1
|
Li YT, Ko HY, Hughes J, Liu MT, Lin YL, Hampson K, Brunker K. From emergence to endemicity of highly pathogenic H5 avian influenza viruses in Taiwan. Nat Commun 2024; 15:9348. [PMID: 39472594 PMCID: PMC11522503 DOI: 10.1038/s41467-024-53816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
A/goose/Guangdong/1/96-like (GsGd) highly pathogenic avian influenza (HPAI) H5 viruses cause severe outbreaks in poultry when introduced. Since emergence in 1996, control measures in most countries have suppressed local GsGd transmission following introductions, making persistent transmission in domestic birds rare. However, geographical expansion of clade 2.3.4.4 sublineages has raised concern about establishment of endemic circulation, while mechanistic drivers leading to endemicity remain unknown. We reconstructed the evolutionary history of GsGd sublineage, clade 2.3.4.4c, in Taiwan using a time-heterogeneous rate phylogeographic model. During Taiwan's initial epidemic wave (January 2015 - August 2016), we inferred that localised outbreaks had multiple origins from rapid spread between counties/cities nationwide. Subsequently, outbreaks predominantly originated from a single county, Yunlin, where persistent transmission harbours the trunk viruses of the sublineage. Endemic hotspots determined by phylogeographic reconstruction largely predicted the locations of re-emerging outbreaks in Yunlin. The transition to endemicity involved a shift to chicken-dominant circulation, following the initial bidirectional spread between chicken and domestic waterfowl. Our results suggest that following their emergence in Taiwan, source-sink dynamics from a single county have maintained GsGd endemicity up until 2023, pointing to where control efforts should be targeted to eliminate the disease.
Collapse
Affiliation(s)
- Yao-Tsun Li
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Katie Hampson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Kirstyn Brunker
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
2
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
3
|
Youk S, Torchetti MK, Lantz K, Lenoch JB, Killian ML, Leyson C, Bevins SN, Dilione K, Ip HS, Stallknecht DE, Poulson RL, Suarez DL, Swayne DE, Pantin-Jackwood MJ. H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021-April 2022. Virology 2023; 587:109860. [PMID: 37572517 DOI: 10.1016/j.virol.2023.109860] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) of the A/goose/Guangdong/1/1996 lineage H5 clade 2.3.4.4b continue to have a devastating effect on domestic and wild birds. Full genome sequence analyses using 1369 H5N1 HPAIVs detected in the United States (U.S.) in wild birds, commercial poultry, and backyard flocks from December 2021 to April 2022, showed three phylogenetically distinct H5N1 virus introductions in the U.S. by wild birds. Unreassorted Eurasian genotypes A1 and A2 entered the Northeast Atlantic states, whereas a genetically distinct A3 genotype was detected in Alaska. The A1 genotype spread westward via wild bird migration and reassorted with North American wild bird avian influenza viruses. Reassortments of up to five internal genes generated a total of 21 distinct clusters; of these, six genotypes represented 92% of the HPAIVs examined. By phylodynamic analyses, most detections in domestic birds were shown to be point-source transmissions from wild birds, with limited farm-to-farm spread.
Collapse
Affiliation(s)
- Sungsu Youk
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA; Microbiology Laboratory, Department of Medicine, College of Medicine, Chungbuk National University, Chungbuk, South Korea
| | - Mia Kim Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, USDA, Ames, IA, USA
| | - Kristina Lantz
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, USDA, Ames, IA, USA
| | - Julianna B Lenoch
- Wildlife Services National Wildlife Disease Program, Animal and Plant Health Inspections Service, USDA, Fort Collins, CO, USA
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, USDA, Ames, IA, USA
| | - Christina Leyson
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA
| | - Sarah N Bevins
- Wildlife Services National Wildlife Disease Program, Animal and Plant Health Inspections Service, USDA, Fort Collins, CO, USA
| | - Krista Dilione
- Wildlife Services National Wildlife Disease Program, Animal and Plant Health Inspections Service, USDA, Fort Collins, CO, USA
| | - Hon S Ip
- United States Geological Survey, National Wildlife Health Center, Laboratory Services Branch, Madison, WI, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - David L Suarez
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA
| | - David E Swayne
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA
| | - Mary J Pantin-Jackwood
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA.
