1
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
3
|
Bernardo-Menezes LC, Agrelli A, Oliveira ASLED, Azevedo EDAN, Morais CNLD. Zika virus: Critical crosstalk between pathogenesis, cytopathic effects, and macroautophagy. J Cell Biochem 2024; 125:e30438. [PMID: 37334850 DOI: 10.1002/jcb.30438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Zika virus (ZIKV) is a re-emerging positive-sense RNA arbovirus. Its genome encodes a polyprotein that is cleaved by proteases into three structural proteins (Envelope, pre-Membrane, and Capsid) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). These proteins have essential functions in viral replication cycle, cytopathic effects, and host cellular response. When infected by ZIKV, host cells promote macroautophagy, which is believed to favor virus entry. Although several authors have attempted to understand this link between macroautophagy and viral infection, little is known. Herein, we performed a narrative review of the molecular connection between macroautophagy and ZIKV infection while focusing on the roles of the structural and nonstructural proteins. We concluded that ZIKV proteins are major virulence factors that modulate host-cell machinery to its advantage by disrupting and/or blocking specific cellular systems and organelles' function, such as endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lucas Coêlho Bernardo-Menezes
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Almerinda Agrelli
- Laboratory of Nanostructured Materials (LMNANO), Strategic Technologies Center of Northeast (CETENE), Recife, Pernambuco, Brazil
| | | | - Elisa de Almeida Neves Azevedo
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Clarice Neuenschwander Lins de Morais
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
4
|
Song MH, Sun Y, Qiu XB. Hijacking autophagy for infection by flaviviruses. Virus Res 2024; 347:199422. [PMID: 38901564 PMCID: PMC11252935 DOI: 10.1016/j.virusres.2024.199422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a lysosomal degradative pathway, which regulates the homeostasis of eukaryotic cells. This pathway can degrade misfolded or aggregated proteins, clear damaged organelles, and eliminate intracellular pathogens, including viruses, bacteria, and parasites. But, not all types of viruses are eliminated by autophagy. Flaviviruses (e.g., Yellow fever, Japanese encephalitis, Hepatitis C, Dengue, Zika, and West Nile viruses) are single-stranded and enveloped RNA viruses, and transmitted to humans primarily through the bites of arthropods, leading to severe and widespread illnesses. Like the coronavirus SARS-CoV-II, flaviviruses hijack autophagy for their infection and escape from host immune clearance. Thus, it is possible to control these viral infections by inhibiting autophagy. In this review, we summarize recent research progresses on hijacking of autophagy by flaviviruses and discuss the feasibility of antiviral therapies using autophagy inhibitors.
Collapse
Affiliation(s)
- Ming-Hui Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China.
| |
Collapse
|
5
|
Bampali M, Kouvela A, Kesesidis N, Kassela K, Dovrolis N, Karakasiliotis I. West Nile Virus Subgenomic RNAs Modulate Gene Expression in a Neuronal Cell Line. Viruses 2024; 16:812. [PMID: 38793693 PMCID: PMC11125720 DOI: 10.3390/v16050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.B.); (A.K.); (N.K.); (K.K.); (N.D.)
| |
Collapse
|
6
|
Wang Q, Jiang Y, Bao G, Yao W, Yang Q, Chen S, Wang G. Duck Tembusu virus induces incomplete autophagy via the ERK/mTOR and AMPK/mTOR signalling pathways to promote viral replication in neuronal cells. Vet Res 2023; 54:103. [PMID: 37936178 PMCID: PMC10631066 DOI: 10.1186/s13567-023-01235-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
Duck Tembusu virus (DTMUV) is a neurotropic virus in the genus Flavivirus that causes massive economic losses to the poultry industry in China and neighbouring countries. Autophagy is pivotal in cellular responses to pathogens and in viral pathogenesis. However, little is known about the roles of autophagy in DTMUV replication and viral pathogenesis, especially in neuropathogenesis. In this study, mouse neuroblastoma cells (Neuro-2a) were used to establish a cell model of DTMUV infection. Our experiments indicated that DTMUV infection induced incomplete autophagy in Neuro-2a cells. Then, we used different autophagy regulators to alter the autophagy induced by DTMUV and found that incomplete autophagy promoted DTMUV replication. Furthermore, we showed that DTMUV infection activated the ERK and AMPK pathways, resulting in decreased phosphorylation of the autophagy repressor mTOR, subsequently leading to autophagic induction. In addition, we utilized ICR mice in an animal model of DTMUV infection to evaluate the autophagic responses in brain tissues and investigate the effects of autophagy on viral replication and tissue lesions. Our results confirmed that DTMUV induced incomplete autophagy in mouse brain tissues and that autophagy inducer treatment promoted DTMUV replication and aggravated DTMUV-induced lesions, whereas autophagy inhibitor treatment had the opposite effects. In summary, DTMUV infection induced incomplete autophagy through the ERK/mTOR and AMPK/mTOR signalling pathways to promote viral replication in mouse neuronal cells, and DTMUV-induced incomplete autophagy contributed to the neuropathogenesis of DTMUV.
