1
|
Scholte F, Karaaslan E, Bergeron É. Reverse Genetics System for Crimean-Congo Hemorrhagic Fever Virus. Methods Mol Biol 2025; 2893:247-256. [PMID: 39671042 DOI: 10.1007/978-1-0716-4338-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Reverse genetic systems are powerful tools in molecular virology that allow the generation of infectious recombinant virus and the manipulation of viral genomes. Reverse genetic systems enable the incorporation of reporter genes, facilitating many virological assays, including high-throughput screening. Additionally, reverse genetic systems can be used to introduce targeted mutations into the viral genome, allowing investigations of viral genetic elements and protein functions in virus pathogenesis and biology. Here we describe in detail the materials and methods required for the Crimean-Congo hemorrhagic fever virus (CCHFV) reverse genetic system. This system can be used to generate complete infectious recombinant virus, and virus-like replicon particles (VRPs) lacking the M segment but complemented with an exogenous source of glycoprotein precursor (GPC); resulting in single-round replicon particles that can be used to study components of the viral replicative cycle at a lower biosafety level.
Collapse
Affiliation(s)
- Florine Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, USA.
| |
Collapse
|
2
|
Sorvillo TE, Ritter JM, Welch SR, Coleman-McCray JD, Davies KA, Hayes HM, Pegan SD, Montgomery JM, Bergeron É, Spiropoulou CF, Spengler JR. Inflammation associated with monocyte/macrophage activation and recruitment corresponds with lethal outcome in a mouse model of Crimean-Congo haemorrhagic fever 1. Emerg Microbes Infect 2024; 13:2427782. [PMID: 39513496 DOI: 10.1080/22221751.2024.2427782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/26/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) causes human disease ranging from subclinical to a fatal haemorrhagic syndrome. Determinants of CCHF pathogenesis are largely unknown and animal models that recapitulate human disease are limited. A recently described mouse model uses a monoclonal antibody (mAb 5A3) targeting the interferon (IFN) alpha/beta receptor to suppress type I IFN responses, making animals transiently susceptible to infection. To advance utility of this model, we investigated effects of challenge route, timing of 5A3 delivery, mouse sex and age, and virus strain on clinical course and outcome. C57BL/6J mice received mAb 5A3 -1, 0, or -1/+1 days post-infection (dpi). Subsets were challenged with CCHFV strain Turkey04 or IbAr10200 subcutaneously or intraperitoneally, and serially euthanized 3- and 7-dpi, when meeting euthanasia criteria or at study completion (14 dpi). CCHFV-IbAr10200-infected mice almost uniformly succumbed to infection, whereas CCHFV-Turkey04-infected mice transiently lost weight but survived. These results were consistent regardless of mAb timing or route of challenge. Viral replication and dissemination were comparable between the two strains at 3 dpi. However, in the plasma and livers of non-survivors, expression of proinflammatory cytokines/chemokines that correspond with macrophage activation and recruitment were significantly elevated. Lethal disease was also associated with elevated levels of macrophage activation marker CD163 in plasma. Further, mouse macrophages were more permissive to IbAr1200 infection in vitro, suggesting tropism for these cells may influence pathogenesis. Our data suggest that early inflammation may be a critical determinant of CCHF outcome and therapeutics to control inflammation may be worthwhile targets for future investigation.
Collapse
Affiliation(s)
- Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Infectious Disease Department, CDC Foundation, Atlanta, GA, USA
| | - Jana M Ritter
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katherine A Davies
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
- United States Department of Agriculture, Agricultural Research Service, Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS, USA
| | - Heather M Hayes
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Scott D Pegan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
3
|
Welch SR, Bilello JP, Carter K, Delang L, Dirr L, Durantel D, Feng JY, Gowen BB, Herrero LJ, Janeba Z, Kleymann G, Lee AA, Meier C, Moffat J, Schang LM, Schiffer JT, Seley-Radtke KL, Sheahan TP, Spengler JR. Meeting report of the 37th International Conference on Antiviral Research in Gold Coast, Australia, May 20-24, 2024, organized by the International Society for Antiviral Research. Antiviral Res 2024; 232:106037. [PMID: 39542140 DOI: 10.1016/j.antiviral.2024.106037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The 37th International Conference on Antiviral Research (ICAR) was held in Gold Coast, Australia, May 20-24, 2024. ICAR 2024 featured over 75 presentations along with two poster sessions and special events, including those specifically tailored for trainees and early-career scientists. The meeting served as a platform for the exchange of cutting-edge research, with presentations and discussions covering novel antiviral compounds, vaccine development, clinical trials, and therapeutic advancements. A comprehensive array of topics in antiviral science was covered, from the latest breakthroughs in antiviral drug development to innovative strategies for combating emerging viral threats. The keynote presentations provided fascinating insight into two diverse areas fundamental to medical countermeasure development and use, including virus emergence at the human-animal interface and practical considerations for bringing antivirals to the clinic. Additional sessions addressed a variety of timely post-pandemic topics, such as the hunt for broad spectrum antivirals, combination therapy, pandemic preparedness, application of in silico tools and AI in drug discovery, the virosphere, and more. Here, we summarize all the presentations and special sessions of ICAR 2024 and introduce the 38th ICAR, which will be held in Las Vegas, USA, March 17-21, 2025.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | - Leen Delang
