1
|
Scheiber C, Klein HC, Schneider JM, Schulz T, Bechter K, Tumani H, Kapapa T, Flinkman D, Coffey E, Ross D, Čistjakovs M, Nora-Krūkle Z, Bortolotti D, Rizzo R, Murovska M, Schneider EM. HSV-1 and Cellular miRNAs in CSF-Derived Exosomes as Diagnostically Relevant Biomarkers for Neuroinflammation. Cells 2024; 13:1208. [PMID: 39056790 PMCID: PMC11275151 DOI: 10.3390/cells13141208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Virus-associated chronic inflammation may contribute to autoimmunity in a number of diseases. In the brain, autoimmune encephalitis appears related to fluctuating reactivation states of neurotropic viruses. In addition, viral miRNAs and proteins can be transmitted via exosomes, which constitute novel but highly relevant mediators of cellular communication. The current study questioned the role of HSV-1-encoded and host-derived miRNAs in cerebrospinal fluid (CSF)-derived exosomes, enriched from stress-induced neuroinflammatory diseases, mainly subarachnoid hemorrhage (SAH), psychiatric disorders (AF and SZ), and various other neuroinflammatory diseases. The results were compared with CSF exosomes from control donors devoid of any neuroinflammatory pathology. Serology proved positive, but variable immunity against herpesviruses in the majority of patients, except controls. Selective ultrastructural examinations identified distinct, herpesvirus-like particles in CSF-derived lymphocytes and monocytes. The likely release of extracellular vesicles and exosomes was most frequently observed from CSF monocytes. The exosomes released were structurally similar to highly purified stem-cell-derived exosomes. Exosomal RNA was quantified for HSV-1-derived miR-H2-3p, miR-H3-3p, miR-H4-3p, miR-H4-5p, miR-H6-3p, miR-H27 and host-derived miR-21-5p, miR-146a-5p, miR-155-5p, and miR-138-5p and correlated with the oxidative stress chemokine IL-8 and the axonal damage marker neurofilament light chain (NfL). Replication-associated miR-H27 correlated with neuronal damage marker NfL, and cell-derived miR-155-5p correlated with oxidative stress marker IL-8. Elevated miR-138-5p targeting HSV-1 latency-associated ICP0 inversely correlated with lower HSV-1 antibodies in CSF. In summary, miR-H27 and miR-155-5p may constitute neuroinflammatory markers for delineating frequent and fluctuating HSV-1 replication and NfL-related axonal damage in addition to the oxidative stress cytokine IL-8 in the brain. Tentatively, HSV-1 remains a relevant pathogen conditioning autoimmune processes and a psychiatric clinical phenotype.
Collapse
Affiliation(s)
- Christian Scheiber
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany;
| | - Hans C. Klein
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Research and Education Department Addiction Care Northern Netherlands, 9728 JR Groningen, The Netherlands
| | - Julian M. Schneider
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
| | - Tanja Schulz
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
| | - Karl Bechter
- Clinic for Psychiatry and Psychotherapy II, Ulm University, 89312 Guenzburg, Germany;
| | - Hayrettin Tumani
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany;
| | - Thomas Kapapa
- Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany;
| | - Dani Flinkman
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20521 Turku, Finland; (D.F.); (E.C.)
| | - Eleanor Coffey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20521 Turku, Finland; (D.F.); (E.C.)
| | | | - Maksims Čistjakovs
- Institute of Microbiology and Virology, Riga Stradins University, 1067 Riga, Latvia; (M.Č.); (Z.N.-K.); (M.M.)
| | - Zaiga Nora-Krūkle
- Institute of Microbiology and Virology, Riga Stradins University, 1067 Riga, Latvia; (M.Č.); (Z.N.-K.); (M.M.)
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy; (D.B.); (R.R.)
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy; (D.B.); (R.R.)
- Laboratory for Advanced Therapeutic Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradins University, 1067 Riga, Latvia; (M.Č.); (Z.N.-K.); (M.M.)
| | - E. Marion Schneider
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany;
| |
Collapse
|
2
|
Wang Y, Ma C, Wang S, Wu H, Chen X, Ma J, Wang L, Qiu HJ, Sun Y. Advances in the immunoescape mechanisms exploited by alphaherpesviruses. Front Microbiol 2024; 15:1392814. [PMID: 38962133 PMCID: PMC11221368 DOI: 10.3389/fmicb.2024.1392814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Alphaherpesviruses, categorized as viruses with linear DNA composed of two complementary strands, can potentially to induce diseases in both humans and animals as pathogens. Mature viral particles comprise of a core, capsid, tegument, and envelope. While herpesvirus infection can elicit robust immune and inflammatory reactions in the host, its persistence stems from its prolonged interaction with the host, fostering a diverse array of immunoescape mechanisms. In recent years, significant advancements have been achieved in comprehending the immunoescape tactics employed by alphaherpesviruses, including pseudorabies virus (PRV), herpes simplex virus (HSV), varicella-zoster virus (VZV), feline herpesvirus (FeHV), equine herpesvirus (EHV), and caprine herpesvirus type I (CpHV-1). Researchers have unveiled the intricate adaptive mechanisms existing between viruses and their natural hosts. This review endeavors to illuminate the research advancements concerning the immunoescape mechanisms of alphaherpesviruses by delineating the pertinent proteins and genes involved in virus immunity. It aims to furnish valuable insights for further research on related mechanisms and vaccine development, ultimately contributing to virus control and containment efforts.