Collapse
Affiliation(s)
- Qing Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqian Jiang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Guangbin Bao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Weiping Yao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Yang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Shuyue Chen
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Guijun Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Kobayashi S, Kawakami R, Takeda C, Maezono K, Thammahakin P, Eguchi H, Hang'ombe BM, Orba Y, Sawa H, Yoshii K, Kariwa H. Ubiquitin accumulation induced by the finger and palm sub-domains of NS5 modulates the replication of West Nile virus. Virology 2023; 588:109902. [PMID: 37856911 DOI: 10.1016/j.virol.2023.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
West Nile virus (WNV) causes encephalitis in human and animals. WNV is phylogenetically classified into at least five distinct genetic lineages with different pathogenicity. The pathogenesis of West Nile encephalitis is affected by ubiquitin accumulation in infected cells, but the mechanism is unknown. In this study, the association between ubiquitin accumulation and WNV pathogenicity was investigated. Ubiquitin accumulation was detected in cells infected with NY99 strain belonging to lineage-1, but not FCG and Zmq16 strains belonging to lineage-2. Substitution of the Finger and Palm sub-domains of NS5 from lineage-1 to -2 decreased ubiquitin accumulation and viral replication. Furthermore, the survival rate was increased, and viral replication and ubiquitin accumulation in the brain were attenuated, in mice inoculated with the substituted WNV compared with lineage-1 WNV. Therefore, the intracellular ubiquitin accumulation induced by the Finger and Palm sub-domains of NS5 is linked to the differences in pathogenicity among WNV lineages.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Hokkaido, Japan.
| | - Ryoko Kawakami
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Chisaki Takeda
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Keisuke Maezono
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Passawat Thammahakin
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Haruto Eguchi
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Bernard M Hang'ombe
- Department of Para-Clinical Studies, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia; Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Yasuko Orba
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Hokkaido, Japan; Division of Molecular Pathobiology, International Institute for Zoonosis Control, N20, W10, Kita-ku, Sapporo, 001-0020, Japan; One Health Research Center, Hokkaido University, Hokkaido, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Hokkaido, Japan; Division of Molecular Pathobiology, International Institute for Zoonosis Control, N20, W10, Kita-ku, Sapporo, 001-0020, Japan; One Health Research Center, Hokkaido University, Hokkaido, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan; Global Virus Network, Baltimore, MD, USA
| | - Kentaro Yoshii
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan; National Research Center for the Control and Prevention of Infectious diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| |
Collapse
|
8
|
Blackhurst BM, Funk KE. Molecular and Cellular Mechanisms Underlying Neurologic Manifestations of Mosquito-Borne Flavivirus Infections. Viruses 2023; 15:2200. [PMID: 38005878 PMCID: PMC10674799 DOI: 10.3390/v15112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Flaviviruses are a family of enveloped viruses with a positive-sense RNA genome, transmitted by arthropod vectors. These viruses are known for their broad cellular tropism leading to infection of multiple body systems, which can include the central nervous system. Neurologic effects of flavivirus infection can arise during both acute and post-acute infectious periods; however, the molecular and cellular mechanisms underlying post-acute sequelae are not fully understood. Here, we review recent studies that have examined molecular and cellular mechanisms that may contribute to neurologic sequelae following infection with the West Nile virus, Japanese encephalitis virus, Zika virus, dengue virus, and St. Louis encephalitis virus. Neuronal death, either from direct infection or due to the resultant inflammatory response, is a common mechanism by which flavivirus infection can lead to neurologic impairment. Other types of cellular damage, such as oxidative stress and DNA damage, appear to be more specific to certain viruses. This article aims to highlight mechanisms of cellular damage that are common across several flavivirus members and mechanisms that are more unique to specific members. Our goal is to inspire further research to improve understanding of this area in the hope of identifying treatment options for flavivirus-associated neurologic changes.
Collapse
Affiliation(s)
| | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
9
|
Anderson C, Baha H, Boghdeh N, Barrera M, Alem F, Narayanan A. Interactions of Equine Viruses with the Host Kinase Machinery and Implications for One Health and Human Disease. Viruses 2023; 15:v15051163. [PMID: 37243249 DOI: 10.3390/v15051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Zoonotic pathogens that are vector-transmitted have and continue to contribute to several emerging infections globally. In recent years, spillover events of such zoonotic pathogens have increased in frequency as a result of direct contact with livestock, wildlife, and urbanization, forcing animals from their natural habitats. Equines serve as reservoir hosts for vector-transmitted zoonotic viruses that are also capable of infecting humans and causing disease. From a One Health perspective, equine viruses, therefore, pose major concerns for periodic outbreaks globally. Several equine viruses have spread out of their indigenous regions, such as West Nile virus (WNV) and equine encephalitis viruses (EEVs), making them of paramount concern to public health. Viruses have evolved many mechanisms to support the establishment of productive infection and to avoid host defense mechanisms, including promoting or decreasing inflammatory responses and regulating host machinery for protein synthesis. Viral interactions with the host enzymatic machinery, specifically kinases, can support the viral infectious process and downplay innate immune mechanisms, cumulatively leading to a more severe course of the disease. In this review, we will focus on how select equine viruses interact with host kinases to support viral multiplication.