- Virus-Host Interactions & Therapeutic Approaches Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Larissa Dirr
- Institute for Biomedicine and Glycomics, Griffith University, Southport, QLD, Australia
| | - David Durantel
- Centre International de Recherche en Infectiologie (CIRI), Inserm_U1111, CNRS_UMR5308, Université Claude Bernard Lyon 1, F-69007, Lyon, France
| | - Joy Y Feng
- Division of the Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Brian B Gowen
- Institute for Antiviral Research and Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Lara J Herrero
- Institute for Biomedicine and Glycomics, Griffith University, Southport, QLD, Australia
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Gerald Kleymann
- Innovative Molecules GmbH, Lipowsky Str. 10, 81373, Munich, Bavaria, Germany
| | | | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, Hamburg, Germany
| | - Jennifer Moffat
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Luis M Schang
- Baker Institute and Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, USA; Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
4
|
Leventhal SS, Bisom T, Clift D, Rao D, Meade-White K, Shaia C, Murray J, Mihalakakos EA, Hinkley T, Reynolds SJ, Best SM, Erasmus JH, James LC, Feldmann H, Hawman DW. Antibodies targeting the Crimean-Congo Hemorrhagic Fever Virus nucleoprotein protect via TRIM21. Nat Commun 2024; 15:9236. [PMID: 39455551 PMCID: PMC11511847 DOI: 10.1038/s41467-024-53362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a negative-sense RNA virus spread by Hyalomma genus ticks across Europe, Asia, and Africa. CCHF disease begins as a non-specific febrile illness which may progress into a severe hemorrhagic disease with no widely approved or highly efficacious interventions currently available. Recently, we reported a self-replicating, alphavirus-based RNA vaccine that expresses the CCHFV nucleoprotein and is protective against lethal CCHFV disease in mice. This vaccine induces high titers of non-neutralizing anti-NP antibodies and we show here that protection does not require Fc-gamma receptors or complement. Instead, vaccinated mice deficient in the intracellular Fc-receptor TRIM21 were unable to control the infection despite mounting robust CCHFV-specific immunity. We also show that passive transfer of NP-immune sera confers significant TRIM21-dependent protection against lethal CCHFV challenge. Together our data identifies TRIM21-mediated mechanisms as the Fc effector function of protective antibodies against the CCHFV NP and provides mechanistic insight into how vaccines against the CCHFV NP confer protection.
Collapse
Affiliation(s)
- Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Thomas Bisom
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB20QH, UK
| | - Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Justin Murray
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Evan A Mihalakakos
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Steven J Reynolds
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Sonja M Best
- Laboratory of Neurological Infections and Immunity, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Leo C James
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB20QH, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
5
|
Gunter K, Omoga D, Bowen JM, Gonzalez LR, Severt S, Davis M, Szymanski M, Sandusky G, Duprex WP, Tilston-Lunel NL. A reporter Oropouche virus expressing ZsGreen from the M segment enables pathogenesis studies in mice. J Virol 2024; 98:e0089324. [PMID: 39194249 PMCID: PMC11406970 DOI: 10.1128/jvi.00893-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Oropouche fever caused by Oropouche virus (OROV) is a significant zoonosis in Central and South America. Despite its public health significance, we lack high-throughput diagnostics, therapeutics, and a comprehensive knowledge of OROV biology. Reporter viruses are valuable tools to rapidly study virus dynamics and develop neutralization and antiviral screening assays. OROV is a tri-segmented bunyavirus, which makes generating a reporter virus challenging, as introducing foreign elements into the viral genome typically affects fitness. We previously demonstrated that the non-structural gene NSm on the OROV medium (M) segment is non-essential for replication in vitro. Taking advantage of this, we have now generated a recombinant OROV expressing fluorescent protein ZsGreen in place of NSm. This reporter OROV is both stable and pathogenic in IFNAR-/- mice and provides a powerful tool for OROV pathogenesis studies and assay development.IMPORTANCEEmerging and reemerging infectious agents such as zoonotic bunyaviruses are of global health concern. Oropouche virus (OROV) causes recurring outbreaks of acute febrile illness in the Central and South American human populations. Biting midges are the primary transmission vectors, whereas sloths and non-human primates are their reservoir hosts. As global temperatures increase, we will likely see an expansion in arthropod-borne pathogens such as OROV. Therefore, developing reagents to study pathogen biology to aid in identifying druggable targets is essential. Here, we demonstrate the feasibility and use of a fluorescent OROV reporter in mice to study viral dynamics and pathogenesis. We show that this reporter OROV maintains characteristics such as growth and pathogenicity similar to the wild-type virus. Using this reporter virus, we can now develop methods to assist OROV studies and establish various high-throughput assays.