Collapse
Affiliation(s)
- Yimin Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Caoyuan Ma
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shan Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuanqi Chen
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Jinyou Ma
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Lei Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
Zhang C, Liu Y, Yang F, Liu Y, Wang N, Li Y, Liu Y, Qiu Z, Zhang L, You X, Gan L. MicroRNA-194-5p/Heparin-binding EGF-like growth factor signaling mediates dexamethasone-induced activation of pseudorabies virus in rat pheochromocytoma cells. Vet Microbiol 2024; 290:109974. [PMID: 38262115 DOI: 10.1016/j.vetmic.2023.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024]
Abstract
Pseudorabies virus (PRV) is a neurotropic virus, which infects a wide range of mammals. The activity of PRV is gradually suppressed in hosts that have tolerated the primary infection. Increased glucocorticoid levels resulting from stressful stimuli overcome repression of PRV activity. However, the host cell mechanism involved in the activation processes under stressful conditions remains unclear. In this study, infection of rat PC-12 pheochromocytoma cells with neuronal properties using PRV at a multiplicity of infection (MOI) = 1 for 24 h made the activity of PRV be the relatively repressed state, and then incubation with 0.5 μM of the corticosteroid dexamethasone (DEX) for 4 h overcomes the relative repression of PRV activity. RNA-seq deep sequencing and bioinformatics analyses revealed different microRNA and mRNA profiles of PC-12 cells with/without PRV and/or DEX treatment. qRT-PCR and western blot analyses confirmed the negative regulatory relationship of miRNA-194-5p and its target heparin-binding EGF-like growth factor (Hbegf); a dual-luciferase reporter assay revealed that Hbegf is directly targeted by miRNA-194-5p. Further, miRNA-194-5p mock transfection contributed to PRV activation, Hbegf was downregulated in DEX-treated PRV infection cells, and Hbegf overexpression contributed to returning activated PRV to the repression state. Moreover, miRNA-194-5p overexpression resulted in reduced levels of HBEGF, c-JUN, and p-EGFR, whereas Hbegf overexpression suppressed the reduction caused by miRNA-194-5p overexpression. Overall, this study is the first to report that changes in the miR-194-5p-HBEGF/EGFR pathway in neurons are involved in DEX-induced activation of PRV, laying a foundation for the clinical prevention of stress-induced PRV activation.
Collapse
Affiliation(s)
- Chen Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yuxuan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Fan Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yifan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Naixiu Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yuhang Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Yanqing Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Zhiyun Qiu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Lin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Xiaoyan You
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Affairs, Chongqing, China; Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
| |
Collapse
|
4
|
Bernstein DI, Sawtell NM, Bravo FJ, Dixon DA, Gege C, Kleymann G. Intermittent therapy with helicase-primase inhibitor IM-250 efficiently controls recurrent herpes disease and reduces reactivation of latent HSV. Antiviral Res 2023; 219:105733. [PMID: 37858763 DOI: 10.1016/j.antiviral.2023.105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Herpes is a contagious life-long infection with persistently high incidence and prevalence, causing significant disease worldwide. Current therapies have efficacy against active HSV infections but no impact on the latent viral reservoir in neurons. Thus, despite treatment, disease recurs from latency and the infectious potential remains unaffected within patients. Here, efficacy of the helicase-primase inhibitor (HPI) IM-250 against chronic neuronal HSV infections utilizing two classic herpes in vivo latency/reactivation animal models (intravaginal guinea pig HSV-2 infection model and ocular mouse HSV-1 infection model) is presented. Intermittent therapy of infected animals with 4-7 cycles of IM-250 during latency silences subsequent recurrences analyzed up to 6 months. In contrast to common experience, our studies show that the latent reservoir is indeed accessible to antiviral therapy altering the latent viral reservoir such that reactivation frequency can be reduced significantly by prior IM-250 treatment. We provide evidence that antiviral treatment during HSV latency can reduce future reactivation from the latent reservoir, supporting a conceptual shift in the antiviral field, and reframing what is achievable with respect to therapy of latent neuronal HSV infections.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - Nancy M Sawtell
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - David A Dixon
- Cincinnati Children's Hospital Medical Center (CCHMC), University of Cincinnati, OH, USA
| | - Christian Gege
- Innovative Molecules GmbH, Lipowsky Str. 10, 81373, Munich, Bavaria, Germany
| | - Gerald Kleymann
- Innovative Molecules GmbH, Lipowsky Str. 10, 81373, Munich, Bavaria, Germany.