Collapse
Affiliation(s)
- Carol Anderson
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Niloufar Boghdeh
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Michael Barrera
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Farhang Alem
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
10
|
Tan W, Zhang S, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Gao Q, Sun D, Tian B, Chen S, Cheng A. Nonstructural proteins 2B and 4A of Tembusu virus induce complete autophagy to promote viral multiplication in vitro. Vet Res 2023; 54:23. [PMID: 36918952 PMCID: PMC10013240 DOI: 10.1186/s13567-023-01152-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/15/2023] Open
Abstract
Tembusu virus (TMUV) is an emerging flavivirus that has broken out in different regions of China. TMUV infection has been reported to induce autophagy in duck embryo fibroblast cells. However, the molecular mechanisms underlying this autophagy induction remain unclear. Here, we explored the interactions between autophagy and TMUV and the effects of the structural and nonstructural proteins of TMUV on autophagy in vitro. Among our results, TMUV infection enhanced autophagy to facilitate viral replication in HEK293T cells. After pharmacologically inducing autophagy with rapamycin (Rapa), the replication of TMUV increased by a maximum of 14-fold compared with the control group. To determine which TMUV protein primarily induced autophagy, cells were transfected with two structural proteins and seven nonstructural proteins of TMUV. Western blotting showed that nonstructural proteins 2B (NS2B) and 4 A (NS4A) of TMUV significantly induced the conversion of microtubule-associated protein 1 light chain 3 (LC3) from LC3-I to LC3-II in HEK293T cells. In addition, through immunofluorescence assays, we found that NS2B and NS4A significantly increased the punctate fluorescence of GFP-LC3-II. Furthermore, we found that both NS2B and NS4A interacted with polyubiquitin-binding protein sequestosome 1 (SQSTM1/p62) in a coimmunoprecipitation assay. Moreover, the autophagic degradation of p62 and LC3 mediated by NS2B or NS4A was inhibited by treatment with the autophagic flux inhibitor chloroquine (CQ). These results confirmed the vital effects of NS2B and NS4A in TMUV-induced complete autophagy and clarified the importance of complete autophagy for viral replication, providing novel insight into the relationship between TMUV and autophagy.
Collapse
Affiliation(s)
- Wangyang Tan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Senzhao Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
11
|
Wang K, Zou S, Chen H, Higazy D, Gao X, Zhang Y, Cao S, Cui M. Zika virus replication on endothelial cells and invasion into the central nervous system by inhibiting interferon β translation. Virology 2023; 582:23-34. [PMID: 36996689 DOI: 10.1016/j.virol.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The blood-brain barrier (BBB) is one of the tightest physical barriers to prevent pathogens from invading the central nervous system (CNS). However, the mechanism by which Zika virus (ZIKV) crossing the BBB remains unresolved. We found ZIKV induced high morbidity and mortality in newborn mice, accompanied by inflammatory injury on CNS. ZIKV was found to replicate primarily in the cortex and hippocampus in neonatal mouse brains. An in vitro model revealed that ZIKV had no impact on hBMECs permeability but led to endothelial activation, as shown by the enhancement of adhesion molecules expression and F-actin redistribution. ZIKV replication in hBMECs might be associated with the suppression of IFN-β translation via inhibiting RPS6 phosphorylation. On the other hand, ZIKV infection induced IFN-stimulated genes (ISGs), activated the mitogen-activated protein kinase (MAPK) signaling pathway, and promoted chemokine secretion. This study provides an understanding of virus replication and transmigration across the BBB during ZIKV infection.
Collapse
|
12
|
Pujhari S, Heu CC, Brustolin M, Johnson RM, Kim D, Rasgon JL. Sindbis virus is suppressed in the yellow fever mosquito Aedes aegypti by ATG-6/Beclin-1 mediated activation of autophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526867. [PMID: 36778292 PMCID: PMC9915692 DOI: 10.1101/2023.02.02.526867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy is a critical modulator of pathogen invasion response in vertebrates and invertebrates. However, how it affects mosquito-borne viral pathogens that significantly burden public health remains underexplored. To address this gap, we use a genetic approach to activate macroautophagy/autophagy in the yellow fever mosquito (Aedes aegypti), infected with a recombinant Sindbis virus (SINV) expressing an autophagy activator. We first demonstrate a 17-amino acid peptide derived from the Ae. aegypti autophagy-related protein 6 (ATG-6/beclin-1-like protein) is sufficient to induce autophagy in C6/36 mosquito cells, as marked by lipidation of ATG-8 and puncta formation. Next, we engineered a recombinant SINV expressing this bioactive beclin-1-like peptide and used it to infect and induce autophagy in adult mosquitoes. We find that modulation of autophagy using this recombinant SINV negatively regulated production of infectious viruses. The results from this study improve our understanding of the role of autophagy in arboviruses in invertebrate hosts and also highlight the potential for the autophagy pathway to be exploited for arboviral control.