| |
Collapse
|
4
|
Gass JD, Hill NJ, Damodaran L, Naumova EN, Nutter FB, Runstadler JA. Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016-Early 2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6030. [PMID: 37297634 PMCID: PMC10252585 DOI: 10.3390/ijerph20116030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
H5Nx highly pathogenic avian influenza (HPAI) viruses of clade 2.3.4.4 have caused outbreaks in Europe among wild and domestic birds since 2016 and were introduced to North America via wild migratory birds in December 2021. We examined the spatiotemporal extent of HPAI viruses across continents and characterized ecological and environmental predictors of virus spread between geographic regions by constructing a Bayesian phylodynamic generalized linear model (phylodynamic-GLM). The findings demonstrate localized epidemics of H5Nx throughout Europe in the first several years of the epizootic, followed by a singular branching point where H5N1 viruses were introduced to North America, likely via stopover locations throughout the North Atlantic. Once in the United States (US), H5Nx viruses spread at a greater rate between US-based regions as compared to prior spread in Europe. We established that geographic proximity is a predictor of virus spread between regions, implying that intercontinental transport across the Atlantic Ocean is relatively rare. An increase in mean ambient temperature over time was predictive of reduced H5Nx virus spread, which may reflect the effect of climate change on declines in host species abundance, decreased persistence of the virus in the environment, or changes in migratory patterns due to ecological alterations. Our data provide new knowledge about the spread and directionality of H5Nx virus dispersal in Europe and the US during an actively evolving intercontinental outbreak, including predictors of virus movement between regions, which will contribute to surveillance and mitigation strategies as the outbreak unfolds, and in future instances of uncontained avian spread of HPAI viruses.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125, USA
| | | | - Elena N. Naumova
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02155, USA
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
5
|
Emergence, Evolution, and Biological Characteristics of H10N4 and H10N8 Avian Influenza Viruses in Migratory Wild Birds Detected in Eastern China in 2020. Microbiol Spectr 2022; 10:e0080722. [PMID: 35389243 PMCID: PMC9045299 DOI: 10.1128/spectrum.00807-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
H10Nx influenza viruses have caused increasing public concern due to their occasional infection of humans. However, the genesis and biological characteristics of H10 viruses in migratory wild birds are largely unknown. In this study, we conducted active surveillance to monitor circulation of avian influenza viruses in eastern China and isolated five H10N4 and two H10N8 viruses from migratory birds in 2020. Genetic analysis indicated that the hemagglutinin (HA) genes of the seven H10 viruses were clustered into the North American lineage and established as a novel Eurasian branch in wild birds in South Korea, Bangladesh, and China. The neuraminidase (NA) genes of the H10N4 and H10N8 viruses originated from the circulating HxN4 and H5N8 viruses in migratory birds in Eurasia. We further revealed that some of the novel H10N4 and H10N8 viruses acquired the ability to bind human-like receptors. Animal studies indicated that these H10 viruses can replicate in mice, chickens, and ducks. Importantly, we found that the H10N4 and H10N8 viruses can transmit efficiently among chickens and ducks but induce lower HA inhibition (HI) antibody titers in ducks. These findings emphasized that annual surveillance in migratory waterfowl should be strengthened to monitor the introduction of wild-bird H10N4 and H10N8 reassortants into poultry. IMPORTANCE The emerging avian influenza reassortants and mutants in birds pose an increasing threat to poultry and public health. H10 avian influenza viruses are widely prevalent in wild birds, poultry, seals, and minks and pose an increasing threat to human health. The occasional human infections with H10N8 and H10N3 viruses in China have significantly increased public concern about the potential pandemic risk posed by H10 viruses. In this study, we found that the North American H10 viruses have been successfully introduced to Asia by migratory birds and further reassorted with other subtypes to generate novel H10N4 and H10N8 viruses in eastern China. These emerging H10 reassortants have a high potential to threaten the poultry industry and human health due to their efficient replication and transmission in chickens, ducks, and mice.