| |
Collapse
|
5
|
Walker A, Czyz DM. Oh my gut! Is the microbial origin of neurodegenerative diseases real? Infect Immun 2023; 91:e0043722. [PMID: 37750713 PMCID: PMC10580905 DOI: 10.1128/iai.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
There is no cure or effective treatment for neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's or Parkinson's diseases, mainly because the etiology of these diseases remains elusive. Recent data suggest that unique changes in the gut microbial composition are associated with these ailments; however, our current understanding of the bacterial role in the pathogenesis of PCDs is hindered by the complexity of the microbial communities associated with specific microbiomes, such as the gut, oral, or vaginal microbiota. The composition of these specific microbiomes is regarded as a unique fingerprint affected by factors such as infections, diet, lifestyle, and antibiotics. All of these factors also affect the severity of neurodegenerative diseases. The majority of studies that reveal microbial contribution are correlational, and various models, including worm, fly, and mouse, are being utilized to decipher the role of individual microbes that may affect disease onset and progression. Recent evidence from across model organisms and humans shows a positive correlation between the presence of gram-negative enteropathogenic bacteria and the pathogenesis of PCDs. While these correlational studies do not provide a mechanistic explanation, they do reveal contributing bacterial species and provide an important basis for further investigation. One of the lurking concerns related to the microbial contribution to PCDs is the increasing prevalence of antibiotic resistance and poor antibiotic stewardship, which ultimately select for proteotoxic bacteria, especially the gram-negative species that are known for intrinsic resistance. In this review, we summarize what is known about individual microbial contribution to PCDs and the potential impact of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Alyssa Walker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Sutter J, Bruggeman PJ, Wigdahl B, Krebs FC, Miller V. Manipulation of Oxidative Stress Responses by Non-Thermal Plasma to Treat Herpes Simplex Virus Type 1 Infection and Disease. Int J Mol Sci 2023; 24:4673. [PMID: 36902102 PMCID: PMC10003306 DOI: 10.3390/ijms24054673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a contagious pathogen with a large global footprint, due to its ability to cause lifelong infection in patients. Current antiviral therapies are effective in limiting viral replication in the epithelial cells to alleviate clinical symptoms, but ineffective in eliminating latent viral reservoirs in neurons. Much of HSV-1 pathogenesis is dependent on its ability to manipulate oxidative stress responses to craft a cellular environment that favors HSV-1 replication. However, to maintain redox homeostasis and to promote antiviral immune responses, the infected cell can upregulate reactive oxygen and nitrogen species (RONS) while having a tight control on antioxidant concentrations to prevent cellular damage. Non-thermal plasma (NTP), which we propose as a potential therapy alternative directed against HSV-1 infection, is a means to deliver RONS that affect redox homeostasis in the infected cell. This review emphasizes how NTP can be an effective therapy for HSV-1 infections through the direct antiviral activity of RONS and via immunomodulatory changes in the infected cells that will stimulate anti-HSV-1 adaptive immune responses. Overall, NTP application can control HSV-1 replication and address the challenges of latency by decreasing the size of the viral reservoir in the nervous system.
Collapse
Affiliation(s)
- Julia Sutter
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Peter J. Bruggeman
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Fred C. Krebs
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
7
|
Abstract
Systemic inflammation elicited by sepsis can induce an acute cerebral dysfunction known as sepsis-associated encephalopathy (SAE). Recent evidence suggests that SAE is common but shows a dynamic trajectory over time. Half of all patients with sepsis develop SAE in the intensive care unit, and some survivors present with sustained cognitive impairments for several years after initial sepsis onset. It is not clear why some, but not all, patients develop SAE and also the factors that determine the persistence of SAE. Here, we first summarize the chronic pathology and the dynamic changes in cognitive functions seen after the onset of sepsis. We then outline the cerebral effects of sepsis, such as neuroinflammation, alterations in neuronal synapses and neurovascular changes. We discuss the key factors that might contribute to the development and persistence of SAE in older patients, including premorbid neurodegenerative pathology, side effects of sedatives, renal dysfunction and latent virus reactivation. Finally, we postulate that some of the mechanisms that underpin neuropathology in SAE may also be relevant to delirium and persisting cognitive impairments that are seen in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tatsuya Manabe
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Ivanovskii VA, Antonova IN, Molokova VA. The role of Herpes Simplex Virus type 1 in oral diseases in children. Pediatr Dent 2022. [DOI: 10.33925/1683-3031-2022-22-2-143-151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Relevance. Herpes virus infections are the most common and poorly controllable viral infections. There are many difficulties in herpetic lesion verification and treatment in dental practice.Purpose. The study aimed to present the results of a foreign publication investigation on the role of herpes simplex virus type 1 in the development of oral diseases in children.Material and methods. Foreign scientific articles about the oral HSV-1 infections published from 2018 to 2022 formed the basis for the study. The study searched the publications on PubMed and Google Scholar bases.Results. The article presents the newest data on the prevalence, clinical characteristics and diagnosis of oral HSV infection in children. Primary herpetic gingivostomatitis (PHGS), chronic recurrent herpetic gingivostomatitis, chronic recurrent herpes labialis are the main clinical presentations of herpes infection diagnosed in a dental practice. Primary herpetic gingivostomatitis is very common in children aged six months to fve years and occurs in newborns from 2 to 43 days of life. Modern virology success can improve diagnosis and treatment of oral herpetic lesions.Conclusion. Primary herpetic gingivostomatitis is an acute infectious disease that requires the joint attention of a general practitioner and a dentist to ensure comprehensive treatment.