Collapse
Affiliation(s)
- Sujit Pujhari
- Department of Entomology, the Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, SC
| | - Chan C. Heu
- Department of Entomology, the Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- USDA-ARS, Maricopa, AZ, USA
| | - Marco Brustolin
- Department of Entomology, the Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Rebecca M. Johnson
- Department of Entomology, the Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT
| | - Donghun Kim
- Department of Entomology, the Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Vector Entomology, Kyungpook National University, Daegu, South Korea
| | - Jason L. Rasgon
- Department of Entomology, the Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
13
|
Abstract
Since its discovery in 1937 in the West Nile district of Uganda, West Nile virus (WNV) has been one of the leading causes of mosquito-transmitted infectious diseases (Smithburn, Burke, Am J Trop Med 20:22, 1940). Subsequently, it spread to Europe, Asia, Australia, and finally North America in 1999 (Sejvar, Ochsner 5(3):6-10, 2003). Worldwide outbreaks have continued to increase since the 1990s (Chancey et al, Biomed Res Int 2015:376230, 2015). According to the Center for Disease Control and Prevention, more than 51,000 cases of WNV infection and nearly 2400 cases of WNV-related death were reported in the USA from 1999 to 2019. The estimated economic impact of WNV infections is close to 800 million dollars in the USA from 1999 to 2012 (Barrett, Am J Trop Med Hyg 90:389, 2014).
Collapse
Affiliation(s)
- Haiyan Sun
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Josh Lesio
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
14
|
He Y, Lu H, Zhao Y. Development of an autophagy activator from Class III PI3K complexes, Tat-BECN1 peptide: Mechanisms and applications. Front Cell Dev Biol 2022; 10:851166. [PMID: 36172279 PMCID: PMC9511052 DOI: 10.3389/fcell.2022.851166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Impairment or dysregulation of autophagy has been implicated in many human pathologies ranging from neurodegenerative diseases, infectious diseases, cardiovascular diseases, metabolic diseases, to malignancies. Efforts have been made to explore the therapeutic potential of pharmacological autophagy activators, as beneficial health effects from caloric restriction or physical exercise are linked to autophagy activation. However, the lack of specificity remains the major challenge to the development and clinical use of autophagy activators. One candidate of specific autophagy activators is Tat-BECN1 peptide, derived from Beclin 1 subunit of Class III PI3K complexes. Here, we summarize the molecular mechanisms by which Tat-BECN1 peptide activates autophagy, the strategies for optimization and development, and the applications of Tat-BECN1 peptide in cellular and organismal models of physiology and pathology.
Collapse
Affiliation(s)
| | | | - Yuting Zhao
- Institute of Future Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Abstract
Ubiquitination is a posttranslational modification that regulates a multitude of cellular functions. Pathogens, such as bacteria and viruses, have evolved sophisticated mechanisms that evade or counteract ubiquitin-dependent host responses, or even exploit the ubiquitin system to their own advantage. This is largely done by numerous pathogen virulence factors that encode E3 ligases and deubiquitinases, which are often used as weapons in pathogen-host cell interactions. Moreover, upon pathogen attack, host cellular signaling networks undergo major ubiquitin-dependent changes to protect the host cell, including coordination of innate immunity, remodeling of cellular organelles, reorganization of the cytoskeleton, and reprogramming of metabolic pathways to restrict growth of the pathogen. Here we provide mechanistic insights into ubiquitin regulation of host-pathogen interactions and how it affects bacterial and viral pathogenesis and the organization and response of the host cell.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt, Germany
| |
Collapse
|
16
|
An Z, Chiang WC, Fernández ÁF, Franco LH, He C, Huang SY, Lee E, Liu Y, Sebti S, Shoji-Kawata S, Sirasanagandla S, Wang RC, Wei Y, Zhao Y, Vega-Rubin-de-Celis S. Beth Levine’s Legacy: From the Discovery of BECN1 to Therapies. A Mentees’ Perspective. Front Cell Dev Biol 2022; 10:891332. [PMID: 35832792 PMCID: PMC9273008 DOI: 10.3389/fcell.2022.891332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
With great sadness, the scientific community received the news of the loss of Beth Levine on 15 June 2020. Dr. Levine was a pioneer in the autophagy field and work in her lab led not only to a better understanding of the molecular mechanisms regulating the pathway, but also its implications in multiple physiological and pathological conditions, including its role in development, host defense, tumorigenesis, aging or metabolism. This review does not aim to provide a comprehensive view of autophagy, but rather an outline of some of the discoveries made by the group of Beth Levine, from the perspective of some of her own mentees, hoping to honor her legacy in science.
