005, Paris, France
- Fédération Hospitalo-Universitaire Fighting Prematurity, 75005, Paris, France
| | - Arnaud Firon
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| |
Collapse
|
9
|
Rojas EM, Zhang H, Velu SE, Wu H. Tetracyclic homoisoflavanoid (+)-brazilin: a natural product inhibits c-di-AMP-producing enzyme and Streptococcus mutans biofilms. Microbiol Spectr 2024; 12:e0241823. [PMID: 38591917 PMCID: PMC11064632 DOI: 10.1128/spectrum.02418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
The tenacious biofilms formed by Streptococcus mutans are resistant to conventional antibiotics and current treatments. There is a growing need for novel therapeutics that selectively inhibit S. mutans biofilms while preserving the normal oral microenvironment. Previous studies have shown that increased levels of cyclic di-AMP, an important secondary messenger synthesized by diadenylate cyclase (DAC), favored biofilm formation in S. mutans. Thus, targeting S. mutans DAC is a novel strategy to inhibit S. mutans biofilms. We screened a small NCI library of natural products using a fluorescence detection assay. (+)-Brazilin, a tetracyclic homoisoflavanoid found in the heartwood of Caesalpinia sappan, was identified as one of the 11 "hits," with the greatest reduction (>99%) in fluorescence at 100 µM. The smDAC inhibitory profiles of the 11 "hits" established by a quantitative high-performance liquid chromatography assay revealed that (+)-brazilin had the most enzymatic inhibitory activity (87% at 100 µM) and was further studied to determine its half maximal inhibitory concentration (IC50 = 25.1 ± 0.98 µM). (+)-Brazilin non-competitively inhibits smDAC's enzymatic activity (Ki = 140.0 ± 27.13 µM), as determined by a steady-state Michaelis-Menten kinetics assay. In addition, (+)-brazilin's binding profile with smDAC (Kd = 11.87 µM) was illustrated by a tyrosine intrinsic fluorescence quenching assay. Furthermore, at low micromolar concentrations, (+)-brazilin selectively inhibited the biofilm of S. mutans (IC50 = 21.0 ± 0.60 µM) and other oral bacteria. S. mutans biofilms were inhibited by a factor of 105 in colony-forming units when treated with 50 µM (+)-brazilin. In addition, a significant dose-dependent reduction in extracellular DNA and glucan levels was evident by fluorescence microscopy imaging of S. mutans biofilms exposed to different concentrations of (+)-brazilin. Furthermore, colonization of S. mutans on a representative model of enamel using suspended hydroxyapatite discs showed a >90% reduction with 50 µM (+)-brazilin. In summary, we have identified a drug-like natural product inhibitor of S. mutans biofilm that not only binds to smDAC but can also inhibit the function of smDAC. (+)-Brazilin could be a good candidate for further development as a potent therapeutic for the prevention and treatment of dental caries.IMPORTANCEThis study represents a significant advancement in our understanding of potential therapeutic options for combating cariogenic biofilms produced by Streptococcus mutans. The research delves into the use of (+)-brazilin, a natural product, as a potent inhibitor of Streptococcus mutans' diadenylate cyclase (smDAC), an enzyme crucial in the formation of biofilms. The study establishes (+)-brazilin as a non-competitive inhibitor of smDAC while providing initial insights into its binding mechanism. What makes this finding even more promising is that (+)-brazilin does not limit its inhibitory effects to S. mutans alone. Instead, it demonstrates efficacy in hindering biofilms in other oral bacteria as well. The broader spectrum of anti-biofilm activity suggests that (+)-brazilin could potentially serve as a versatile tool in a natural product-based treatment for combating a range of conditions caused by resilient biofilms.
Collapse
Affiliation(s)
- Edwin M. Rojas
- School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hua Zhang
- Division of Biomaterial & Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hui Wu
- Division of Biomaterial & Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Rostøl JT, Quiles-Puchalt N, Iturbe-Sanz P, Lasa Í, Penadés JR. Bacteriophages avoid autoimmunity from cognate immune systems as an intrinsic part of their life cycles. Nat Microbiol 2024; 9:1312-1324. [PMID: 38565896 PMCID: PMC11087260 DOI: 10.1038/s41564-024-01661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages' life cycle.
Collapse
Affiliation(s)
- Jakob T Rostøl
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| | - Nuria Quiles-Puchalt
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain
| | - Pablo Iturbe-Sanz
- Laboratory of Microbial Pathogenesis. Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Íñigo Lasa
- Laboratory of Microbial Pathogenesis. Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| |
Collapse
|
11
|
Jin Z, Song D, Wang W, Feng L, Li Z, Chen H, Xiao X, Liu X. Synthesis and degradation of the cyclic dinucleotide messenger c-di-AMP in the hyperthermophilic archaeon Pyrococcus yayanosii. Protein Sci 2023; 32:e4829. [PMID: 37921047 PMCID: PMC10680344 DOI: 10.1002/pro.4829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a newly identified prokaryotic cyclic dinucleotide second messenger well elucidated in bacteria, while less studied in archaea. Here, we describe the enzymes involved in c-di-AMP metabolism in the hyperthermophilic archaeon Pyrococcus yayanosii. Our results demonstrate that c-di-AMP is synthesized from two molecules of ATP by diadenylate cyclase (DAC) and degraded into pApA and then to AMP by a DHH family phosphodiesterase (PDE). DAC can be activated by a wider variety of ions, using two conserved residues, D188 and E244, to coordinate divalent metal ions, which is different from bacterial CdaA and DisA. PDE possesses a broad substrate spectrum like bacterial DHH family PDEs but shows a stricter base selection between A and G in cyclic dinucleotides hydrolysis. PDE shows differences in substrate binding patches from bacterial counterparts. C-di-AMP was confirmed to exist in Thermococcus kodakarensis cells, and the deletion of the dac or pde gene supports that the synthesis and degradation of c-di-AMP are catalyzed by DAC and PDE, respectively. Our results provide a further understanding of the metabolism of c-di-AMP in archaea.
