1
|
Lorenzi A, Legeai F, Jouan V, Girard PA, Strand MR, Ravallec M, Eychenne M, Bretaudeau A, Robin S, Rochefort J, Villegas M, Burke GR, Rebollo R, Nègre N, Volkoff AN. Identification of a viral gene essential for the genome replication of a domesticated endogenous virus in ichneumonid parasitoid wasps. PLoS Pathog 2024; 20:e1011980. [PMID: 38662774 DOI: 10.1371/journal.ppat.1011980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/07/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024] Open
Abstract
Thousands of endoparasitoid wasp species in the families Braconidae and Ichneumonidae harbor "domesticated endogenous viruses" (DEVs) in their genomes. This study focuses on ichneumonid DEVs, named ichnoviruses (IVs). Large quantities of DNA-containing IV virions are produced in ovary calyx cells during the pupal and adult stages of female wasps. Females parasitize host insects by injecting eggs and virions into the body cavity. After injection, virions rapidly infect host cells which is followed by expression of IV genes that promote the successful development of wasp offspring. IV genomes consist of two components: proviral segment loci that serve as templates for circular dsDNAs that are packaged into capsids, and genes from an ancestral virus that produce virions. In this study, we generated a chromosome-scale genome assembly for Hyposoter didymator that harbors H. didymator ichnovirus (HdIV). We identified a total of 67 HdIV loci that are amplified in calyx cells during the wasp pupal stage. We then focused on an HdIV gene, U16, which is transcribed in calyx cells during the initial stages of replication. Sequence analysis indicated that U16 contains a conserved domain in primases from select other viruses. Knockdown of U16 by RNA interference inhibited virion morphogenesis in calyx cells. Genome-wide analysis indicated U16 knockdown also inhibited amplification of HdIV loci in calyx cells. Altogether, our results identified several previously unknown HdIV loci, demonstrated that all HdIV loci are amplified in calyx cells during the pupal stage, and showed that U16 is required for amplification and virion morphogenesis.
Collapse
Affiliation(s)
- Ange Lorenzi
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Fabrice Legeai
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, Rennes, France
- INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | | | | | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | | | | | - Anthony Bretaudeau
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, Rennes, France
- INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | - Stéphanie Robin
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, Rennes, France
- INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | | | | | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Rita Rebollo
- INRAE, INSA Lyon, BF2I, UMR203, Villeurbanne, France
| | | | | |
Collapse
|
2
|
Cerqueira de Araujo A, Leobold M, Bézier A, Musset K, Uzbekov R, Volkoff AN, Drezen JM, Huguet E, Josse T. Conserved Viral Transcription Plays a Key Role in Virus-Like Particle Production of the Parasitoid Wasp Venturia canescens. J Virol 2022; 96:e0052422. [PMID: 35678601 PMCID: PMC9278141 DOI: 10.1128/jvi.00524-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.
Collapse
Affiliation(s)
| | - Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Rustem Uzbekov
- Université de Tours, Département des Microscopies, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Anne-Nathalie Volkoff
- Diversité, Génomes & Interactions Microorganismes - Insectes (DGIMI), UMR 1333, Université de Montpellier - INRAE, Montpellier, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| |
Collapse
|
3
|
Lorenzi A, Strand MR, Burke GR, Volkoff AN. Identifying bracovirus and ichnovirus genes involved in virion morphogenesis. CURRENT OPINION IN INSECT SCIENCE 2022; 49:63-70. [PMID: 34839031 DOI: 10.1016/j.cois.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Bracoviruses (BVs) and ichnoviruses (IVs) evolved from different endogenized viruses but through convergence have been coopted by parasitoids in the families Braconidae and Ichneumonidae for similar functions in parasitizing hosts. Experimentally studying the role of endogenized viral genes in virion morphogenesis remains a key challenge in the study of BVs and IVs. Here we summarize how multiomics, electron microscopy, and RNA interference (RNAi) methods have provided new insights about BV and IV gene function.