Collapse
Affiliation(s)
- Krista Gunter
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dorcus Omoga
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James M. Bowen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lorimar Robledo Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sydney Severt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mackenzie Davis
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Megan Szymanski
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - George Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - W. Paul Duprex
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Natasha L. Tilston-Lunel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Ikegawa M, Kano N, Ori D, Fukuta M, Hirano M, Hewson R, Yoshii K, Kawai T, Kawasaki T. HuR (ELAVL1) regulates the CCHFV minigenome and HAZV replication by associating with viral genomic RNA. PLoS Negl Trop Dis 2024; 18:e0012553. [PMID: 39348382 PMCID: PMC11466401 DOI: 10.1371/journal.pntd.0012553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/10/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Crimean-Congo Hemorrhagic Fever virus (CCHFV) is a tick-borne pathogen that causes severe acute fever disease in humans and requires a biosafety level 4 laboratory for handling. Hazara virus (HAZV), belonging to the same virus genus as CCHFV, does not exhibit pathogenesis in humans. To investigate host RNA-binding proteins (RBPs) that regulate CCHFV replication, we generated a series of mutant RAW264.7 cells by CRISPR/Cas9 system and these cells were infected with HAZV. The viral titers in the supernatant of these cells was investigated, and HuR (ELAVL1) was identified. HuR KO RAW264.7 cells reduced HAZV replication. HuR is an RBP that enhances mRNA stability by binding to adenyl-uridine (AU)-rich regions in their 3' non-coding region (NCR). HuR regulates innate immune response by binding to host mRNAs of signaling molecules. The expression of cytokine genes such as Ifnb, Il6, and Tnf was reduced in HuR KO cells after HAZV infection. Although HuR supports the innate immune response during HAZV infection, we found that innate immune activation by HAZV infection did not affect its replication. We then investigated whether HuR regulates HAZV genome RNA stability. HAZV RNA genome was precipitated with an anti-HuR antibody, and HAZV genome RNA stability was lowered in HuR KO cells. We found that HuR associated with HAZV RNA and stabilized it to enhance HAZV replication. Furthermore, HuR-deficiency reduced CCHFV minigenome replication. CCHFV is a negative-strand RNA virus and positive-strand RNA is produced during replication. HuR was associated with positive-strand RNA rather than negative-strand RNA, and AU-rich region in 3'-NCR of S segment was responsible for immunoprecipitation with anti-HuR antibody and minigenome replication. Additionally, HuR inhibitor treatment reduced CCHFV minigenome replication. Our results indicate that HuR aids replication of the CCHFV minigenome by associating with the AU-rich region in the 3'-NCR.
Collapse
Affiliation(s)
- Moe Ikegawa
- Immune Dynamics in Viral Infections, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
| | - Norisuke Kano
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
| | - Mizuki Fukuta
- Viral Ecology, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Minato Hirano
- Viral Ecology, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Roger Hewson
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK; and UK-Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Kentaro Yoshii
- Viral Ecology, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takumi Kawasaki
- Immune Dynamics in Viral Infections, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
Karaaslan E, Sorvillo TE, Scholte FEM, O'Neal TJ, Welch SR, Davies KA, Coleman-McCray JD, Harmon JR, Ritter JM, Pegan SD, Montgomery JM, Spengler JR, Spiropoulou CF, Bergeron É. Crimean Congo hemorrhagic fever virus nucleoprotein and GP38 subunit vaccine combination prevents morbidity in mice. NPJ Vaccines 2024; 9:148. [PMID: 39143104 PMCID: PMC11324950 DOI: 10.1038/s41541-024-00931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Immunizing mice with Crimean-Congo hemorrhagic fever virus (CCHFV) nucleoprotein (NP), glycoprotein precursor (GPC), or with the GP38 domain of GPC, can be protective when the proteins are delivered with viral vectors or as a DNA or RNA vaccine. Subunit vaccines are a safe and cost-effective alternative to some vaccine platforms, but Gc and Gn glycoprotein subunit vaccines for CCHFV fail to protect despite eliciting high levels of neutralizing antibodies. Here, we investigated humoral and cellular immune responses and the protective efficacy of recombinant NP, GP38, and GP38 forms (GP85 and GP160) associated with the highly glycosylated mucin-like (MLD) domain, as well as the NP + GP38 combination. Vaccination with GP160, GP85, or GP38 did not confer protection, and vaccination with the MLD-associated GP38 forms blunted the humoral immune responses to GP38, worsened clinical chemistry, and increased viral RNA in the blood compared to the GP38 vaccination. In contrast, NP vaccination conferred 100% protection from lethal outcome and was associated with mild clinical disease, while the NP + GP38 combination conferred even more robust protection by reducing morbidity compared to mice receiving NP alone. Thus, recombinant CCHFV NP alone is a promising vaccine candidate conferring 100% survival against heterologous challenge. Moreover, incorporation of GP38 should be considered as it further enhances subunit vaccine efficacy by reducing morbidity in surviving animals.