Collapse
Affiliation(s)
- Zheng Jin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Instrumental analysis centerShanghai Jiao Tong UniversityShanghaiChina
| | - Dong Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Wei‐Wei Wang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
| | - Lei Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zheng‐Xin Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hai‐Feng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education)Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)ZhuhaiGuangdongChina
| | - Xi‐Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education)Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
12
|
Herzberg C, Meißner J, Warneke R, Stülke J. The many roles of cyclic di-AMP to control the physiology of Bacillus subtilis. MICROLIFE 2023; 4:uqad043. [PMID: 37954098 PMCID: PMC10636490 DOI: 10.1093/femsml/uqad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
The dinucleotide cyclic di-AMP (c-di-AMP) is synthesized as a second messenger in the Gram-positive model bacterium Bacillus subtilis as well as in many bacteria and archaea. Bacillus subtilis possesses three diadenylate cyclases and two phosphodiesterases that synthesize and degrade the molecule, respectively. Among the second messengers, c-di-AMP is unique since it is essential for B. subtilis on the one hand but toxic upon accumulation on the other. This role as an "essential poison" is related to the function of c-di-AMP in the control of potassium homeostasis. C-di-AMP inhibits the expression and activity of potassium uptake systems by binding to riboswitches and transporters and activates the activity of potassium exporters. In this way, c-di-AMP allows the adjustment of uptake and export systems to achieve a balanced intracellular potassium concentration. C-di-AMP also binds to two dedicated signal transduction proteins, DarA and DarB. Both proteins seem to interact with other proteins in their apo state, i.e. in the absence of c-di-AMP. For DarB, the (p)ppGpp synthetase/hydrolase Rel and the pyruvate carboxylase PycA have been identified as targets. The interactions trigger the synthesis of the alarmone (p)ppGpp and of the acceptor molecule for the citric acid cycle, oxaloacetate, respectively. In the absence of c-di-AMP, many amino acids inhibit the growth of B. subtilis. This feature can be used to identify novel players in amino acid homeostasis. In this review, we discuss the different functions of c-di-AMP and their physiological relevance.
Collapse
Affiliation(s)
- Christina Herzberg
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Janek Meißner
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Robert Warneke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Reich SJ, Goldbeck O, Lkhaasuren T, Weixler D, Weiß T, Eikmanns BJ. C-di-AMP Is a Second Messenger in Corynebacterium glutamicum That Regulates Expression of a Cell Wall-Related Peptidase via a Riboswitch. Microorganisms 2023; 11:296. [PMID: 36838266 PMCID: PMC9960051 DOI: 10.3390/microorganisms11020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger discovered in Bacillus subtilis and involved in potassium homeostasis, cell wall maintenance and/or DNA stress response. As the role of c-di-AMP has been mostly studied in Firmicutes, we sought to increase the understanding of its role in Actinobacteria, namely in Corynebacterium glutamicum. This organism is a well-known industrial production host and a model organism for pathogens, such as C. diphtheriae or Mycobacterium tuberculosis. Here, we identify and analyze the minimal set of two C. glutamicum enzymes, the diadenylate cyclase DisA and the phosphodiesterase PdeA, responsible for c-di-AMP metabolism. DisA synthesizes c-di-AMP from two molecules of ATP, whereas PdeA degrades c-di-AMP, as well as the linear degradation intermediate phosphoadenylyl-(3'→5')-adenosine (pApA) to two molecules of AMP. Here, we show that a ydaO/kimA-type c-di-AMP-dependent riboswitch controls the expression of the strictly regulated cell wall peptidase gene nlpC in C. glutamicum. In contrast to previously described members of the ydaO/kimA-type riboswitches, our results suggest that the C. glutamicum nlpC riboswitch likely affects the translation instead of the transcription of its downstream gene. Although strongly regulated by different mechanisms, we show that the absence of nlpC, the first known regulatory target of c-di-AMP in C. glutamicum, is not detrimental for this organism under the tested conditions.
Collapse
Affiliation(s)
- Sebastian J. Reich
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | | | - Dominik Weixler
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Tamara Weiß
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
14
|
Functional mgrA Influences Genetic Changes within a Staphylococcus aureus Cell Population over Time. J Bacteriol 2022; 204:e0013822. [PMID: 36154359 DOI: 10.1128/jb.00138-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prolonged survival in the host-bacteria microenvironment drives the selection of alternative cell types in Staphylococcus aureus, permitting quasi-dormant sub-populations to develop. These facilitate antibiotic tolerance, long-term growth, and relapse of infection. Small Colony Variants (SCV) are an important cell type associated with persistent infection but are difficult to study in vitro due to the instability of the phenotype and reversion to the normal cell type. We have previously reported that under conditions of growth in continuous culture over a prolonged culture time, SCVs dominated a heterogenous population of cell types and these SCVs harbored a mutation in the DNA binding domain of the gene for the transcription factor, mgrA. To investigate this specific cell type further, S. aureus WCH-SK2-ΔmgrA itself was assessed with continuous culture. Compared to the wild type, the mgrA mutant strain required fewer generations to select for SCVs. There was an increased rate of mutagenesis within the ΔmgrA strain compared to the wild type, which we postulate is the mechanism explaining the increased emergence of SCV selection. The mgrA derived SCVs had impeded metabolism, altered MIC to specific antibiotics and an increased biofilm formation compared to non-SCV strain. Whole genomic sequencing detected single nucleotide polymorphisms (SNP) in phosphoglucosamine mutase glmM and tyrosine recombinase xerC. In addition, several genomic rearrangements were detected which affected genes involved in important functions such as antibiotic and toxic metal resistance and pathogenicity. Thus, we propose a direct link between mgrA and the SCV phenotype. IMPORTANCE Within a bacterial population, a stochastically generated heterogeneity of phenotypes allows continual survival against current and future stressors. The generation of a sub-population of quasi-dormant Small Colony Variants (SCV) in Staphylococcus aureus is such a mechanism, allowing for persistent or relapse of infection despite initial intervention seemingly clearing the infection. The use of continuous culture under clinically relevant conditions has allowed us to introduce time to the growth system and selects SCV within the population. This study provides valuable insights into the generation of SCV which are not addressed in standard laboratory generated models and reveals new pathways for understanding persistent S. aureus infection which can potentially be targeted in future treatments of persistent S. aureus infection.