Collapse
Affiliation(s)
- Ange Lorenzi
- Department of Entomology, University of Georgia, Athens 30602, GA, USA.
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens 30602, GA, USA
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens 30602, GA, USA
| | | |
Collapse
|
4
|
Drezen JM, Bézier A, Burke GR, Strand MR. Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors. CURRENT OPINION IN INSECT SCIENCE 2022; 49:93-100. [PMID: 34954138 DOI: 10.1016/j.cois.2021.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Animal genomes commonly contain genes or sequences that have been acquired from different types of viruses. The vast majority of these endogenous virus elements (EVEs) are inactive or consist of only a small number of components that show no evidence of cooption for new functions or interaction. Unlike most EVEs, bracoviruses (BVs), ichnoviruses (IVs) and virus-like particles (VLPs) in parasitoid wasps have evolved through retention and interaction of many genes from virus ancestors. Here, we discuss current understanding of BV, IV and VLP evolution along with associated implications for what constitutes a virus. We suggest that BVs and IVs are domesticated endogenous viruses (DEVs) that differ in several important ways from other known EVEs.
Collapse
Affiliation(s)
- Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France.
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Sharanowski BJ, Ridenbaugh RD, Piekarski PK, Broad GR, Burke GR, Deans AR, Lemmon AR, Moriarty Lemmon EC, Diehl GJ, Whitfield JB, Hines HM. Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and viral endogenization. Mol Phylogenet Evol 2020; 156:107023. [PMID: 33253830 DOI: 10.1016/j.ympev.2020.107023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Ichneumonoidea is one of the most diverse lineages of animals on the planet with >48,000 described species and many more undescribed. Parasitoid wasps of this superfamily are mostly beneficial insects that attack and kill other arthropods and are important for understanding diversification and the evolution of life history strategies related to parasitoidism. Further, some lineages of parasitoids within Ichneumonoidea have acquired endogenous virus elements (EVEs) that are permanently a part of the wasp's genome and benefit the wasp through host immune disruption and behavioral control. Unfortunately, understanding the evolution of viral acquisition, parasitism strategies, diversification, and host immune disruption mechanisms, is deeply limited by the lack of a robust phylogenetic framework for Ichneumonoidea. Here we design probes targeting 541 genes across 91 taxa to test phylogenetic relationships, the evolution of parasitoid strategies, and the utility of probes to capture polydnavirus genes across a diverse array of taxa. Phylogenetic relationships among Ichneumonoidea were largely well resolved with most higher-level relationships maximally supported. We noted codon use biases between the outgroups, Braconidae, and Ichneumonidae and within Pimplinae, which were largely solved through analyses of amino acids rather than nucleotide data. These biases may impact phylogenetic reconstruction and caution for outgroup selection is recommended. Ancestral state reconstructions were variable for Braconidae across analyses, but consistent for reconstruction of idiobiosis/koinobiosis in Ichneumonidae. The data suggest many transitions between parasitoid life history traits across the whole superfamily. The two subfamilies within Ichneumonidae that have polydnaviruses are supported as distantly related, providing strong evidence for two independent acquisitions of ichnoviruses. Polydnavirus capture using our designed probes was only partially successful and suggests that more targeted approaches would be needed for this strategy to be effective for surveying taxa for these viral genes. In total, these data provide a robust framework for the evolution of Ichneumonoidea.
Collapse
Affiliation(s)
| | - Ryan D Ridenbaugh
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| | - Patrick K Piekarski
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA; Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Gavin R Broad
- Department of Life Sciences, the Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30606, USA
| | - Andrew R Deans
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | | | - Gloria J Diehl
- Department of Biology, University of Central Florida, Orlando, FL 32816, USA
| | - James B Whitfield
- Department of Entomology, University of Illinois, Urbana, IL 61801, USA
| | - Heather M Hines
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802; Department of Biology, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
6
|
The Unconventional Viruses of Ichneumonid Parasitoid Wasps. Viruses 2020; 12:v12101170. [PMID: 33076395 PMCID: PMC7602663 DOI: 10.3390/v12101170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
To ensure their own immature development as parasites, ichneumonid parasitoid wasps use endogenous viruses that they acquired through ancient events of viral genome integration. Thousands of species from the campoplegine and banchine wasp subfamilies rely, for their survival, on their association with these viruses, hijacked from a yet undetermined viral taxon. Here, we give an update of recent findings on the nature of the viral genes retained from the progenitor viruses and how they are organized in the wasp genome.