Collapse
Affiliation(s)
- Elif Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Troy Justin O'Neal
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katherine A Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- U.S. Department of Agriculture, Agricultural Research Service, Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jana M Ritter
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Scott D Pegan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Welch SR, Garrison AR, Bente DA, Burt F, D'Addiego J, Devignot S, Dowall S, Fischer K, Hawman DW, Hewson R, Mirazimi A, Oestereich L, Vatansever Z, Spengler JR, Papa A. Third International Conference on Crimean-Congo Hemorrhagic Fever in Thessaloniki, Greece, September 19-21, 2023. Antiviral Res 2024; 225:105844. [PMID: 38428749 DOI: 10.1016/j.antiviral.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
The Third International Conference on Crimean-Congo Hemorrhagic Fever (CCHF) was held in Thessaloniki, Greece, September 19-21, 2023, bringing together a diverse group of international partners, including public health professionals, clinicians, ecologists, epidemiologists, immunologists, and virologists. The conference was attended by 118 participants representing 24 countries and the World Health Organization (WHO). Meeting sessions covered the epidemiology of CCHF in humans; Crimean-Congo hemorrhagic fever virus (CCHFV) in ticks; wild and domestic animal hosts; molecular virology; pathogenesis and animal models; immune response related to therapeutics; and CCHF prevention in humans. The concluding session focused on recent WHO recommendations regarding disease prevention, control strategies, and innovations against CCHFV outbreaks. This meeting report summarizes lectures by the invited speakers and highlights advances in the field.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Aura R Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Dennis A Bente
- Galveston National Laboratory, Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service and Division of Virology, University of the Free State, Bloemfontein, South Africa
| | - Jake D'Addiego
- UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Stephanie Devignot
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Stuart Dowall
- UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald-Insel Riems, Germany
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Roger Hewson
- UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infectious Research, Partner Sites Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Zati Vatansever
- Kafkas University, Faculty of Veterinary Medicine, Dept. of Parasitology, Kars, Turkey
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anna Papa
- Department of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Ariizumi T, Tabata K, Itakura Y, Kobayashi H, Hall WW, Sasaki M, Sawa H, Matsuno K, Orba Y. Establishment of a lethal mouse model of emerging tick-borne orthonairovirus infections. PLoS Pathog 2024; 20:e1012101. [PMID: 38502642 PMCID: PMC10980201 DOI: 10.1371/journal.ppat.1012101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/29/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Emerging and reemerging tick-borne virus infections caused by orthonairoviruses (family Nairoviridae), which are genetically distinct from Crimean-Congo hemorrhagic fever virus, have been recently reported in East Asia. Here, we have established a mouse infection model using type-I/II interferon receptor-knockout mice (AG129 mice) both for a better understanding of the pathogenesis of these infections and validation of antiviral agents using Yezo virus (YEZV), a novel orthonairovirus causing febrile illnesses associated with tick bites in Japan and China. YEZV-inoculated AG129 mice developed hepatitis with body weight loss and died by 6 days post infection. Blood biochemistry tests showed elevated liver enzyme levels, similar to YEZV-infected human patients. AG129 mice treated with favipiravir survived lethal YEZV infection, demonstrating the anti-YEZV effect of this drug. The present mouse model will help us better understand the pathogenicity of the emerging tick-borne orthonairoviruses and the development of specific antiviral agents for their treatment.
Collapse
Affiliation(s)
- Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Hiroko Kobayashi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - William W. Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland
- Global Virus Network, Baltimore, Maryland, United States of America
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, United States of America
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Keita Matsuno
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Davies KA, Welch SR, Jain S, Sorvillo TE, Coleman-McCray JD, Montgomery JM, Spiropoulou CF, Albariño C, Spengler JR. Fluorescent and Bioluminescent Reporter Mouse-Adapted Ebola Viruses Maintain Pathogenicity and Can Be Visualized in Vivo. J Infect Dis 2023; 228:S536-S547. [PMID: 37145895 PMCID: PMC11014640 DOI: 10.1093/infdis/jiad136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
Ebola virus (EBOV) causes lethal disease in humans but not in mice. Here, we generated recombinant mouse-adapted (MA) EBOVs, including 1 based on the previously reported serially adapted strain (rMA-EBOV), along with single-reporter rMA-EBOVs expressing either fluorescent (ZsGreen1 [ZsG]) or bioluminescent (nano-luciferase [nLuc]) reporters, and dual-reporter rMA-EBOVs expressing both ZsG and nLuc. No detriment to viral growth in vitro was seen with inclusion of MA-associated mutations or reporter proteins. In CD-1 mice, infection with MA-EBOV, rMA-EBOV, and single-reporter rMA-EBOVs conferred 100% lethality; infection with dual-reporter rMA-EBOV resulted in 73% lethality. Bioluminescent signal from rMA-EBOV expressing nLuc was detected in vivo and ex vivo using the IVIS Spectrum CT. Fluorescent signal from rMA-EBOV expressing ZsG was detected in situ using handheld blue-light transillumination and ex vivo through epi-illumination with the IVIS Spectrum CT. These data support the use of reporter MA-EBOV for studies of Ebola virus in animal disease models.