Collapse
|
15
|
Oberkampf M, Hamiot A, Altamirano-Silva P, Bellés-Sancho P, Tremblay YDN, DiBenedetto N, Seifert R, Soutourina O, Bry L, Dupuy B, Peltier J. c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by Clostridioides difficile. Sci Signal 2022; 15:eabn8171. [PMID: 36067333 PMCID: PMC9831359 DOI: 10.1126/scisignal.abn8171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To colonize the host and cause disease, the human enteropathogen Clostridioides difficile must sense, respond, and adapt to the harsh environment of the gastrointestinal tract. We showed that the production and degradation of cyclic diadenosine monophosphate (c-di-AMP) were necessary during different phases of C. difficile growth, environmental adaptation, and infection. The production of this nucleotide second messenger was essential for growth because it controlled the uptake of potassium and also contributed to biofilm formation and cell wall homeostasis, whereas its degradation was required for osmotolerance and resistance to detergents and bile salts. The c-di-AMP binding transcription factor BusR repressed the expression of genes encoding the compatible solute transporter BusAA-AB. Compared with the parental strain, a mutant lacking BusR was more resistant to hyperosmotic and bile salt stresses, whereas a mutant lacking BusAA was more susceptible. A short exposure of C. difficile cells to bile salts decreased intracellular c-di-AMP concentrations, suggesting that changes in membrane properties induce alterations in the intracellular c-di-AMP concentration. A C. difficile strain that could not degrade c-di-AMP failed to persist in a mouse gut colonization model as long as the wild-type strain did. Thus, the production and degradation of c-di-AMP in C. difficile have pleiotropic effects, including the control of osmolyte uptake to confer osmotolerance and bile salt resistance, and its degradation is important for host colonization.
Collapse
Affiliation(s)
- Marine Oberkampf
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Audrey Hamiot
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Paula Bellés-Sancho
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Yannick D. N. Tremblay
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Microbiology Laboratory, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bruno Dupuy
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Johann Peltier
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
16
|
Wyllie JA, McKay MV, Barrow AS, Soares da Costa TP. Biosynthesis of uridine diphosphate N-Acetylglucosamine: An underexploited pathway in the search for novel antibiotics? IUBMB Life 2022; 74:1232-1252. [PMID: 35880704 PMCID: PMC10087520 DOI: 10.1002/iub.2664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022]
Abstract
Although the prevalence of antibiotic resistance is increasing at an alarming rate, there are a dwindling number of effective antibiotics available. Thus, the development of novel antibacterial agents should be of utmost importance. Peptidoglycan biosynthesis has been and is still an attractive source for antibiotic targets; however, there are several components that remain underexploited. In this review, we examine the enzymes involved in the biosynthesis of one such component, UDP-N-acetylglucosamine, an essential building block and precursor of bacterial peptidoglycan. Furthermore, given the presence of a similar biosynthesis pathway in eukaryotes, we discuss the current knowledge on the differences and similarities between the bacterial and eukaryotic enzymes. Finally, this review also summarises the recent advances made in the development of inhibitors targeting the bacterial enzymes.
Collapse
Affiliation(s)
- Jessica A Wyllie
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Mirrin V McKay
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Wang M, Wamp S, Gibhardt J, Holland G, Schwedt I, Schmidtke KU, Scheibner K, Halbedel S, Commichau FM. Adaptation of Listeria monocytogenes to perturbation of c-di-AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system. Environ Microbiol 2022; 24:4466-4488. [PMID: 35688634 DOI: 10.1111/1462-2920.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
The human pathogen Listeria monocytogenes synthesizes and degrades c-di-AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c-di-AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c-di-AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c-di-AMP-free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine-dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA-binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c-di-AMP in controlling osmolyte homeostasis in L. monocytogenes.
Collapse
Affiliation(s)
- Mengyi Wang
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Sabrina Wamp
- Division of Enteropathogenic Bacteria and Legionella, Robert-Koch-Institute, 38855, Wernigerode, Germany
| | - Johannes Gibhardt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,Research Complex NanoBio, Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya ulitsa 29A, Saint Petersburg, 195251, Russia
| | - Gudrun Holland
- ZBS4 - Advanced Light and Electron Microscopy, Robert-Koch-Institute, Seestraße 10, 13353, Berlin, Germany
| | - Inge Schwedt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Kai-Uwe Schmidtke
- FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Katrin Scheibner
- FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Sven Halbedel
- Division of Enteropathogenic Bacteria and Legionella, Robert-Koch-Institute, 38855, Wernigerode, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
18
|
Mudgal S, Manikandan K, Mukherjee A, Krishnan A, Sinha KM. Cyclic di-AMP: Small molecule with big roles in bacteria. Microb Pathog 2021; 161:105264. [PMID: 34715302 DOI: 10.1016/j.micpath.2021.105264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023]
Abstract
Cyclic dinucleotides are second messengers that are present in all the three domains of life, bacteria, archaea, and eukaryotes. These dinucleotides have important physiological and pathophysiological roles in bacteria. Cyclic di-AMP (cdA) is one of the recently discovered cyclic dinucleotides present predominantly in gram-positive bacteria. cdA is synthesized through diadenylate cyclase (DAC) activity from ATP in a two-step process and hydrolyzed to linear dinucleotide pApA (and to 5' AMP in certain cases) by specific phosphodiesterases. cdA regulates various physiological processes like K+ transport and osmotic balance, DNA repair, cell wall homeostasis, drug resistance, central metabolism either by binding directly to the target protein or regulating its expression. It also participates in host-pathogen interaction by binding to host immune receptors ERAdP, RECON, and STING.