Collapse
|
9
|
Initial TK-deficient HSV-1 infection in the lip alters contralateral lip challenge immune dynamics. Sci Rep 2022; 12:8489. [PMID: 35590057 PMCID: PMC9119387 DOI: 10.1038/s41598-022-12597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Primary infection with herpes simplex type 1 (HSV-1) occurring around the mouth and nose switches rapidly to lifelong latent infection in sensitive trigeminal ganglia (TG) neurons. Sporadic reactivation of these latent reservoirs later in life is the cause of acute infections of the corneal epithelium, which can cause potentially blinding herpes simplex keratitis (HSK). There is no effective vaccine to protect against HSK, and antiviral drugs provide only partial protection against recurrences. We previously engendered an acute disease-free, non-reactivating latent state in mice when challenged with virulent HSV-1 in orofacial mucosa, by priming with non-neurovirulent HSV-1 (TKdel) before the challenge. Herein, we define the local immune infiltration and inflammatory chemokine production changes after virulent HSV-1 challenge, which were elicited by TKdel prime. Heightened immunosurveillance before virulent challenge, and early enhanced lymphocyte-enriched infiltration of the challenged lip were induced, which corresponded to attenuation of inflammation in the TG and enhanced viral control. Furthermore, classical latent-phase T cell persistence around latent HSV-1 reservoirs were severely reduced. These findings identify the immune processes that are likely to be responsible for establishing non-reactivating latent HSV-1 reservoirs. Stopping reactivation is essential for development of efficient vaccine strategies against HSV-1.
Collapse
|
10
|
Mucosal immunology of the ocular surface. Mucosal Immunol 2022; 15:1143-1157. [PMID: 36002743 PMCID: PMC9400566 DOI: 10.1038/s41385-022-00551-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The eye is a sensory organ exposed to the environment and protected by a mucosal tissue barrier. While it shares a number of features with other mucosal tissues, the ocular mucosal system, composed of the conjunctiva, Meibomian glands, and lacrimal glands, is specialized to address the unique needs of (a) lubrication and (b) host defense of the ocular surface. Not surprisingly, most challenges, physical and immunological, to the homeostasis of the eye fall into those two categories. Dry eye, a dysfunction of the lacrimal glands and/or Meibomian glands, which can both cause, or arise from, sensory defects, including those caused by corneal herpes virus infection, serve as examples of these perturbations and will be discussed ahead. To preserve vision, dense neuronal and immune networks sense various stimuli and orchestrate responses, which must be tightly controlled to provide protection, while simultaneously minimizing collateral damage. All this happens against the backdrop of, and can be modified by, the microorganisms that colonize the ocular mucosa long term, or that are simply transient passengers introduced from the environment. This review will attempt to synthesize the existing knowledge and develop trends in the study of the unique mucosal and immune elements of the ocular surface.
Collapse
|
11
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
12
|
Polansky H, Goral B. How an increase in the copy number of HSV-1 during latency can cause Alzheimer's disease: the viral and cellular dynamics according to the microcompetition model. J Neurovirol 2021; 27:895-916. [PMID: 34635992 DOI: 10.1007/s13365-021-01012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 04/28/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Numerous studies observed a link between the herpes smplex virus-1 (HSV-1) and Alzheimer's disease. However, the exact viral and cellular dynamics that lead from an HSV-1 infection to Alzheimer's disease are unknown. In this paper, we use the microcompetition model to formulate these dynamics by connecting seemingly unconnected observations reported in the literature. We concentrate on four pathologies characteristic of Alzheimer's disease. First, we explain how an increase in the copy number of HSV-1 during latency can decrease the expression of BECN1/Beclin1, the degradative trafficking protein, which, in turn, can cause a dysregulation of autophagy and Alzheimer's disease. Second, we show how an increase in the copy number of the latent HSV-1 can decrease the expression of many genes important for mitochondrial genome metabolism, respiratory chain, and homeostasis, which can lead to oxidative stress and neuronal damage, resulting in Alzheimer's disease. Third, we describe how an increase in this copy number can reduce the concentration of the NMDA receptor subunits NR1 and NR2b (Grin1 and Grin2b genes), and brain derived neurotrophic factor (BDNF), which can cause an impaired synaptic plasticity, Aβ accumulation and eventually Alzheimer's disease. Finally, we show how an increase in the copy number of HSV-1 in neural stem/progenitor cells in the hippocampus during the latent phase can lead to an abnormal quantity and quality of neurogenesis, and the clinical presentation of Alzheimer's disease. Since the current understanding of the dynamics and homeostasis of the HSV-1 reservoir during latency is limited, the proposed model represents only a first step towards a complete understanding of the relationship between the copy number of HSV-1 during latency and Alzheimer's disease.