Collapse
Affiliation(s)
- Katherine A Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shilpi Jain
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - César Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
11
|
Rao D, Meade-White K, Leventhal S, Mihalakakos E, Carmody A, Feldmann H, Hawman DW. CD8 + T-cells target the Crimean-Congo haemorrhagic fever virus Gc protein to control the infection in wild-type mice. EBioMedicine 2023; 97:104839. [PMID: 37866114 PMCID: PMC10623175 DOI: 10.1016/j.ebiom.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Crimean-Congo haemorrhagic fever (CCHF) is a serious viral hemorrhagic fever caused by the CCHF virus (CCHFV). Spread by the bites of infected ticks or handling of viremic livestock, human disease is characterized by a non-specific febrile illness that can rapidly progress to fatal hemorrhagic disease. No vaccines or antivirals are available. Case fatality rates can vary but can be higher than 30%, although sub-clinical infections are often unrecognized and unreported. Yet, while most humans infected with CCHFV will survive the infection, often with little-to-no symptoms, the host responses that control the infection are unknown. METHODS Here we investigated the role of cellular immunity in control of CCHFV infection in an immunocompetent mouse model. FINDINGS We found that CD8+ T-cells are crucial for efficient control of the acute infection and rapidly acquired CCHFV-specific antiviral effector functions such as production of antiviral cytokines and degranulating in response to CCHFV peptides. We further identified the minimal CD8+ T-cell epitopes in the viral Gc proteins and that infection of mice lacking IFNγ resulted in worsened disease and higher viral loads. INTERPRETATION Together our data suggest that CD8+ T-cells are important for control of acute CCHFV infection likely through production of antiviral cytokines. FUNDING This work was supported by the Intramural Research Program of the NIH.
Collapse
Affiliation(s)
- Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Evan Mihalakakos
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Aaron Carmody
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| |
Collapse
|
12
|
Scholte FEM, Karaaslan E, O’Neal TJ, Sorvillo TE, Genzer SC, Welch SR, Coleman-McCray JD, Spengler JR, Kainulainen MH, Montgomery JM, Pegan SD, Bergeron E, Spiropoulou CF. Vaccination with the Crimean-Congo hemorrhagic fever virus viral replicon vaccine induces NP-based T-cell activation and antibodies possessing Fc-mediated effector functions. Front Cell Infect Microbiol 2023; 13:1233148. [PMID: 37671145 PMCID: PMC10475602 DOI: 10.3389/fcimb.2023.1233148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 09/07/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV; family Nairoviridae) is a tick-borne pathogen that frequently causes lethal disease in humans. CCHFV has a wide geographic distribution, and cases have been reported in Africa, Asia, the Middle East, and Europe. Availability of a safe and efficacious vaccine is critical for restricting outbreaks and preventing disease in endemic countries. We previously developed a virus-like replicon particle (VRP) vaccine that provides complete protection against homologous and heterologous lethal CCHFV challenge in mice after a single dose. However, the immune responses induced by this vaccine are not well characterized, and correlates of protection remain unknown. Here we comprehensively characterized the kinetics of cell-mediated and humoral immune responses in VRP-vaccinated mice, and demonstrate that they predominantly target the nucleoprotein (NP). NP antibodies are not associated with protection through neutralizing activity, but VRP vaccination results in NP antibodies possessing Fc-mediated antibody effector functions, such as complement activation (ADCD) and antibody-mediated cellular phagocytosis (ADCP). This suggests that Fc-mediated effector functions may contribute to this vaccine's efficacy.