Collapse
Affiliation(s)
- Zhenyi An
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Álvaro F. Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis H. Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - CongCong He
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Eunmyong Lee
- InnoCure Therapeutics Inc., Gyeonggi-do, South Korea
| | - Yang Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Salwa Sebti
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Richard C. Wang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yongjie Wei
- Cancer Research Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuting Zhao
- Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Silvia Vega-Rubin-de-Celis
- Institute for Cell Biology (Cancer Research), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Silvia Vega-Rubin-de-Celis, ,
| |
Collapse
|
17
|
Zhao J, Zhang T, Chen G, Geng N, Guo Z, Cao S, Yang Y, Liu K, Wang S, Zhao Y, Meng F, Liu S, Jiang M, Li N. Non-Structural Protein 3 of Duck Tembusu Virus Induces Autophagy via the ERK and PI3K-AKT-mTOR Signaling Pathways. Front Immunol 2022; 13:746890. [PMID: 35185869 PMCID: PMC8851233 DOI: 10.3389/fimmu.2022.746890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Despite autophagy’s pivotal role in the replication of viruses such as duck Tembusu virus (DTMUV), which has caused massive economic losses to the poultry industry in the world, the specific relationships between DTMUV and cellular autophagy remain largely unknown. In response, we investigated the interactions between autophagy and DTMUV, the effects of the structural and non-structural proteins of DTMUV on autophagy, and the autophagy-related signaling pathways induced by DTMUV. Among the results, DTMUV increased the autophagy flux in duck embryo fibroblasts (DEF) and BHK-21 cells, while autophagy facilitated viral replication. After we pharmacologically induced autophagy with rapamycin (RAPA), the replication of DTMUV increased by 15.23-fold compared with the control group of DEF cells. To identify which DTMUV protein primarily induced autophagy, all three structural proteins and seven non-structural proteins of DTMUV were transfected into cells, and the results showed that non-structural protein 3 (NS3) induced significant autophagy in DEF cells. By means of Western blot, immunofluorescence, and transmission electron microscopy, we confirmed that NS3 protein could significantly induce autophagy and autophagy flux. Furthermore, we showed that NS3 induced autophagy in DEF cells through extracellular signal-regulated kinase 2 (ERK2) and phosphatidylinositol-3-kinase (PI3K)/AKT and the mammalian target of rapamycin (mTOR) signaling pathways using specific inhibitors and RNA interference assays. Finally, autophagy induced by NS3 promoted DTMUV replication. These results provide novel insight into the relationship between DTMUV and autophagy, broadening the current understanding of the molecular pathogenesis of DTMUV.
Collapse
Affiliation(s)
- Jun Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China
| | - Tingting Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Taian City, China
| | - Guomin Chen
- Laboratory Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ningwei Geng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China
| | - Zhiyun Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China
| | - Shengliang Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China
| | - Yudong Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China
| | - Kuihao Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China
| | - Siqi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China
| | - Yiran Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China
| | - Fanliang Meng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China
| | - Sidang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China
| | - Meijie Jiang
- Laboratory Medicine, Tai'an City Central Hospital, Taian, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian City, China.,Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Taian City, China
| |
Collapse
|
18
|
Fishburn AT, Pham OH, Kenaston MW, Beesabathuni NS, Shah PS. Let's Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis. Front Microbiol 2022; 13:847588. [PMID: 35308381 PMCID: PMC8928165 DOI: 10.3389/fmicb.2022.847588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Flaviviruses comprise a genus of viruses that pose a significant burden on human health worldwide. Transmission by both mosquito and tick vectors, and broad host tropism contribute to the presence of flaviviruses globally. Like all viruses, they require utilization of host molecular machinery to facilitate their replication through physical interactions. Their RNA genomes are translated using host ribosomes, synthesizing viral proteins that cooperate with each other and host proteins to reshape the host cell into a factory for virus replication. Thus, dissecting the physical interactions between viral proteins and their host protein targets is essential in our comprehension of how flaviviruses replicate and how they alter host cell behavior. Beyond replication, even single interactions can contribute to immune evasion and pathogenesis, providing potential avenues for therapeutic intervention. Here, we review protein interactions between flavivirus and host proteins that contribute to virus replication, immune evasion, and disease.