Collapse
Affiliation(s)
- Sudhanshu Mudgal
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Kasi Manikandan
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Ahana Mukherjee
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India.
| | | |
Collapse
|
19
|
Pathania M, Tosi T, Millership C, Hoshiga F, Morgan RML, Freemont PS, Gründling A. Structural basis for the inhibition of the Bacillus subtilis c-di-AMP cyclase CdaA by the phosphoglucomutase GlmM. J Biol Chem 2021; 297:101317. [PMID: 34678313 PMCID: PMC8573169 DOI: 10.1016/j.jbc.2021.101317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Cyclic-di-adenosine monophosphate (c-di-AMP) is an important nucleotide signaling molecule that plays a key role in osmotic regulation in bacteria. c-di-AMP is produced from two molecules of ATP by proteins containing a diadenylate cyclase (DAC) domain. In Bacillus subtilis, the main c-di-AMP cyclase, CdaA, is a membrane-linked cyclase with an N-terminal transmembrane domain followed by the cytoplasmic DAC domain. As both high and low levels of c-di-AMP have a negative impact on bacterial growth, the cellular levels of this signaling nucleotide are tightly regulated. Here we investigated how the activity of the B. subtilis CdaA is regulated by the phosphoglucomutase GlmM, which has been shown to interact with the c-di-AMP cyclase. Using the soluble B. subtilis CdaACD catalytic domain and purified full-length GlmM or the GlmMF369 variant lacking the C-terminal flexible domain 4, we show that the cyclase and phosphoglucomutase form a stable complex in vitro and that GlmM is a potent cyclase inhibitor. We determined the crystal structure of the individual B. subtilis CdaACD and GlmM homodimers and of the CdaACD:GlmMF369 complex. In the complex structure, a CdaACD dimer is bound to a GlmMF369 dimer in such a manner that GlmM blocks the oligomerization of CdaACD and formation of active head-to-head cyclase oligomers, thus suggesting a mechanism by which GlmM acts as a cyclase inhibitor. As the amino acids at the CdaACD:GlmM interphase are conserved, we propose that the observed mechanism of inhibition of CdaA by GlmM may also be conserved among Firmicutes.
Collapse
Affiliation(s)
- Monisha Pathania
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Tommaso Tosi
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Charlotte Millership
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Fumiya Hoshiga
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rhodri M L Morgan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paul S Freemont
- London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, London, United Kingdom; Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom; UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom.
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom.
| |
Collapse
|
20
|
A rationally designed c-di-AMP FRET biosensor to monitor nucleotide dynamics. J Bacteriol 2021; 203:e0008021. [PMID: 34309402 DOI: 10.1128/jb.00080-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3'3'-cyclic di-adenosine monophosphate (c-di-AMP) is an important nucleotide second messenger found throughout the bacterial domain of life. C-di-AMP is essential in many bacteria and regulates a diverse array of effector proteins controlling pathogenesis, cell wall homeostasis, osmoregulation, and central metabolism. Despite the ubiquity and importance of c-di-AMP, methods to detect this signaling molecule are limited, particularly at single cell resolution. In this work, crystallization of the Listeria monocytogenes c-di-AMP effector protein Lmo0553 enabled structure guided design of a Förster resonance energy transfer (FRET) based biosensor, which we have named CDA5. CDA5 is a fully genetically encodable, specific, and reversible biosensor which allows for the detection of c-di-AMP dynamics both in vitro and within live cells in a nondestructive manner. Our initial studies identify a distribution of c-di-AMP in Bacillus subtilis populations first grown in Luria Broth and then resuspended in diluted Luria Broth compatible with florescence analysis. Furthermore, we find that B. subtilis mutants lacking either a c-di-AMP phosphodiesterase or cyclase have respectively higher and lower FRET responses. These findings provide novel insight into the c-di-AMP distribution within bacterial populations and establish CDA5 as a powerful platform for characterizing new aspects of c-di-AMP regulation. Importance C-di-AMP is an important nucleotide second messenger for which detection methods are severely limited. In this work we engineer and implement a c-di-AMP specific FRET biosensor to remedy this dearth. We present this biosensor, CDA5, as a versatile tool to investigate previously intractable facets of c-di-AMP biology.
Collapse
|
21
|
Eldrid C, Ben-Younis A, Ujma J, Britt H, Cragnolini T, Kalfas S, Cooper-Shepherd D, Tomczyk N, Giles K, Morris M, Akter R, Raleigh D, Thalassinos K. Cyclic Ion Mobility-Collision Activation Experiments Elucidate Protein Behavior in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1545-1552. [PMID: 34006100 PMCID: PMC8172447 DOI: 10.1021/jasms.1c00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ion mobility coupled to mass spectrometry (IM-MS) is widely used to study protein dynamics and structure in the gas phase. Increasing the energy with which the protein ions are introduced to the IM cell can induce them to unfold, providing information on the comparative energetics of unfolding between different proteoforms. Recently, a high-resolution cyclic IM-mass spectrometer (cIM-MS) was introduced, allowing multiple, consecutive tandem IM experiments (IMn) to be carried out. We describe a tandem IM technique for defining detailed protein unfolding pathways and the dynamics of disordered proteins. The method involves multiple rounds of IM separation and collision activation (CA): IM-CA-IM and CA-IM-CA-IM. Here, we explore its application to studies of a model protein, cytochrome C, and dimeric human islet amyloid polypeptide (hIAPP), a cytotoxic and amyloidogenic peptide involved in type II diabetes. In agreement with prior work using single stage IM-MS, several unfolding events are observed for cytochrome C. IMn-MS experiments also show evidence of interconversion between compact and extended structures. IMn-MS data for hIAPP shows interconversion prior to dissociation, suggesting that the certain conformations have low energy barriers between them and transition between compact and extended forms.