Collapse
Affiliation(s)
- Hanan Polansky
- The Center for the Biology of Chronic Disease (CBCD), 3 Germay Dr, Wilmington, DE, 19804, USA.
| | - Benjamin Goral
- The Center for the Biology of Chronic Disease (CBCD), 3 Germay Dr, Wilmington, DE, 19804, USA
| |
Collapse
|
13
|
Bergström P, Trybala E, Eriksson CE, Johansson M, Satir TM, Widéhn S, Fruhwürth S, Michno W, Nazir FH, Hanrieder J, Paludan SR, Agholme L, Zetterberg H, Bergström T. Herpes Simplex Virus 1 and 2 Infections during Differentiation of Human Cortical Neurons. Viruses 2021; 13:v13102072. [PMID: 34696502 PMCID: PMC8540961 DOI: 10.3390/v13102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/02/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) and 2 (HSV-2) can infect the central nervous system (CNS) with dire consequences; in children and adults, HSV-1 may cause focal encephalitis, while HSV-2 causes meningitis. In neonates, both viruses can cause severe, disseminated CNS infections with high mortality rates. Here, we differentiated human induced pluripotent stem cells (iPSCs) towards cortical neurons for infection with clinical CNS strains of HSV-1 or HSV-2. Progenies from both viruses were produced at equal quantities in iPSCs, neuroprogenitors and cortical neurons. HSV-1 and HSV-2 decreased viability of neuroprogenitors by 36.0% and 57.6% (p < 0.0001), respectively, 48 h post-infection, while cortical neurons were resilient to infection by both viruses. However, in these functional neurons, both HSV-1 and HSV-2 decreased gene expression of two markers of synaptic activity, CAMK2B and ARC, and affected synaptic activity negatively in multielectrode array experiments. However, unaltered secretion levels of the neurodegeneration markers tau and NfL suggested intact axonal integrity. Viral replication of both viruses was found after six days, coinciding with 6-fold and 22-fold increase in gene expression of cellular RNA polymerase II by HSV-1 and HSV-2, respectively. Our results suggest a resilience of human cortical neurons relative to the replication of HSV-1 and HSV-2.
Collapse
Affiliation(s)
- Petra Bergström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.B.); (T.M.S.); (S.F.); (F.H.N.); (L.A.)
| | - Edward Trybala
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden; (E.T.); (C.E.E.); (M.J.); (S.W.)
| | - Charlotta E. Eriksson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden; (E.T.); (C.E.E.); (M.J.); (S.W.)
| | - Maria Johansson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden; (E.T.); (C.E.E.); (M.J.); (S.W.)
| | - Tugce Munise Satir
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.B.); (T.M.S.); (S.F.); (F.H.N.); (L.A.)
| | - Sibylle Widéhn
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden; (E.T.); (C.E.E.); (M.J.); (S.W.)
| | - Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.B.); (T.M.S.); (S.F.); (F.H.N.); (L.A.)
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden;
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-431 80 Mölndal, Sweden; (W.M.); (J.H.); (H.Z.)
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Faisal Hayat Nazir
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.B.); (T.M.S.); (S.F.); (F.H.N.); (L.A.)
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-431 80 Mölndal, Sweden; (W.M.); (J.H.); (H.Z.)
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-431 80 Mölndal, Sweden; (W.M.); (J.H.); (H.Z.)
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Soren Riis Paludan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden;
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lotta Agholme
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.B.); (T.M.S.); (S.F.); (F.H.N.); (L.A.)
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE-431 80 Mölndal, Sweden; (W.M.); (J.H.); (H.Z.)
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-431 80 Mölndal, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden; (E.T.); (C.E.E.); (M.J.); (S.W.)