Collapse
Affiliation(s)
- F. E. M. Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - E. Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - T. J. O’Neal
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - T. E. Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - S. C. Genzer
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - S. R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - J. D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - J. R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - M. H. Kainulainen
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - J. M. Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - S. D. Pegan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - E. Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| | - C. F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, United States
| |
Collapse
|
13
|
Li H, Smith G, Goolia M, Marszal P, Pickering BS. Comparative characterization of Crimean-Congo hemorrhagic fever virus cell culture systems with application to propagation and titration methods. Virol J 2023; 20:128. [PMID: 37337294 DOI: 10.1186/s12985-023-02089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is a biosafety level 4 and World Health Organization top priority pathogen. Infection leads to an often fatal hemorrhagic fever disease in humans. The tick-borne virus is endemic in countries across Asia, Europe and Africa, with signs of spreading into new regions. Despite the severity of disease and the potential of CCHFV geographic expansion to cause widespread outbreaks, no approved vaccine or treatment is currently available. Critical for basic research and the development of diagnostics or medical countermeasures, CCHFV viral stocks are commonly produced in Vero E6 and SW-13 cell lines. While a variety of in-house methods are being used across different laboratories, there has been no clear, specific consensus on a standard, optimal system for CCHFV growth and titration. In this study, we perform a systematic, side-by-side characterization of Vero E6 and SW-13 cell lines concerning the replication kinetics of CCHFV under different culture conditions. SW-13 cells are typically cultured in a CO2-free condition (SW-13 CO2-) according to the American Type Culture Collection. However, we identify a CO2-compatible culture condition (SW-13 CO2+) that demonstrates the highest viral load (RNA concentration) and titer (infectious virus concentration) in the culture supernatants, in comparison to SW-13 CO2- and Vero E6 cultures. This optimal viral propagation system also leads to the development of two titration methods: an immunostaining-based plaque assay using a commercial CCHFV antibody and a colorimetric readout, and an antibody staining-free, cytopathic effect-based median tissue culture infectious dose assay using a simple excel calculator. These are anticipated to serve as a basis for a reproducible, standardized and user-friendly platform for CCHFV propagation and titration.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Melissa Goolia
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Peter Marszal
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Bradley S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
14
|
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a severe tick-borne illness with a wide geographical distribution and case fatality rates of 30% or higher. Caused by infection with the CCHF virus (CCHFV), cases are reported throughout Africa, the Middle East, Asia and southern and eastern Europe. The expanding range of the Hyalomma tick vector is placing new populations at risk for CCHF, and no licensed vaccines or specific antivirals exist to treat CCHF. Furthermore, despite cases of CCHF being reported annually, the host and viral determinants of CCHFV pathogenesis are poorly understood. CCHFV can productively infect a multitude of animal species, yet only humans develop a severe illness. Within human populations, subclinical infections are underappreciated and may represent a substantial proportion of clinical outcomes. Compared with other members of the Bunyavirales order, CCHFV has a more complex genomic organization, with many viral proteins having unclear functions in viral pathogenesis. In recent years, improved animal models have led to increased insights into CCHFV pathogenesis, and several antivirals and vaccines for CCHFV have shown robust efficacy in preclinical models. Translation of these insights and candidate therapeutics to the clinic will hopefully reduce the morbidity and mortality caused by CCHFV.
Collapse
|
15
|
Recent advances in treatment Crimean-Congo hemorrhagic fever virus: A concise overview. Microb Pathog 2022; 169:105657. [PMID: 35753597 DOI: 10.1016/j.micpath.2022.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/19/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
The Crimean Congo Hemorrhagic Fever Virus (CCHFV) is widespread in Africa, Asia, and Europe, among other places. The disease was initially discovered in the Crimean cities of the Soviet Union and the Congo, and it was given the name Crimean Congo because it induces hemorrhagic fever. According to studies, when the virus enters the body, it settles in immune cells such as macrophages and dendritic cells, causing them to malfunction and secrete inflammatory cytokines such as TNF-alpha, IL1, and IL6, resulting in cytokine storms that induces shock via endothelial activation and vascular leakage, while on the other hand, clots and disseminated intravascular coagulation (DIC) formation causes massive defects in various organs such as the liver and kidneys, as well as fatal bleeding. Disease prevention and treatment are crucial since no other effective vaccination against the disease has yet been developed. Immunotherapy is utilized as a consequence. One of the most effective treatments, when combined with compensatory therapies such as blood and platelet replacement, water, electrolytes, Fresh Frozen Plasma (FFP) replacement, and other compensatory therapies, is one of the most effective treatments. Studies; show that immunotherapy using IVIG and neutralizing and non-neutralizing monoclonal antibodies; cytokine therapy, and anti-inflammatory therapy using corticosteroids are effective ways to treat the disease.
Collapse
|
16
|
Rodriguez SE, Hawman DW, Sorvillo TE, O'Neal TJ, Bird BH, Rodriguez LL, Bergeron É, Nichol ST, Montgomery JM, Spiropoulou CF, Spengler JR. Immunobiology of Crimean-Congo hemorrhagic fever. Antiviral Res 2022; 199:105244. [PMID: 35026307 PMCID: PMC9245446 DOI: 10.1016/j.antiviral.2022.105244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022]
Abstract
Human infection with Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne pathogen in the family Nairoviridae, can result in a spectrum of outcomes, ranging from asymptomatic infection through mild clinical signs to severe or fatal disease. Studies of CCHFV immunobiology have investigated the relationship between innate and adaptive immune responses with disease severity, attempting to elucidate factors associated with differential outcomes. In this article, we begin by highlighting unanswered questions, then review current efforts to answer them. We discuss in detail current clinical studies and research in laboratory animals on CCHF, including immune targets of infection and adaptive and innate immune responses. We summarize data about the role of the immune response in natural infections of animals and humans and experimental studies in vitro and in vivo and from evaluating immune-based therapies and vaccines, and present recommendations for future research.