Collapse
Affiliation(s)
- Charles Eldrid
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Jakub Ujma
- Waters
Corporation, Wilmslow SK9 4AX, U.K.
| | - Hannah Britt
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | - Tristan Cragnolini
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K.
| | - Symeon Kalfas
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
| | | | | | | | | | - Rehana Akter
- Department
of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Daniel Raleigh
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
- Department
of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, London, WC1E 6BT, U.K.
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K.
| |
Collapse
|
22
|
Cyclic di-AMP Oversight of Counter-Ion Osmolyte Pools Impacts Intrinsic Cefuroxime Resistance in Lactococcus lactis. mBio 2021; 12:mBio.00324-21. [PMID: 33832972 PMCID: PMC8092236 DOI: 10.1128/mbio.00324-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bacterial second messenger cyclic di-AMP (c-di-AMP) is a global regulator of potassium homeostasis and compatible solute uptake in many Gram-positive bacteria, making it essential for osmoregulation. The role that c-di-AMP plays in β-lactam resistance, however, is unclear despite being first identified a decade ago. The broadly conserved cyclic di-AMP (c-di-AMP) is a conditionally essential bacterial second messenger. The pool of c-di-AMP is fine-tuned through diadenylate cyclase and phosphodiesterase activities, and direct binding of c-di-AMP to proteins and riboswitches allows the regulation of a broad spectrum of cellular processes. c-di-AMP has a significant impact on intrinsic β-lactam antibiotic resistance in Gram-positive bacteria; however, the reason for this is currently unclear. In this work, genetic studies revealed that suppressor mutations that decrease the activity of the potassium (K+) importer KupB or the glutamine importer GlnPQ restore cefuroxime (CEF) resistance in diadenylate cyclase (cdaA) mutants of Lactococcus lactis. Metabolite analyses showed that glutamine is imported by GlnPQ and then rapidly converted to glutamate, and GlnPQ mutations or c-di-AMP negatively affects the pools of the most abundant free amino acids (glutamate and aspartate) during growth. In a high-c-di-AMP mutant, GlnPQ activity could be increased by raising the internal K+ level through the overexpression of a c-di-AMP-insensitive KupB variant. These results demonstrate that c-di-AMP reduces GlnPQ activity and, therefore, the level of the major free anions in L. lactis through its inhibition of K+ import. Excessive ion accumulation in cdaA mutants results in greater spontaneous cell lysis under hypotonic conditions, while CEF-resistant suppressors exhibit reduced cell lysis and lower osmoresistance. This work demonstrates that the overaccumulation of major counter-ion osmolyte pools in c-di-AMP-defective mutants of L. lactis causes cefuroxime sensitivity.
Collapse
|
23
|
Yin W, Cai X, Ma H, Zhu L, Zhang Y, Chou SH, Galperin MY, He J. A decade of research on the second messenger c-di-AMP. FEMS Microbiol Rev 2021; 44:701-724. [PMID: 32472931 DOI: 10.1093/femsre/fuaa019] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) is an emerging second messenger in bacteria and archaea that is synthesized from two molecules of ATP by diadenylate cyclases and degraded to pApA or two AMP molecules by c-di-AMP-specific phosphodiesterases. Through binding to specific protein- and riboswitch-type receptors, c-di-AMP regulates a wide variety of prokaryotic physiological functions, including maintaining the osmotic pressure, balancing central metabolism, monitoring DNA damage and controlling biofilm formation and sporulation. It mediates bacterial adaptation to a variety of environmental parameters and can also induce an immune response in host animal cells. In this review, we discuss the phylogenetic distribution of c-di-AMP-related enzymes and receptors and provide some insights into the various aspects of c-di-AMP signaling pathways based on more than a decade of research. We emphasize the key role of c-di-AMP in maintaining bacterial osmotic balance, especially in Gram-positive bacteria. In addition, we discuss the future direction and trends of c-di-AMP regulatory network, such as the likely existence of potential c-di-AMP transporter(s), the possibility of crosstalk between c-di-AMP signaling with other regulatory systems, and the effects of c-di-AMP compartmentalization. This review aims to cover the broad spectrum of research on the regulatory functions of c-di-AMP and c-di-AMP signaling pathways.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xia Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hongdan Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
24
|
Latoscha A, Drexler DJ, Witte G, Tschowri N. Assessment of Diadenylate Cyclase and c-di-AMP-phosphodiesterase Activities Using Thin-layer and Ion Exchange Chromatography. Bio Protoc 2021; 11:e3870. [PMID: 33732760 DOI: 10.21769/bioprotoc.3870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/02/2022] Open
Abstract
All living cells use cyclic nucleotides as second messengers for signal sensing and transduction. Cyclic di-3',5'-adenosine monophosphate (c-di-AMP) is primarily involved in the control of bacterial and euryarcheal osmoadaptation and is produced by diadenylate cyclases from two molecules of ATP. Specific phosphodiesterases hydrolyze c-di-AMP to the linear phosphoadenylate adenosine 5'-pApA or to AMP. Different methods including high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC) and ion exchange chromatography (IEX) can be used to determine activities of c-di-AMP-synthesizing and degrading enzymes. Here, we describe in detail the TLC and IEX methods adapted for characterization of the diadenylate cyclase DisA and the phosphodiesterase AtaC from Streptomyces venezuelae. TLC allows quick and easy separation of radioactive-labeled substrates and products, while IEX avoids utilization of potentially hazardous radioactive substrates and can be used as a good substitute if an HPLC system is not available. Unlike in TLC assays, samples cannot be analyzed in parallel by using the IEX assay, thus it is more time consuming.