- Correspondence:
| |
Collapse
|
14
|
Duggan MR, Torkzaban B, Ahooyi TM, Khalili K. Potential Role for Herpesviruses in Alzheimer's Disease. J Alzheimers Dis 2021; 78:855-869. [PMID: 33074235 DOI: 10.3233/jad-200814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Across the fields of virology and neuroscience, the role of neurotropic viruses in Alzheimer's disease (AD) has received renewed enthusiasm, with a particular focus on human herpesviruses (HHVs). Recent genomic analyses of brain tissue collections and investigations of the antimicrobial responses of amyloid-β do not exclude a role of HHVs in contributing to or accelerating AD pathogenesis. Due to continued expansion in our aging cohort and the lack of effective treatments for AD, this composition examines a potential neuroviral theory of AD in light of these recent data. Consideration reveals a possible viral "Hit-and-Run" scenario of AD, as well as neurobiological mechanisms (i.e., neuroinflammation, protein quality control, oxidative stress) that may increase risk for AD following neurotropic infection. Although limitations exist, this theoretical framework reveals several novel therapeutic targets that may prove efficacious in AD.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Bahareh Torkzaban
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Taha Mohseni Ahooyi
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
St. Leger AJ, Koelle DM, Kinchington PR, Verjans GMGM. Local Immune Control of Latent Herpes Simplex Virus Type 1 in Ganglia of Mice and Man. Front Immunol 2021; 12:723809. [PMID: 34603296 PMCID: PMC8479180 DOI: 10.3389/fimmu.2021.723809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen. HSV-1 genomes persist in trigeminal ganglia neuronal nuclei as chromatinized episomes, while epithelial cells are typically killed by lytic infection. Fluctuations in anti-viral responses, broadly defined, may underlay periodic reactivations. The ganglionic immune response to HSV-1 infection includes cell-intrinsic responses in neurons, innate sensing by several cell types, and the infiltration and persistence of antigen-specific T-cells. The mechanisms specifying the contrasting fates of HSV-1 in neurons and epithelial cells may include differential genome silencing and chromatinization, dictated by variation in access of immune modulating viral tegument proteins to the cell body, and protection of neurons by autophagy. Innate responses have the capacity of recruiting additional immune cells and paracrine activity on parenchymal cells, for example via chemokines and type I interferons. In both mice and humans, HSV-1-specific CD8 and CD4 T-cells are recruited to ganglia, with mechanistic studies suggesting active roles in immune surveillance and control of reactivation. In this review we focus mainly on HSV-1 and the TG, comparing and contrasting where possible observational, interventional, and in vitro studies between humans and animal hosts.
Collapse
Affiliation(s)
- Anthony J. St. Leger
- Department of Ophthalmology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Paul R. Kinchington
- Department of Ophthalmology and Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | |
Collapse
|
16
|
Prasad S, Sheng WS, Hu S, Chauhan P, Lokensgard JR. Dysregulated Microglial Cell Activation and Proliferation Following Repeated Antigen Stimulation. Front Cell Neurosci 2021; 15:686340. [PMID: 34447297 PMCID: PMC8383069 DOI: 10.3389/fncel.2021.686340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Upon reactivation of quiescent neurotropic viruses antigen (Ag)-specific brain resident-memory CD8+ T-cells (bTRM) may respond to de novo-produced viral Ag through the rapid release of IFN-γ, which drives subsequent interferon-stimulated gene expression in surrounding microglia. Through this mechanism, a small number of adaptive bTRM may amplify responses to viral reactivation leading to an organ-wide innate protective state. Over time, this brain-wide innate immune activation likely has cumulative neurotoxic and neurocognitive consequences. We have previously shown that HIV-1 p24 Ag-specific bTRM persist within the murine brain using a heterologous prime-CNS boost strategy. In response to Ag restimulation, these bTRM display rapid and robust recall responses, which subsequently activate glial cells. In this study, we hypothesized that repeated challenges to viral antigen (Ag) (modeling repeated episodes of viral reactivation) culminate in prolonged reactive gliosis and exacerbated neurotoxicity. To address this question, mice were first immunized with adenovirus vectors expressing the HIV p24 capsid protein, followed by a CNS-boost using Pr55Gag/Env virus-like particles (HIV-VLPs). Following the establishment of the bTRM population [>30 days (d)], prime-CNS boost animals were then subjected to in vivo challenge, as well as re-challenge (at 14 d post-challenge), using the immunodominant HIV-1 AI9 CD8+ T-cell epitope peptide. In these studies, Ag re-challenge resulted in prolonged expression of microglial activation markers and an increased proliferative response, longer than the challenge group. This continued expression of MHCII and PD-L1 (activation markers), as well as Ki67 (proliferative marker), was observed at 7, 14, and 30 days post-AI9 re-challenge. Additionally, in vivo re-challenge resulted in continued production of inducible nitric oxide synthase (iNOS) with elevated levels observed at 7, 14 and 30 days post re-challenge. Interestingly, iNOS expression was significantly lower among challenged animals when compared to re-challenged groups. Furthermore, in vivo specific Ag re-challenge produced lower levels of arginase (Arg)-1 when compared with the challenged group. Taken together, these results indicate that repeated Ag-specific stimulation of adaptive immune responses leads to cumulative dysregulated microglial cell activation.