Collapse
Affiliation(s)
- Sergio E Rodriguez
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - David W Hawman
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - T Justin O'Neal
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brian H Bird
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient Point, New York, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.
| |
Collapse
|
17
|
Spengler JR, Welch SR, Scholte FEM, Rodriguez SE, Harmon JR, Coleman-McCray JD, Nichol ST, Montgomery JM, Bergeron É, Spiropoulou CF. Viral replicon particles protect IFNAR -/- mice against lethal Crimean-Congo hemorrhagic fever virus challenge three days after vaccination. Antiviral Res 2021; 191:105090. [PMID: 34044061 DOI: 10.1016/j.antiviral.2021.105090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes mild to severe and fatal disease in humans. Person-to-person transmission is common, necessitating the availability of rapidly deliverable therapeutic and prophylactic interventions to mitigate CCHFV spread. Previously, we showed complete protection using one dose of a viral replicon particle (VRP) vaccine administered 28 days before CCHFV challenge. In order to determine the utility of the VRP vaccine for rapid vaccination protocols, we assessed the efficacy of such vaccination administered at various intervals relative to challenge in IFNAR-/- mice. Unvaccinated mice uniformly succumbed to disease by 8 days post infection (dpi). All mice vaccinated 14, 7, or 3 days prior to CCHFV challenge survived infection. Mice vaccinated -14 or -7 dpi were fully protected from clinical disease, whereas mice inoculated -3 dpi developed signs of disease prior to recovering to baseline values 5-9 dpi. These data support the utility of the VRP vaccine for modified short course vaccination protocols to protect against disease and severe outcomes.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Sergio E Rodriguez
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| |
Collapse
|
18
|
Gilbride C, Saunders J, Sharpe H, Maze EA, Limon G, Ludi AB, Lambe T, Belij-Rammerstorfer S. The Integration of Human and Veterinary Studies for Better Understanding and Management of Crimean-Congo Haemorrhagic Fever. Front Immunol 2021; 12:629636. [PMID: 33815379 PMCID: PMC8012513 DOI: 10.3389/fimmu.2021.629636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Outbreaks that occur as a result of zoonotic spillover from an animal reservoir continue to highlight the importance of studying the disease interface between species. One Health approaches recognise the interdependence of human and animal health and the environmental interplay. Improving the understanding and prevention of zoonotic diseases may be achieved through greater consideration of these relationships, potentially leading to better health outcomes across species. In this review, special emphasis is given on the emerging and outbreak pathogen Crimean-Congo Haemorrhagic Fever virus (CCHFV) that can cause severe disease in humans. We discuss the efforts undertaken to better understand CCHF and the importance of integrating veterinary and human research for this pathogen. Furthermore, we consider the use of closely related nairoviruses to model human disease caused by CCHFV. We discuss intervention approaches with potential application for managing CCHFV spread, and how this concept may benefit both animal and human health.
Collapse
Affiliation(s)
- Ciaran Gilbride
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jack Saunders
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah Sharpe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
19
|
Diaz-Salazar C, Sun JC. Natural killer cell responses to emerging viruses of zoonotic origin. Curr Opin Virol 2020; 44:97-111. [PMID: 32784125 PMCID: PMC7415341 DOI: 10.1016/j.coviro.2020.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Emerging viral diseases pose a major threat to public health worldwide. Nearly all emerging viruses, including Ebola, Dengue, Nipah, West Nile, Zika, and coronaviruses (including SARS-Cov2, the causative agent of the current COVID-19 pandemic), have zoonotic origins, indicating that animal-to-human transmission constitutes a primary mode of acquisition of novel infectious diseases. Why these viruses can cause profound pathologies in humans, while natural reservoir hosts often show little evidence of disease is not completely understood. Differences in the host immune response, especially within the innate compartment, have been suggested to be involved in this divergence. Natural killer (NK) cells are innate lymphocytes that play a critical role in the early antiviral response, secreting effector cytokines and clearing infected cells. In this review, we will discuss the mechanisms through which NK cells interact with viruses, their contribution towards maintaining equilibrium between the virus and its natural host, and their role in disease progression in humans and other non-natural hosts.
Collapse
Affiliation(s)
- Carlos Diaz-Salazar
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, United States
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
20
|
Condrey JA, Flietstra T, Nestor KM, Schlosser EL, Coleman-McCray JD, Genzer SC, Welch SR, Spengler JR. Prothrombin Time, Activated Partial Thromboplastin Time, and Fibrinogen Reference Intervals for Inbred Strain 13/N Guinea Pigs ( Cavia porcellus) and Validation of Low Volume Sample Analysis. Microorganisms 2020; 8:microorganisms8081127. [PMID: 32726969 PMCID: PMC7463423 DOI: 10.3390/microorganisms8081127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022] Open
Abstract
Inbred strain 13/N guinea pigs are used as small animal models for the study of hemorrhagic fever viruses. Coagulation abnormalities, including prolonged clotting times and bleeding, are characteristic of hemorrhagic fever in humans; patients often meet criteria for disseminated intravascular coagulation (DIC). Comprehensively evaluating coagulation function is critical in model development and studies of viral pathogenesis and therapeutic efficacy. Here, using the VetScan VSpro veterinary point-of-care platform, we developed reference intervals in both juvenile and adult strain 13/N guinea pigs for three coagulation parameters: prothrombin time (PT), activated partial thromboplastin time (aPTT), and fibrinogen. In addition, for situations or species with limited availability of blood for clinical analysis, we investigated the validity of a modified collection approach for low-volume (0.1 mL) blood sample analysis of PT and aPTT.