Collapse
Affiliation(s)
- Andreas Latoscha
- Department of Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - David Jan Drexler
- Gene Center, Ludwig-Maximilians-Universität München, 81377 München, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Gregor Witte
- Gene Center, Ludwig-Maximilians-Universität München, 81377 München, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Natalia Tschowri
- Department of Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
25
|
Zaver SA, Pollock AJ, Boradia VM, Woodward JJ. A Luminescence-Based Coupled Enzyme Assay Enables High-Throughput Quantification of the Bacterial Second Messenger 3'3'-Cyclic-Di-AMP. Chembiochem 2020; 22:1030-1041. [PMID: 33142009 DOI: 10.1002/cbic.202000667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/02/2020] [Indexed: 11/12/2022]
Abstract
Cyclic dinucleotide signaling systems, which are found ubiquitously throughout nature, allow organisms to rapidly and dynamically sense and respond to alterations in their environments. In recent years, the second messenger, cyclic di-(3',5')-adenosine monophosphate (c-di-AMP), has been identified as an essential signaling molecule in a diverse array of bacterial genera. We and others have shown that defects in c-di-AMP homeostasis result in severe physiological defects and virulence attenuation in many bacterial species. Despite significant advancements in the field, there is still a major gap in the understanding of the environmental and cellular factors that influence c-di-AMP dynamics due to a lack of tools to sensitively and rapidly monitor changes in c-di-AMP levels. To address this limitation, we describe here the development of a luciferase-based coupled enzyme assay that leverages the cyclic nucleotide phosphodiesterase, CnpB, for the sensitive and high-throughput quantification of 3'3'-c-di-AMP. We also demonstrate the utility of this approach for the quantification of the cyclic oligonucleotide-based anti-phage signaling system (CBASS) effector, 3'3'-cGAMP. These findings establish CDA-Luc as a more affordable and sensitive alternative to conventional c-di-AMP detection tools with broad utility for the study of bacterial cyclic dinucleotide physiology.
Collapse
Affiliation(s)
- Shivam A Zaver
- Department of Microbiology, University of Washington, 98195, Seattle, WA, USA
| | - Alex J Pollock
- Department of Microbiology, University of Washington, 98195, Seattle, WA, USA
| | | | - Joshua J Woodward
- Department of Microbiology, University of Washington, 98195, Seattle, WA, USA
| |
Collapse
|
26
|
Casey D, Sleator RD. A genomic analysis of osmotolerance in Staphylococcus aureus. Gene 2020; 767:145268. [PMID: 33157201 DOI: 10.1016/j.gene.2020.145268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/07/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
A key phenotypic characteristic of the Gram-positive bacterial pathogen, Staphylococcus aureus, is its ability to grow in low aw environments. A homology transfer based approach, using the well characterised osmotic stress response systems of Bacillus subtilis and Escherichia coli, was used to identify putative osmotolerance loci in Staphylococcus aureus ST772-MRSA-V. A total of 17 distinct putative hyper and hypo-osmotic stress response systems, comprising 78 genes, were identified. The ST772-MRSA-V genome exhibits significant degeneracy in terms of the osmotic stress response; with three copies of opuD, two copies each of nhaK and mrp/mnh, and five copies of opp. Furthermore, regulation of osmotolerance in ST772-MRSA-V appears to be mediated at the transcriptional, translational, and post-translational levels.
Collapse
Affiliation(s)
- Dylan Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland.
| |
Collapse
|
27
|
Rørvik GH, Liskiewicz KA, Kryuchkov F, Naemi AO, Aasheim HC, Petersen FC, Küntziger TM, Simm R. Cyclic Di-adenosine Monophosphate Regulates Metabolism and Growth in the Oral Commensal Streptococcus mitis. Microorganisms 2020; 8:microorganisms8091269. [PMID: 32825526 PMCID: PMC7570391 DOI: 10.3390/microorganisms8091269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) has emerged as an important bacterial signaling molecule that functions both as an intracellular second messenger in bacterial cells and an extracellular ligand involved in bacteria-host cross-talk. In this study, we identify and characterize proteins involved in controlling the c-di-AMP concentration in the oral commensal and opportunistic pathogen Streptococcusmitis (S. mitis). We identified three known types of c-di-AMP turnover proteins in the genome of S. mitis CCUG31611: a CdaA-type diadenylate cyclase as well as GdpP-, and DhhP-type phosphodiesterases. Biochemical analyses of purified proteins demonstrated that CdaA synthesizes c-di-AMP from ATP whereas both phosphodiesterases can utilize c-di-AMP as well as the intermediary metabolite of c-di-AMP hydrolysis 5'-phosphadenylyl-adenosine (pApA) as substrate to generate AMP, albeit at different catalytic efficiency. Using deletion mutants of each of the genes encoding c-di-AMP turnover proteins, we show by high resolution MS/MS that the intracellular concentration of c-di-AMP is increased in deletion mutants of the phosphodiesterases and non-detectable in the cdaA-mutant. We also detected pApA in mutants of the DhhP-type phosphodiesterase. Low and high levels of c-di-AMP were associated with longer and shorter chains of S. mitis, respectively indicating a role in regulation of cell division. The deletion mutant of the DhhP-type phosphodiesterase displayed slow growth and reduced rate of glucose metabolism.
Collapse
Affiliation(s)
- Gro Herredsvela Rørvik
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Krystyna Anna Liskiewicz
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Fedor Kryuchkov
- Norwegian Veterinary Institute, Pb 750 Sentrum, 0106 Oslo, Norway;
| | - Ali-Oddin Naemi
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Hans-Christian Aasheim
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Fernanda C. Petersen
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Thomas M. Küntziger
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
| | - Roger Simm
- Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; (G.H.R.); (K.A.L.); (A.-O.N.); (H.-C.A.); (F.C.P.); (T.M.K.)