Collapse
Affiliation(s)
- Adam T Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Oanh H Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Nitin S Beesabathuni
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Bębnowska D, Niedźwiedzka-Rystwej P. The Interplay between Autophagy and Virus Pathogenesis-The Significance of Autophagy in Viral Hepatitis and Viral Hemorrhagic Fevers. Cells 2022; 11:871. [PMID: 35269494 PMCID: PMC8909602 DOI: 10.3390/cells11050871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a process focused on maintaining the homeostasis of organisms; nevertheless, the role of this process has also been widely documented in viral infections. Thus, xenophagy is a selective form of autophagy targeting viruses. However, the relation between autophagy and viruses is ambiguous-this process may be used as a strategy to fight with a virus, but is also in favor of the virus's replication. In this paper, we have gathered data on autophagy in viral hepatitis and viral hemorrhagic fevers and the relations impacting its viral pathogenesis. Thus, autophagy is a potential therapeutic target, but research is needed to fully understand the mechanisms by which the virus interacts with the autophagic machinery. These studies must be performed in specific research models other than the natural host for many reasons. In this paper, we also indicate Lagovirus europaeus virus as a potentially good research model for acute liver failure and viral hemorrhagic disease.
Collapse
Affiliation(s)
- Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | | |
Collapse
|
20
|
Bell TAS, Velappan N, Gleasner CD, Xie G, Starkenburg SR, Waldo G, Banerjee S, Micheva-Viteva SN. Non-classical autophagy activation pathways are essential for production of infectious Influenza A virus in vitro. Mol Microbiol 2021; 117:508-524. [PMID: 34931347 PMCID: PMC9305535 DOI: 10.1111/mmi.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Abstract
Autophagy is a critical mechanism deployed by eukaryotic cells in response to stress, including viral infection, to boost the innate antimicrobial responses. However, an increasing number of pathogens hijack the autophagic machinery to facilitate their own replication. Influenza A virus (IAV), responsible for several global pandemics, has an intricate dependence on autophagy for successful replication in mammalian cells. To elucidate key chokepoints in the host stress responses facilitating IAV replication, we constructed a meta‐transcriptome of IAV and host gene expression dynamics during early (1–3 hpi), mid (4–6 hpi), and late (8–12 hpi) stages of the viral replication cycle at two multiplicities of infection (MOI): 1 and 5. We supplemented the global transcriptome study with phosphoproteomic analysis of stress‐activated protein kinase (SAPK/JNK) signaling in lung carcinoma (predominantly used as an in vitro model of IAV replication) and normal human bronchial epithelial cells. We report significant differences in the activation profiles of autophagy regulating genes upon IAV infection at the two MOI as well as divergent dependence on ULK1 signaling within the normal and cancer cells. Regardless of the cell model, JNK‐Thr187 signaling was crucial for the production of infectious viral particles.
Collapse
Affiliation(s)
- Tisza A S Bell
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Nileena Velappan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Cheryl D Gleasner
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Gang Xie
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Shawn R Starkenburg
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Geoffrey Waldo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Shounak Banerjee
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | |
Collapse
|
21
|
Perez-Leal O, Nixon-Abell J, Barrero CA, Gordon JC, Oesterling J, Rico MC. Multiplex Gene Tagging with CRISPR-Cas9 for Live-Cell Microscopy and Application to Study the Role of SARS-CoV-2 Proteins in Autophagy, Mitochondrial Dynamics, and Cell Growth. CRISPR J 2021; 4:854-871. [PMID: 34847745 PMCID: PMC8742308 DOI: 10.1089/crispr.2021.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The lack of efficient tools to label multiple endogenous targets in cell lines without staining or fixation has limited our ability to track physiological and pathological changes in cells over time via live-cell studies. Here, we outline the FAST-HDR vector system to be used in combination with CRISPR-Cas9 to allow visual live-cell studies of up to three endogenous proteins within the same cell line. Our approach utilizes a novel set of advanced donor plasmids for homology-directed repair and a streamlined workflow optimized for microscopy-based cell screening to create genetically modified cell lines that do not require staining or fixation to accommodate microscopy-based studies. We validated this new methodology by developing two advanced cell lines with three fluorescent-labeled endogenous proteins that support high-content imaging without using antibodies or exogenous staining. We applied this technology to study seven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19) viral proteins to understand better their effects on autophagy, mitochondrial dynamics, and cell growth. Using these two cell lines, we were able to identify the protein ORF3a successfully as a potent inhibitor of autophagy, inducer of mitochondrial relocalization, and a growth inhibitor, which highlights the effectiveness of live-cell studies using this technology.