Collapse
|
7
|
Legeai F, Santos BF, Robin S, Bretaudeau A, Dikow RB, Lemaitre C, Jouan V, Ravallec M, Drezen JM, Tagu D, Baudat F, Gyapay G, Zhou X, Liu S, Webb BA, Brady SG, Volkoff AN. Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps. BMC Biol 2020; 18:89. [PMID: 32703219 PMCID: PMC7379367 DOI: 10.1186/s12915-020-00822-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Polydnaviruses (PDVs) are mutualistic endogenous viruses inoculated by some lineages of parasitoid wasps into their hosts, where they facilitate successful wasp development. PDVs include the ichnoviruses and bracoviruses that originate from independent viral acquisitions in ichneumonid and braconid wasps respectively. PDV genomes are fully incorporated into the wasp genomes and consist of (1) genes involved in viral particle production, which derive from the viral ancestor and are not encapsidated, and (2) proviral segments harboring virulence genes, which are packaged into the viral particle. To help elucidating the mechanisms that have facilitated viral domestication in ichneumonid wasps, we analyzed the structure of the viral insertions by sequencing the whole genome of two ichnovirus-carrying wasp species, Hyposoter didymator and Campoletis sonorensis. RESULTS Assemblies with long scaffold sizes allowed us to unravel the organization of the endogenous ichnovirus and revealed considerable dispersion of the viral loci within the wasp genomes. Proviral segments contained species-specific sets of genes and occupied distinct genomic locations in the two ichneumonid wasps. In contrast, viral machinery genes were organized in clusters showing highly conserved gene content and order, with some loci located in collinear wasp genomic regions. This genomic architecture clearly differs from the organization of PDVs in braconid wasps, in which proviral segments are clustered and viral machinery elements are more dispersed. CONCLUSIONS The contrasting structures of the two types of ichnovirus genomic elements are consistent with their different functions: proviral segments are vehicles for virulence proteins expected to adapt according to different host defense systems, whereas the genes involved in virus particle production in the wasp are likely more stable and may reflect ancestral viral architecture. The distinct genomic architectures seen in ichnoviruses versus bracoviruses reveal different evolutionary trajectories that have led to virus domestication in the two wasp lineages.
Collapse
Affiliation(s)
- Fabrice Legeai
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650, Le Rheu, France
- Université Rennes 1, INRIA, CNRS, IRISA, F-35000, Rennes, France
| | - Bernardo F Santos
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC, 20560-0165, USA
| | - Stéphanie Robin
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650, Le Rheu, France
- Université Rennes 1, INRIA, CNRS, IRISA, F-35000, Rennes, France
| | - Anthony Bretaudeau
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650, Le Rheu, France
- Université Rennes 1, INRIA, CNRS, IRISA, F-35000, Rennes, France
| | - Rebecca B Dikow
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC, 20560-0165, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC, 20560-0165, USA
| | - Claire Lemaitre
- Université Rennes 1, INRIA, CNRS, IRISA, F-35000, Rennes, France
| | - Véronique Jouan
- DGIMI, INRAE, University of Montpellier, 34095, Montpellier, France
| | - Marc Ravallec
- DGIMI, INRAE, University of Montpellier, 34095, Montpellier, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, UFR des Sciences et Techniques, Parc de Grandmont, Tours, France
| | - Denis Tagu
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650, Le Rheu, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, CNRS, University of Montpellier, 34396, Montpellier, France
| | - Gabor Gyapay
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, People's Republic of China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, People's Republic of China
| | - Bruce A Webb
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC, 20560-0165, USA
| | | |
Collapse
|