- Correspondence:
| |
Collapse
|
28
|
Abstract
The second messenger molecule cyclic di-AMP (c-di-AMP) is formed by many bacteria and archaea. In many species that produce c-di-AMP, this second messenger is essential for viability on rich medium. Recent research has demonstrated that c-di-AMP binds to a large number of proteins and riboswitches, which are often involved in potassium and osmotic homeostasis. c-di-AMP becomes dispensable if the bacteria are cultivated on minimal media with low concentrations of osmotically active compounds. Thus, the essentiality of c-di-AMP does not result from an interaction with a single essential target but rather from the multilevel control of complex homeostatic processes. This review summarizes current knowledge on the homeostasis of c-di-AMP and its function(s) in the control of cellular processes.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany;
| | - Larissa Krüger
- Department of General Microbiology, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
29
|
He J, Yin W, Galperin MY, Chou SH. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res 2020; 48:2807-2829. [PMID: 32095817 DOI: 10.1093/nar/gkaa112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclic diadenylate (c-di-AMP) is a widespread second messenger in bacteria and archaea that is involved in the maintenance of osmotic pressure, response to DNA damage, and control of central metabolism, biofilm formation, acid stress resistance, and other functions. The primary importance of c-di AMP stems from its essentiality for many bacteria under standard growth conditions and the ability of several eukaryotic proteins to sense its presence in the cell cytoplasm and trigger an immune response by the host cells. We review here the tertiary structures of the domains that regulate c-di-AMP synthesis and signaling, and the mechanisms of c-di-AMP binding, including the principal conformations of c-di-AMP, observed in various crystal structures. We discuss how these c-di-AMP molecules are bound to the protein and riboswitch receptors and what kinds of interactions account for the specific high-affinity binding of the c-di-AMP ligand. We describe seven kinds of non-covalent-π interactions between c-di-AMP and its receptor proteins, including π-π, C-H-π, cation-π, polar-π, hydrophobic-π, anion-π and the lone pair-π interactions. We also compare the mechanisms of c-di-AMP and c-di-GMP binding by the respective receptors that allow these two cyclic dinucleotides to control very different biological functions.
Collapse
Affiliation(s)
- Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China.,Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
30
|
Gibhardt J, Heidemann JL, Bremenkamp R, Rosenberg J, Seifert R, Kaever V, Ficner R, Commichau FM. An extracytoplasmic protein and a moonlighting enzyme modulate synthesis of c-di-AMP in Listeria monocytogenes. Environ Microbiol 2020; 22:2771-2791. [PMID: 32250026 DOI: 10.1111/1462-2920.15008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023]
Abstract
The second messenger cyclic di-AMP (c-di-AMP) is essential for growth of many bacteria because it controls osmolyte homeostasis. c-di-AMP can regulate the synthesis of potassium uptake systems in some bacteria and it also directly inhibits and activates potassium import and export systems, respectively. Therefore, c-di-AMP production and degradation have to be tightly regulated depending on the environmental osmolarity. The Gram-positive pathogen Listeria monocytogenes relies on the membrane-bound diadenylate cyclase CdaA for c-di-AMP production and degrades the nucleotide with two phosphodiesterases. While the enzymes producing and degrading the dinucleotide have been reasonably well examined, the regulation of c-di-AMP production is not well understood yet. Here we demonstrate that the extracytoplasmic regulator CdaR interacts with CdaA via its transmembrane helix to modulate c-di-AMP production. Moreover, we show that the phosphoglucosamine mutase GlmM forms a complex with CdaA and inhibits the diadenylate cyclase activity in vitro. We also found that GlmM inhibits c-di-AMP production in L. monocytogenes when the bacteria encounter osmotic stress. Thus, GlmM is the major factor controlling the activity of CdaA in vivo. GlmM can be assigned to the class of moonlighting proteins because it is active in metabolism and adjusts the cellular turgor depending on environmental osmolarity.
Collapse
Affiliation(s)
- Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Jana L Heidemann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, University of Goettingen, 37077, Göttingen, Germany
| | - Rica Bremenkamp
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Roland Seifert
- Institute of Pharmacology & Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Volkhard Kaever
- Institute of Pharmacology & Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, University of Goettingen, 37077, Göttingen, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| |
Collapse
|
31
|
He J, Yin W, Galperin MY, Chou SH. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res 2020. [PMID: 32095817 DOI: 10.1093/nar/gkaa112"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclic diadenylate (c-di-AMP) is a widespread second messenger in bacteria and archaea that is involved in the maintenance of osmotic pressure, response to DNA damage, and control of central metabolism, biofilm formation, acid stress resistance, and other functions. The primary importance of c-di AMP stems from its essentiality for many bacteria under standard growth conditions and the ability of several eukaryotic proteins to sense its presence in the cell cytoplasm and trigger an immune response by the host cells. We review here the tertiary structures of the domains that regulate c-di-AMP synthesis and signaling, and the mechanisms of c-di-AMP binding, including the principal conformations of c-di-AMP, observed in various crystal structures. We discuss how these c-di-AMP molecules are bound to the protein and riboswitch receptors and what kinds of interactions account for the specific high-affinity binding of the c-di-AMP ligand. We describe seven kinds of non-covalent-π interactions between c-di-AMP and its receptor proteins, including π-π, C-H-π, cation-π, polar-π, hydrophobic-π, anion-π and the lone pair-π interactions. We also compare the mechanisms of c-di-AMP and c-di-GMP binding by the respective receptors that allow these two cyclic dinucleotides to control very different biological functions.
Collapse
Affiliation(s)
- Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China.,Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
32
|
Zeden MS, Kviatkovski I, Schuster CF, Thomas VC, Fey PD, Gründling A. Identification of the main glutamine and glutamate transporters in Staphylococcus aureus and their impact on c-di-AMP production. Mol Microbiol 2020; 113:1085-1100. [PMID: 31997474 PMCID: PMC7299772 DOI: 10.1111/mmi.14479] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Indexed: 12/19/2022]
Abstract
A Staphylococcus aureus strain deleted for the c‐di‐AMP cyclase gene dacA is unable to survive in rich medium unless it acquires compensatory mutations. Previously identified mutations were in opuD, encoding the main glycine‐betaine transporter, and alsT, encoding a predicted amino acid transporter. Here, we show that inactivation of OpuD restores the cell size of a dacA mutant to near wild‐type (WT) size, while inactivation of AlsT does not. AlsT was identified as an efficient glutamine transporter, indicating that preventing glutamine uptake in rich medium rescues the growth of the S. aureus dacA mutant. In addition, GltS was identified as a glutamate transporter. By performing growth curves with WT, alsT and gltS mutant strains in defined medium supplemented with ammonium, glutamine or glutamate, we revealed that ammonium and glutamine, but not glutamate promote the growth of S. aureus. This suggests that besides ammonium also glutamine can serve as a nitrogen source under these conditions. Ammonium and uptake of glutamine via AlsT and hence likely a higher intracellular glutamine concentration inhibited c‐di‐AMP production, while glutamate uptake had no effect. These findings provide, besides the previously reported link between potassium and osmolyte uptake, a connection between nitrogen metabolism and c‐di‐AMP signalling in S. aureus.