Collapse
Affiliation(s)
- Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Wen S Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Priyanka Chauhan
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
18
|
Itzhaki RF. Overwhelming Evidence for a Major Role for Herpes Simplex Virus Type 1 (HSV1) in Alzheimer's Disease (AD); Underwhelming Evidence against. Vaccines (Basel) 2021; 9:679. [PMID: 34205498 PMCID: PMC8234998 DOI: 10.3390/vaccines9060679] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
This review describes investigations of specific topics that lie within the general subject of HSV1's role in AD/dementia, published in the last couple of years. They include studies on the following: relationship of HSV1 to AD using neural stem cells; the apparent protective effects of treatment of HSV1 infection or of VZV infection with antivirals prior to the onset of dementia; the putative involvement of VZV in AD/dementia; the possible role of human herpes virus 6 (HHV6) in AD; the seemingly reduced risk of dementia after vaccination with diverse types of vaccine, and the association shown in some vaccine studies with reduced frequency of HSV1 reactivation; anti-HSV serum antibodies supporting the linkage of HSV1 in brain with AD in APOE-ε4 carriers, and the association between APOE and cognition, and association of APOE and infection with AD/dementia. The conclusions are that there is now overwhelming evidence for HSV1's role-probably causal-in AD, when it is present in brain of APOE-ε4 carriers, and that further investigations should be made on possible prevention of the disease by vaccination, or by prolonged antiviral treatment of HSV1 infection in APOE-ε4 carriers, before disease onset.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford, 66 Banbury Road, Oxford OX2 6PR, UK
| |
Collapse
|
19
|
Schang LM, Hu M, Cortes EF, Sun K. Chromatin-mediated epigenetic regulation of HSV-1 transcription as a potential target in antiviral therapy. Antiviral Res 2021; 192:105103. [PMID: 34082058 PMCID: PMC8277756 DOI: 10.1016/j.antiviral.2021.105103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
The ability to establish, and reactivate from, latent infections is central to the biology and pathogenesis of HSV-1. It also poses a strong challenge to antiviral therapy, as latent HSV-1 genomes do not replicate or express any protein to be targeted. Although the processes regulating the establishment and maintenance of, and reactivation from, latency are not fully elucidated, the current general consensus is that epigenetics play a major role. A unifying model postulates that whereas HSV-1 avoids or counteracts chromatin silencing in lytic infections, it becomes silenced during latency, silencing which is somewhat disrupted during reactivation. Many years of work by different groups using a variety of approaches have also shown that the lytic HSV-1 chromatin is distinct and has unique biophysical properties not shared with most cellular chromatin. Nonetheless, the lytic and latent viral chromatins are typically enriched in post translational modifications or histone variants characteristic of active or repressed transcription, respectively. Moreover, a variety of small molecule epigenetic modulators inhibit viral replication and reactivation from latency. Despite these successes in culture and animal models, it is not obvious how epigenetic modulation would be used in antiviral therapy if the same epigenetic mechanisms governed viral and cellular gene expression. Recent work has highlighted several important differences between the viral and cellular chromatins, which appear to be of consequence to their respective epigenetic regulations. In this review, we will discuss the distinctiveness of the viral chromatin, and explore whether it is regulated by mechanisms unique enough to be exploited in antiviral therapy.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| | - MiYao Hu
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850, USA; Departments of Biochemistry and Medical Microbiology and Immunology, University of Alberta. 470 MSB, Edmonton, AB, T6G 2H7, Canada.
| | - Esteban Flores Cortes
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| | - Kairui Sun
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| |
Collapse
|
20
|
Laval K, Enquist LW. The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer's Disease. Front Neurol 2021; 12:658695. [PMID: 33889129 PMCID: PMC8055853 DOI: 10.3389/fneur.2021.658695] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting ~50 million people worldwide. To date, there is no cure and current therapies have not been effective in delaying disease progression. Therefore, there is an urgent need for better understanding of the pathogenesis of AD and to rethink possible therapies. Herpes simplex virus type 1 (HSV1) has recently received growing attention for its potential role in sporadic AD. The virus is a ubiquitous human pathogen that infects mucosal epithelia and invades the peripheral nervous system (PNS) of its host to establish a reactivable, latent infection. Upon reactivation, HSV1 spreads back to the epithelium and initiates a new infection, causing epithelial lesions. Occasionally, the virus spreads from the PNS to the brain after reactivation. In this review, we discuss current work on the pathogenesis of AD and summarize research results that support a potential role for HSV1 in the infectious hypothesis of AD. We also highlight recent findings on the neuroinflammatory response, which has been proposed to be the main driving force of AD, starting early in the course of the disease. Relevant rodent models to study neuroinflammation in AD and novel therapeutic approaches are also discussed. Throughout this review, we focus on several aspects of HSV1 pathogenesis, including its primary role as an invader of the PNS, that should be considered in the etiology of AD. We also point out some of the contradictory data and remaining knowledge gaps that require further research to finally fully understand the cause of AD in humans.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
21
|
Vincenti I, Merkler D. New advances in immune components mediating viral control in the CNS. Curr Opin Virol 2021; 47:68-78. [PMID: 33636592 DOI: 10.1016/j.coviro.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Protective immune responses in the central nervous system (CNS) must act efficiently but need to be tightly controlled to avoid excessive damage to this vital organ. Under homeostatic conditions, the immune surveillance of the CNS is mediated by innate immune cells together with subsets of memory lymphocytes accumulating over lifetime. Accordingly, a wide range of immune responses can be triggered upon pathogen infection that can be associated with devastating clinical outcomes, and which most frequently are due to neurotropic viruses. Here, we discuss recent advances about our understanding of anti-viral immune responses with special emphasis on mechanisms operating in the various anatomical compartments of the CNS.