Collapse
|
6
|
Ellis JW, Root JJ, McCurdy LM, Bentler KT, Barrett NL, VanDalen KK, Dirsmith KL, Shriner SA. Avian influenza A virus susceptibility, infection, transmission, and antibody kinetics in European starlings. PLoS Pathog 2021; 17:e1009879. [PMID: 34460868 PMCID: PMC8432794 DOI: 10.1371/journal.ppat.1009879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/10/2021] [Accepted: 08/09/2021] [Indexed: 01/22/2023] Open
Abstract
Avian influenza A viruses (IAVs) pose risks to public, agricultural, and wildlife health. Bridge hosts are spillover hosts that share habitat with both maintenance hosts (e.g., mallards) and target hosts (e.g., poultry). We conducted a comprehensive assessment of European starlings (Sturnus vulgaris), a common visitor to both urban and agricultural environments, to assess whether this species might act as a potential maintenance or bridge host for IAVs. First, we experimentally inoculated starlings with a wild bird IAV to investigate susceptibility and replication kinetics. Next, we evaluated whether IAV might spill over to starlings from sharing resources with a widespread IAV reservoir host. We accomplished this using a specially designed transmission cage to simulate natural environmental transmission by exposing starlings to water shared with IAV-infected mallards (Anas platyrhynchos). We then conducted a contact study to assess intraspecies transmission between starlings. In the initial experimental infection study, all inoculated starlings shed viral RNA and seroconverted. All starlings in the transmission study became infected and shed RNA at similar levels. All but one of these birds seroconverted, but detectable antibodies were relatively transient, falling to negative levels in a majority of birds by 59 days post contact. None of the contact starlings in the intraspecies transmission experiment became infected. In summary, we demonstrated that starlings may have the potential to act as IAV bridge hosts if they share water with IAV-infected waterfowl. However, starlings are unlikely to act as maintenance hosts due to limited, if any, intraspecies transmission. In addition, starlings have a relatively brief antibody response which should be considered when interpreting serology from field samples. Further study is needed to evaluate the potential for transmission from starlings to poultry, a possibility enhanced by starling's behavioral trait of forming very large flocks which can descend on poultry facilities when natural resources are scarce.
Collapse
Affiliation(s)
- Jeremy W. Ellis
- National Wildlife Research Center—Wildlife Services, Animal Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - J. Jeffrey Root
- National Wildlife Research Center—Wildlife Services, Animal Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Loredana M. McCurdy
- National Wildlife Research Center—Wildlife Services, Animal Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Kevin T. Bentler
- National Wildlife Research Center—Wildlife Services, Animal Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Nicole L. Barrett
- National Wildlife Research Center—Wildlife Services, Animal Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Kaci K. VanDalen
- National Wildlife Research Center—Wildlife Services, Animal Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Katherine L. Dirsmith
- National Wildlife Research Center—Wildlife Services, Animal Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Susan A. Shriner
- National Wildlife Research Center—Wildlife Services, Animal Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lee K, Pusterla N, Barnum SM, Lee DH, Martínez-López B. Genome-informed characterisation of antigenic drift in the haemagglutinin gene of equine influenza strains circulating in the United States from 2012 to 2017. Transbound Emerg Dis 2021; 69:e52-e63. [PMID: 34331828 DOI: 10.1111/tbed.14262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 01/14/2023]
Abstract
Equine influenza virus (EIV) is a major infectious pathogen causing significant respiratory signs in equids worldwide. Voluntary surveillances in the United States recently reported EIV detection in horses with respiratory signs even with adequate vaccine protocols and biosecurity programs and posed a concern about suboptimal effectiveness of EIV vaccine in the United States. This study aims to determine the genetic characteristics of 58 field EIV H3N8 strains in the United States from 2012 to 2017 using the phylogenetic analysis based on the haemagglutinin (HA) gene. Amino acid substitution and acquisition of N-glycosylation of the HA gene were also evaluated. Phylogenetic analysis identified that almost all US field strains belonged to the Florida clade 1 (FC1) except one Florida clade 2 strain from a horse imported in 2014. US EIV strains in 2017 shared 11 fixed amino acid substitutions in the HA gene, compared to the vaccine strain (A/equine/Ohio/2003), and two additional amino acid substitutions were detected in 2019. The introduction of foreign EIV strains into the United States was not detected, but antigenic drift without acquisition of N-glycosylation in the HA gene was observed in US field strains until 2017. Considering the global dominance of FC1 strains, subsequent antigenic drift of US EIV strains should be monitored for better effectiveness of the EIV vaccine in the United States and global equine industries.