Collapse
Affiliation(s)
- Oscar Perez-Leal
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA
| | - Jonathon Nixon-Abell
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, Virginia, USA
| | - Carlos A Barrero
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA
| | - John C Gordon
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA
| | - James Oesterling
- Flow Cytometry and Cell Sorting Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Mario C Rico
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Bhutta MS, Gallo ES, Borenstein R. Multifaceted Role of AMPK in Viral Infections. Cells 2021; 10:1118. [PMID: 34066434 PMCID: PMC8148118 DOI: 10.3390/cells10051118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Viral pathogens often exploit host cell regulatory and signaling pathways to ensure an optimal environment for growth and survival. Several studies have suggested that 5'-adenosine monophosphate-activated protein kinase (AMPK), an intracellular serine/threonine kinase, plays a significant role in the modulation of infection. Traditionally, AMPK is a key energy regulator of cell growth and proliferation, host autophagy, stress responses, metabolic reprogramming, mitochondrial homeostasis, fatty acid β-oxidation and host immune function. In this review, we highlight the modulation of host AMPK by various viruses under physiological conditions. These intracellular pathogens trigger metabolic changes altering AMPK signaling activity that then facilitates or inhibits viral replication. Considering the COVID-19 pandemic, understanding the regulation of AMPK signaling following infection can shed light on the development of more effective therapeutic strategies against viral infectious diseases.
Collapse
Affiliation(s)
- Maimoona Shahid Bhutta
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| | - Elisa S. Gallo
- Board-Certified Dermatologist and Independent Researcher, Norfolk, VA 23507, USA;
| | - Ronen Borenstein
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| |
Collapse
|
23
|
Development of a highly specific serodiagnostic ELISA for West Nile virus infection using subviral particles. Sci Rep 2021; 11:9213. [PMID: 33911132 PMCID: PMC8080695 DOI: 10.1038/s41598-021-88777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/16/2021] [Indexed: 11/09/2022] Open
Abstract
West Nile virus (WNV), a member of the Japanese encephalitis virus (JEV) serocomplex group, causes lethal encephalitis in humans and horses. Because serodiagnosis of WNV and JEV is hampered by cross-reactivity, the development of a simple, secure, and WNV-specific serodiagnostic system is required. The coexpression of prM protein and E protein leads to the secretion of subviral particles (SPs). Deletion of the C-terminal region of E protein is reported to affect the production of SPs by some flaviviruses. However, the influence of such a deletion on the properties and antigenicity of WNV E protein is unclear. We analyzed the properties of full-length E protein and E proteins lacking the C-terminal region as novel serodiagnostics for WNV infection. Deletion of the C-terminal region of E protein suppressed the formation of SPs but did not affect the production of E protein. The sensitivity of an enzyme-linked immunosorbent assay (ELISA) using the full-length E protein was higher than that using the truncated E proteins. Furthermore, in the ELISA using full-length E protein, there was little cross-reactivity with anti-JEV antibodies, and the sensitivity was similar to that of the neutralization test.
Collapse
|
24
|
[Elucidation of neuropathogenesis of West Nile Encephalitis]. Uirusu 2021; 71:79-86. [PMID: 35526998 DOI: 10.2222/jsv.71.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
West Nile virus, which causes serious encephalitis in humans and horses, infects neuronal cells and induces cell death. As the neuronal cell death leads to the induction of various inflammatory responses, elucidation of the molecular mechanism of cell death is important for development of a treatment for West Nile encephalitis. In this paper, we investigated the pathology of the neuronal cells infected with West Nile virus and summarized the mechanism of neuronal cell death and their effect on the neuropathogenesis.
Collapse
|
25
|
West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and "One Health" Implications. Pathogens 2020; 9:pathogens9070589. [PMID: 32707644 PMCID: PMC7400489 DOI: 10.3390/pathogens9070589] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is an important zoonotic flavivirus responsible for mild fever to severe, lethal neuroinvasive disease in humans, horses, birds, and other wildlife species. Since its discovery, WNV has caused multiple human and animal disease outbreaks in all continents, except Antarctica. Infections are associated with economic losses, mainly due to the cost of treatment of infected patients, control programmes, and loss of animals and animal products. The pathogenesis of WNV has been extensively investigated in natural hosts as well as in several animal models, including rodents, lagomorphs, birds, and reptiles. However, most of the proposed pathogenesis hypotheses remain contentious, and much remains to be elucidated. At the same time, the unavailability of specific antiviral treatment or effective and safe vaccines contribute to the perpetuation of the disease and regular occurrence of outbreaks in both endemic and non-endemic areas. Moreover, globalisation and climate change are also important drivers of the emergence and re-emergence of the virus and disease. Here, we give an update of the pathobiology, epidemiology, diagnostics, control, and “One Health” implications of WNV infection and disease.