Collapse
Affiliation(s)
- Jillian A. Condrey
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.A.C.); (K.M.N.); (E.L.S.); (S.C.G.)
| | - Timothy Flietstra
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (T.F.); (J.D.C.-M.); (S.R.W.)
| | - Kaitlyn M. Nestor
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.A.C.); (K.M.N.); (E.L.S.); (S.C.G.)
| | - Elizabeth L. Schlosser
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.A.C.); (K.M.N.); (E.L.S.); (S.C.G.)
| | - JoAnn D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (T.F.); (J.D.C.-M.); (S.R.W.)
| | - Sarah C. Genzer
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.A.C.); (K.M.N.); (E.L.S.); (S.C.G.)
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (T.F.); (J.D.C.-M.); (S.R.W.)
| | - Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (T.F.); (J.D.C.-M.); (S.R.W.)
- Correspondence: ; Tel.: +1-404-639-1136; Fax: +1-404-639-1509
| |
Collapse
|
21
|
Differential Growth Characteristics of Crimean-Congo Hemorrhagic Fever Virus in Kidney Cells of Human and Bovine Origin. Viruses 2020; 12:v12060685. [PMID: 32630501 PMCID: PMC7354505 DOI: 10.3390/v12060685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes a lethal tick-borne zoonotic disease with severe clinical manifestation in humans but does not produce symptomatic disease in wild or domestic animals. The factors contributing to differential outcomes of infection between species are not yet understood. Since CCHFV is known to have tropism to kidney tissue and cattle play an important role as an amplifying host for CCHFV, in this study, we assessed in vitro cell susceptibility to CCHFV infection in immortalized and primary kidney and adrenal gland cell lines of human and bovine origin. Based on our indirect fluorescent focus assay (IFFA), we suggest a cell-to-cell CCHF viral spread process in bovine kidney cells but not in human cells. Over the course of seven days post-infection (dpi), infected bovine kidney cells are found in restricted islet-like areas. In contrast, three dpi infected human kidney or adrenal cells were noted in areas distant from one another yet progressed to up to 100% infection of the monolayer. Pronounced CCHFV replication, measured by quantitative real-time RT-PCR (qRT-PCR) of both intra- and extracellular viral RNA, was documented only in human kidney cells, supporting restrictive infection in cells of bovine origin. To further investigate the differences, lactate dehydrogenase activity and cytopathic effects were measured at different time points in all mentioned cells. In vitro assays indicated that CCHFV infection affects human and bovine kidney cells differently, where human cell lines seem to be markedly permissive. This is the initial reporting of CCHFV susceptibility and replication patterns in bovine cells and the first report to compare human and animal cell permissiveness in vitro. Further investigations will help to understand the impact of different cell types of various origins on the virus–host interaction.
Collapse
|
22
|
The Crimean-Congo Hemorrhagic Fever Virus NSm Protein is Dispensable for Growth In Vitro and Disease in Ifnar -/- Mice. Microorganisms 2020; 8:microorganisms8050775. [PMID: 32455700 PMCID: PMC7285326 DOI: 10.3390/microorganisms8050775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tri-segmented, tick-borne nairovirus that causes disease of ranging severity in humans. The CCHFV M segment encodes a complex glycoprotein precursor (GPC) that undergoes extensive endoproteolytic cleavage, giving rise to two structural proteins (Gn and Gc) required for virus attachment and entry, and to multiple non-structural proteins (NSm, GP160, GP85, and GP38). The functions of these non-structural proteins remain largely unclear. Here, we investigate the role of NSm during infection by generating a recombinant CCHFV lacking the complete NSm domain (10200∆NSm) and observing CCHFV ∆NSm replication in cell lines and pathogenicity in Ifnar-/- mice. Our data demonstrate that the NSm domain is dispensable for viral replication in vitro, and, despite the delayed onset of clinical signs, CCHFV lacking this domain caused severe or lethal disease in infected mice.
Collapse
|
23
|
The Utility of Human Immune System Mice for High-Containment Viral Hemorrhagic Fever Research. Vaccines (Basel) 2020; 8:vaccines8010098. [PMID: 32098330 PMCID: PMC7157695 DOI: 10.3390/vaccines8010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Human immune system (HIS) mice are a subset of humanized mice that are generated by xenoengraftment of human immune cells or tissues and/or their progenitors into immunodeficient mice. Viral hemorrhagic fevers (VHFs) cause severe disease in humans, typically with high case fatality rates. HIS mouse studies have been performed to investigate the pathogenesis and immune responses to VHFs that must be handled in high-containment laboratory facilities. Here, we summarize studies on filoviruses, nairoviruses, phenuiviruses, and hantaviruses, and discuss the knowledge gained from using various HIS mouse models. Furthermore, we discuss the complexities of designing and interpreting studies utilizing HIS mice while highlighting additional questions about VHFs that can still be addressed using HIS mouse models.
Collapse
|