Collapse
Affiliation(s)
- Kyuyoung Lee
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, USA
| | - Nicola Pusterla
- Department of Medicine & Epidemiology, School Veterinary Medicine, University of California, Davis, USA
| | - Samantha M Barnum
- Department of Medicine & Epidemiology, School Veterinary Medicine, University of California, Davis, USA
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, the University of Connecticut, Storrs, Connecticut, USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
8
|
Guinat C, Vergne T, Kocher A, Chakraborty D, Paul MC, Ducatez M, Stadler T. What can phylodynamics bring to animal health research? Trends Ecol Evol 2021; 36:837-847. [PMID: 34034912 DOI: 10.1016/j.tree.2021.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022]
Abstract
Infectious diseases are a major burden to global economies, and public and animal health. To date, quantifying the spread of infectious diseases to inform policy making has traditionally relied on epidemiological data collected during epidemics. However, interest has grown in recent phylodynamic techniques to infer pathogen transmission dynamics from genetic data. Here, we provide examples of where this new discipline has enhanced disease management in public health and illustrate how it could be further applied in animal health. In particular, we describe how phylodynamics can address fundamental epidemiological questions, such as inferring key transmission parameters in animal populations and quantifying spillover events at the wildlife-livestock interface, and generate important insights for the design of more effective control strategies.
Collapse
Affiliation(s)
- Claire Guinat
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Timothee Vergne
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Arthur Kocher
- Transmission, Infection, Diversification & Evolution (tide) group, Max Planck Institute for the Science of Human History, Kahlaische str. 10, 07745 Jena, Germany
| | - Debapryio Chakraborty
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Mathilde C Paul
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Mariette Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31300 Toulouse, France
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
9
|
Youk SS, Leyson CM, Seibert BA, Jadhao S, Perez DR, Suarez DL, Pantin-Jackwood MJ. Mutations in PB1, NP, HA, and NA Contribute to Increased Virus Fitness of H5N2 Highly Pathogenic Avian Influenza Virus Clade 2.3.4.4 in Chickens. J Virol 2021; 95:JVI.01675-20. [PMID: 33268526 PMCID: PMC8092828 DOI: 10.1128/jvi.01675-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/19/2020] [Indexed: 12/26/2022] Open
Abstract
The H5N8 highly pathogenic avian influenza (HPAI) clade 2.3.4.4 virus spread to North America by wild birds and reassorted to generate the H5N2 HPAI virus that caused the poultry outbreak in the United States in 2015. In previous studies, we showed that H5N2 viruses isolated from poultry in the later stages of the outbreak had higher infectivity and transmissibility in chickens than the wild bird index H5N2 virus. Here, we determined the genetic changes that contributed to the difference in host virus fitness by analyzing sequence data from all of the viruses detected during the H5N2 outbreak, and studying the pathogenicity of reassortant viruses generated with the index wild bird virus and a chicken virus from later in the outbreak. Viruses with the wild bird virus backbone and either PB1, NP, or the entire polymerase complex of the chicken isolate, caused higher and earlier mortality in chickens, with three mutations (PB1 E180D, M317V, and NP I109T) identified to increase polymerase activity in chicken cells. The reassortant virus with the HA and NA from the chicken virus, where mutations in functionally known gene regions were acquired as the virus circulated in turkeys (HA S141P and NA S416G) and later in chickens (HA M66I, L322Q), showed faster virus growth, bigger plaque size and enhanced heat persistence in vitro, and increased pathogenicity and transmissibility in chickens. Collectively, these findings demonstrate an evolutionary pathway in which a HPAI virus from wild birds can accumulate genetic changes to increase fitness in poultry.IMPORTANCE H5Nx highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 lineage continue to circulate widely affecting both poultry and wild birds. These viruses continue to change and reassort, which affects their fitness to different avian hosts. In this study, we defined mutations associated with increased virus fitness in chickens as the clade 2.3.4.4. H5N2 HPAI virus circulated in different avian species. We identified mutations in the PB1, NP, HA, and NA virus proteins that were highly conserved in the poultry isolates and contributed to the adaptation of this virus in chickens. This knowledge is important for understanding the epidemiology of H5Nx HPAI viruses and specifically the changes related to adaptation of these viruses in poultry.