Collapse
|
26
|
Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav Immun Health 2020; 7:100105. [PMID: 34589866 PMCID: PMC8474605 DOI: 10.1016/j.bbih.2020.100105] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that can cause severe neurological disease in those infected. Those surviving infection often present with long-lasting neurological changes that can severely impede their lives. The most common reported symptoms are depression, memory loss, and motor dysfunction. These sequelae can persist for the rest of the patients’ lives. The pathogenesis behind these changes is still being determined. Here, we summarize current findings in human cases and rodent models, and discuss how these findings indicate that WNV induces a state in the brain similar neurodegenerative diseases. Rodent models have shown that infection leads to persistent virus and inflammation. Initial infection in the hippocampus leads to neuronal dysfunction, synapse elimination, and astrocytosis, all of which contribute to memory loss, mimicking findings in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). WNV infection acts on pathways, such as ubiquitin-signaled protein degradation, and induces the production of molecules, including IL-1β, IFN-γ, and α-synuclein, that are associated with neurodegenerative diseases. These findings indicate that WNV induces neurological damage through similar mechanisms as neurodegenerative diseases, and that pursuing research into the similarities will help advance our understanding of the pathogenesis of WNV-induced neurological sequelae. In patients with and without diagnosed WNND, there are long-lasting neurological sequelae that can mimic neurodegenerative diseases. Some rodent models of WNV reproduce some of these changes with mechanisms similar to neurodegenerative diseases. There is significant overlap between WNV and ND pathogenesis and this has been understudied. Further research needs to be done to determine accuracy of animal models compared to human patients.
Collapse
|
27
|
Anwar MN, Wang X, Hameed M, Wahaab A, Li C, Sharma M, Pang L, Malik MI, Liu K, Li B, Qiu Y, Wei J, Ma Z. Phenotypic and Genotypic Comparison of a Live-Attenuated Genotype I Japanese Encephalitis Virus SD12-F120 Strain with Its Virulent Parental SD12 Strain. Viruses 2020; 12:v12050552. [PMID: 32429445 PMCID: PMC7290960 DOI: 10.3390/v12050552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
The phenotypic and genotypic characteristics of a live-attenuated genotype I (GI) strain (SD12-F120) of Japanese encephalitis virus (JEV) were compared with its virulent parental SD12 strain to gain an insight into the genetic changes acquired during the attenuation process. SD12-F120 formed smaller plaque on BHK-21 cells and showed reduced replication in mouse brains compared with SD12. Mice inoculated with SD12-F120 via either intraperitoneal or intracerebral route showed no clinical symptoms, indicating a highly attenuated phenotype in terms of both neuroinvasiveness and neurovirulence. SD12-F120 harbored 29 nucleotide variations compared with SD12, of which 20 were considered silent nucleotide mutations, while nine resulted in eight amino acid substitutions. Comparison of the amino acid variations of SD12-F120 vs. SD12 pair with those from other four isogenic pairs of the attenuated and their virulent parental strains revealed that the variations at E138 and E176 positions of E protein were identified in four and three pairs, respectively, while the remaining amino acid variations were almost unique to their respective strain pairs. These observations suggest that the genetic changes acquired during the attenuation process were likely to be strain-specific and that the mechanisms associated with JEV attenuation/virulence are complicated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jianchao Wei
- Correspondence: (J.W.); (Z.M.); Tel.: +86-21-3468-3635 (J.W.); +86-21-34293139 (Z.M.); Fax: +86-21-54081818 (J.W. & Z.M.)
| | - Zhiyong Ma
- Correspondence: (J.W.); (Z.M.); Tel.: +86-21-3468-3635 (J.W.); +86-21-34293139 (Z.M.); Fax: +86-21-54081818 (J.W. & Z.M.)
| |
Collapse
|
28
|
Kobayashi S, Kaneko C, Kawakami R, Hasebe R, Sawa H, Yoshii K, Kariwa H. Amino acid 159 of the envelope protein affects viral replication and T-cell infiltration by West Nile virus in intracranial infection. Sci Rep 2020; 10:7168. [PMID: 32346055 PMCID: PMC7189269 DOI: 10.1038/s41598-020-64199-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
West Nile virus (WNV) is an important cause of viral encephalitis in birds and animals, including humans. Amino acid 159 of the envelope (E) protein is reportedly implicated in the different levels of neurovirulence in mice infected with WNV NY99 or Eg101. We investigated the role of amino acid 159 of the E protein in the pathogenesis of WNV infection. We produced recombinant WNV with the structural proteins of the NY99 or Eg101 strain (NY-WT or EgCME-WT) and mutant viruses with substitutions of amino acid 159 of the E protein (NY-E-V159I or EgCME-E-I159V). The NY-WT and NY-E-V159I or EgCME-WT and EgCME-E-I159V titers in culture supernatant were similar. The mortality rate and viral titer in the brains of mice inoculated intraperitoneally with NY-WT or NY-E-V159I were also similar. In contrast, the mortality rate and viral titer in the brains of mice inoculated intracranially with EgCME-E-I159V were significantly higher than those of mice inoculated with EgCME-WT. The numbers of CD3-positive and CD8-positive T cells were greater in brains inoculated with EgCME-E-I159V than in those inoculated with EgCME-WT. Therefore, amino acid 159 of the E protein modulates the pathogenicity of WNV by affecting viral replication and T-cell infiltration in the brain.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan.
| | - Chisato Kaneko
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ryoko Kawakami
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-0815, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo, 001-0020, Japan.,Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, MD, USA
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo, 060-0818, Japan
| |
Collapse
|