Collapse
Affiliation(s)
- Merve S Zeden
- Section of Molecular Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Igor Kviatkovski
- Section of Molecular Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Christopher F Schuster
- Section of Molecular Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Vinai C Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Angelika Gründling
- Section of Molecular Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
33
|
Patel V, Black KA, Rhee KY, Helmann JD. Bacillus subtilis PgcA moonlights as a phosphoglucosamine mutase in support of peptidoglycan synthesis. PLoS Genet 2019; 15:e1008434. [PMID: 31589605 PMCID: PMC6797236 DOI: 10.1371/journal.pgen.1008434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/17/2019] [Accepted: 09/18/2019] [Indexed: 01/25/2023] Open
Abstract
Phosphohexomutase superfamily enzymes catalyze the reversible intramolecular transfer of a phosphoryl moiety on hexose sugars. Bacillus subtilis phosphoglucomutase PgcA catalyzes the reversible interconversion of glucose 6-phosphate (Glc-6-P) and glucose 1-phosphate (Glc-1-P), a precursor of UDP-glucose (UDP-Glc). B. subtilis phosphoglucosamine mutase (GlmM) is a member of the same enzyme superfamily that converts glucosamine 6-phosphate (GlcN-6-P) to glucosamine 1-phosphate (GlcN-1-P), a precursor of the amino sugar moiety of peptidoglycan. Here, we present evidence that B. subtilis PgcA possesses activity as a phosphoglucosamine mutase that contributes to peptidoglycan biosynthesis. This activity was made genetically apparent by the synthetic lethality of pgcA with glmR, a positive regulator of amino sugar biosynthesis, which can be specifically suppressed by overproduction of GlmM. A gain-of-function mutation in a substrate binding loop (PgcA G47S) increases this secondary activity and suppresses a glmR mutant. Our results demonstrate that bacterial phosphoglucomutases may possess secondary phosphoglucosamine mutase activity, and that this dual activity may provide some level of functional redundancy for the essential peptidoglycan biosynthesis pathway.
Collapse
Affiliation(s)
- Vaidehi Patel
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Black
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
34
|
Gibhardt J, Hoffmann G, Turdiev A, Wang M, Lee VT, Commichau FM. c-di-AMP assists osmoadaptation by regulating the Listeria monocytogenes potassium transporters KimA and KtrCD. J Biol Chem 2019; 294:16020-16033. [PMID: 31506295 DOI: 10.1074/jbc.ra119.010046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Indexed: 12/30/2022] Open
Abstract
Many bacteria and some archaea produce the second messenger cyclic diadenosine monophosphate (c-di-AMP). c-di-AMP controls the uptake of osmolytes in Firmicutes, including the human pathogen Listeria monocytogenes, making it essential for growth. c-di-AMP is known to directly regulate several potassium channels involved in osmolyte transport in species such as Bacillus subtilis and Streptococcus pneumoniae, but whether this same mechanism is involved in L. monocytogenes, or even whether similar ion channels were present, was not known. Here, we have identified and characterized the putative L. monocytogenes' potassium transporters KimA, KtrCD, and KdpABC. We demonstrate that Escherichia coli expressing KimA and KtrCD, but not KdpABC, transport potassium into the cell, and both KimA and KtrCD are inhibited by c-di-AMP in vivo For KimA, c-di-AMP-dependent regulation requires the C-terminal domain. In vitro assays demonstrated that the dinucleotide binds to the cytoplasmic regulatory subunit KtrC and to the KdpD sensor kinase of the KdpDE two-component system, which in Staphylococcus aureus regulates the corresponding KdpABC transporter. Finally, we also show that S. aureus contains a homolog of KimA, which mediates potassium transport. Thus, the c-di-AMP-dependent control of systems involved in potassium homeostasis seems to be conserved in phylogenetically related bacteria. Surprisingly, the growth of an L. monocytogenes mutant lacking the c-di-AMP-synthesizing enzyme cdaA is only weakly inhibited by potassium. Thus, the physiological impact of the c-di-AMP-dependent control of potassium uptake seems to be less pronounced in L. monocytogenes than in other Firmicutes.
Collapse
Affiliation(s)
- Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Gregor Hoffmann
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Asan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Mengyi Wang
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
35
|
Heidemann JL, Neumann P, Dickmanns A, Ficner R. Crystal structures of the c-di-AMP-synthesizing enzyme CdaA. J Biol Chem 2019; 294:10463-10470. [PMID: 31118276 DOI: 10.1074/jbc.ra119.009246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 11/06/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is the only second messenger known to be essential for bacterial growth. It has been found mainly in Gram-positive bacteria, including pathogenic bacteria like Listeria monocytogenes CdaA is the sole diadenylate cyclase in L. monocytogenes, making this enzyme an attractive target for the development of novel antibiotic compounds. Here we report crystal structures of CdaA from L. monocytogenes in the apo state, in the post-catalytic state with bound c-di-AMP and catalytic Co2+ ions, as well as in a complex with AMP. These structures reveal the flexibility of a tyrosine side chain involved in locking the adenine ring after ATP binding. The essential role of this tyrosine was confirmed by mutation to Ala, leading to drastic loss of enzymatic activity.
Collapse
Affiliation(s)
- Jana L Heidemann
- From the Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Piotr Neumann
- From the Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Achim Dickmanns
- From the Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Ralf Ficner
- From the Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|