Collapse
Affiliation(s)
- Sung-Su Youk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Christina M Leyson
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Brittany A Seibert
- Department of Population Health, University of Georgia, Poultry Diagnostic and Research Center, Athens, Georgia, USA
| | - Samadhan Jadhao
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
- Department of Pediatrics, School of Medicine, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Poultry Diagnostic and Research Center, Athens, Georgia, USA
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| |
Collapse
|
10
|
Kerstetter LJ, Buckley S, Bliss CM, Coughlan L. Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses. Front Immunol 2021; 11:607333. [PMID: 33633727 PMCID: PMC7901974 DOI: 10.3389/fimmu.2020.607333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
Collapse
Affiliation(s)
- Lucas J. Kerstetter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen Buckley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carly M. Bliss
- Division of Cancer & Genetics, Division of Infection & Immunity, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Abstract
The chicken model organism has advanced the areas of developmental biology, virology, immunology, oncology, epigenetic regulation of gene expression, conservation biology, and genomics of domestication. Further, the chicken model organism has aided in our understanding of human disease. Through the recent advances in high-throughput sequencing and bioinformatic tools, researchers have successfully identified sequences in the chicken genome that have human orthologs, improving mammalian genome annotation. In this review, we highlight the importance of chicken as an animal model in basic and pre-clinical research. We will present the importance of chicken in poultry epigenetics and in genomic studies that trace back to their ancestor, the last link between human and chicken in the tree of life. There are still many genes of unknown function in the chicken genome yet to be characterized. By taking advantage of recent sequencing technologies, it is possible to gain further insight into the chicken epigenome.
Collapse
Affiliation(s)
- Tasnim H Beacon
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
12
|
Vaiente MA, Scotch M. Going back to the roots: Evaluating Bayesian phylogeographic models with discrete trait uncertainty. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104501. [PMID: 32798768 PMCID: PMC7686256 DOI: 10.1016/j.meegid.2020.104501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 01/14/2023]
Abstract
Phylogeography is a popular way to analyze virus sequences annotated with discrete, epidemiologically-relevant, trait data. For applied public health surveillance, a key quantity of interest is often the state at the root of the inferred phylogeny. In epidemiological terms, this represents the geographic origin of the observed outbreak. Since determining the origin of an outbreak is often critical for public health intervention, it is prudent to understand how well phylogeographic models perform this root state classification task under various analytical scenarios. Specifically, we investigate how discrete state space and sequence data set influence the root state classification accuracy. We performed phylogeographic inference on several simulated DNA data sets while i) increasing the number of sequences and ii) increasing the total number of possible discrete trait values. We show that phylogeographic models tend to perform best at intermediate sequence data set sizes. Further, we demonstrate that a popular metric used for evaluation of phylogeographic models, the Kullback-Leibler (KL) divergence, both increases with discrete state space and data set sizes. Further, by modeling phylogeographic root state classification accuracy using logistic regression, we show that KL is not supported as a predictor of model accuracy, indicating its limited utility for assessing phylogeographic model performance on empirical data. These results suggest that relying solely on the KL metric may lead to artificially inflated support for models with finer discretization schemes and larger data set sizes. These results will be important for public health practitioners seeking to use phylogeographic models for applied infectious disease surveillance.
Collapse
Affiliation(s)
- Matteo A Vaiente
- Biodesign Center for Environmental Health Engineering, Arizona State University, 727 E. Tyler St, Tempe, AZ 85281, USA; College of Health Solutions, Arizona State University, 500 N 3rd St, Phoenix, AZ 85004, USA
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Arizona State University, 727 E. Tyler St, Tempe, AZ 85281, USA; College of Health Solutions, Arizona State University, 500 N 3rd St, Phoenix, AZ 85004, USA.
| |
Collapse
|
13
|
Lee K, Yu D, Martínez-López B, Yoon H, Kang SI, Hong SK, Lee I, Kang Y, Jeong W, Lee E. Fine-scale tracking of wild waterfowl and their impact on highly pathogenic avian influenza outbreaks in the Republic of Korea, 2014-2015. Sci Rep 2020; 10:18631. [PMID: 33122803 PMCID: PMC7596240 DOI: 10.1038/s41598-020-75698-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Wild migratory waterfowl are considered one of the most important reservoirs and long-distance carriers of highly pathogenic avian influenza (HPAI). Our study aimed to explore the spatial and temporal characteristics of wild migratory waterfowl’s wintering habitat in the Republic of Korea (ROK) and to evaluate the impact of these habitats on the risk of HPAI outbreaks in commercial poultry farms. The habitat use of 344 wild migratory waterfowl over four migration cycles was estimated based on tracking records. The association of habitat use with HPAI H5N8 outbreaks in poultry farms was evaluated using a multilevel logistic regression model. We found that a poultry farm within a wild waterfowl habitat had a 3–8 times higher risk of HPAI outbreak than poultry farms located outside of the habitat. The range of wild waterfowl habitats increased during autumn migration, and was associated with the epidemic peak of HPAI outbreaks on domestic poultry farms in the ROK. Our findings provide a better understanding of the dynamics of HPAI infection in the wildlife–domestic poultry interface and may help to establish early detection, and cost-effective preventive measures.
Collapse
Affiliation(s)
- Kyuyoung Lee
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Daesung Yu
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea.
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Hachung Yoon
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Sung-Il Kang
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Seong-Keun Hong
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Ilseob Lee
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Yongmyung Kang
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Wooseg Jeong
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Eunesub Lee
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| |
Collapse
|
14
|
Jara M, Rasmussen DA, Corzo CA, Machado G. Porcine reproductive and respiratory syndrome virus dissemination across pig production systems in the United States. Transbound Emerg Dis 2020; 68:667-683. [PMID: 32657491 DOI: 10.1111/tbed.13728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains widespread in the North American pig population. Despite improvements in virus characterization, it is unclear whether PRRSV infections are a product of viral circulation within production systems (local) or across production systems (external). Here, we examined the local and external dissemination dynamics of PRRSV and the processes facilitating its spread in three production systems. Overall, PRRSV genetic diversity has declined since 2018, while phylodynamic results support frequent external transmission. We found that PRRSV dissemination predominantly occurred mostly through transmission between farms of different production companies for several months, especially from November until May, a timeframe already established as PRRSV season. Although local PRRSV dissemination occurred mainly through regular pig flow (from sow to nursery and then to finisher farms), an important flux of PRRSV dissemination also occurred in the opposite direction, from finisher to sow and nursery farms, highlighting the importance of downstream farms as sources of the virus. Our results also showed that farms with pig densities of 500 to 1,000 pig/km2 and farms located at a range within 0.5 km and 0.7 km from major roads were more likely to be infected by PRRSV, whereas farms at an elevation of 41 to 61 meters and surrounded by denser vegetation were less likely to be infected, indicating their role as dissemination barriers. In conclusion, our results demonstrate that external dissemination was intense, and reinforce the importance of farm proximity on PRRSV spread. Thus, consideration of farm location, geographic characteristics and animal densities across production systems may help to forecast PRRSV collateral dissemination.
Collapse
Affiliation(s)
- Manuel Jara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Cesar A Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|