Collapse
Affiliation(s)
- Ilena Vincenti
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Doron Merkler
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
22
|
Cuddy SR, Schinlever AR, Dochnal S, Seegren PV, Suzich J, Kundu P, Downs TK, Farah M, Desai BN, Boutell C, Cliffe AR. Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. eLife 2020; 9:e58037. [PMID: 33350386 PMCID: PMC7773336 DOI: 10.7554/elife.58037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in neurons and periodically reactivates to cause disease. The stimuli that trigger HSV-1 reactivation have not been fully elucidated. We demonstrate HSV-1 reactivation from latently infected mouse neurons induced by forskolin requires neuronal excitation. Stimuli that directly induce neurons to become hyperexcitable also induced HSV-1 reactivation. Forskolin-induced reactivation was dependent on the neuronal pathway of DLK/JNK activation and included an initial wave of viral gene expression that was independent of histone demethylase activity and linked to histone phosphorylation. IL-1β is released under conditions of stress, fever and UV exposure of the epidermis; all known triggers of clinical HSV reactivation. We found that IL-1β induced histone phosphorylation and increased the excitation in sympathetic neurons. Importantly, IL-1β triggered HSV-1 reactivation, which was dependent on DLK and neuronal excitability. Thus, HSV-1 co-opts an innate immune pathway resulting from IL-1 stimulation of neurons to induce reactivation.
Collapse
Affiliation(s)
- Sean R Cuddy
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Philip V Seegren
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Jon Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Parijat Kundu
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Taylor K Downs
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Mina Farah
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Bimal N Desai
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube CampusGlasgowUnited Kingdom
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
23
|
Pandey JP, Olsson J, Weidung B, Kothera RT, Johansson A, Eriksson S, Hallmans G, Elgh F, Lövheim H. An Ig γ Marker Genotype Is a Strong Risk Factor for Alzheimer Disease, Independent of Apolipoprotein E ε4 Genotype. THE JOURNAL OF IMMUNOLOGY 2020; 205:1318-1322. [PMID: 32709662 DOI: 10.4049/jimmunol.2000351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/26/2020] [Indexed: 01/17/2023]
Abstract
Increasing evidence implicates HSV type 1 (HSV1) in the pathogenesis of late-onset Alzheimer disease (AD). HSV1 has evolved highly sophisticated strategies to evade host immunosurveillance. One strategy involves encoding a decoy Fcγ receptor (FcγR), which blocks Fc-mediated effector functions, such as Ab-dependent cellular cytotoxicity. Ig γ marker (GM) allotypes, encoded by highly polymorphic IGHG genes on chromosome 14q32, modulate this immunoevasion strategy, and thus may act as effect modifiers of the HSV1-AD association. In this nested case-control human study, 365 closely matched case-control pairs-whose blood was drawn on average 9.6 y before AD diagnosis-were typed for GM alleles by a TaqMan genotyping assay. APOE genotype and a genetic risk score based on nine additional previously known AD risk genes (ABCA7, BIN1, CD33, CLU, CR1, EPHA1, MS4A4E, NECTIN2, and PICALM) were extracted from a genome-wide association study analysis. Antiviral Abs were measured by ELISA. Conditional logistic regression models were applied. The distribution of GM 3/17 genotypes differed significantly between AD cases and controls, with higher frequency of GM 17/17 homozygotes in AD cases as compared with controls (19.8 versus 10.7%, p = 0.001). The GM 17/17 genotype was associated with a 4-fold increased risk of AD (odds ratio 4.142, p < 0.001). In conclusion, the results of this study demonstrate that Ig GM 17/17 genotype contributes to the risk of later AD development, independent of apolipoprotein ε4 genotype and other AD risk genes, and explain, at least in part, why every HSV1-infected person is not equally likely to develop HSV1-associated AD.
Collapse
Affiliation(s)
- Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425;
| | - Jan Olsson
- Division of Virology, Department of Clinical Microbiology, Umeå University, 901 85 Umeå, Sweden
| | - Bodil Weidung
- Division of Geriatric Medicine, Department of Public Health and Caring Sciences, Uppsala University, 751 05 Uppsala, Sweden
| | - Ronald T Kothera
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Anders Johansson
- Department of Odontology, Umeå University, Umeå, 901 85, Sweden.,Division of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden
| | - Sture Eriksson
- Division of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden.,Division of Geriatric Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 85 Umeå, Sweden; and
| | - Göran Hallmans
- Division of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 85 Umeå, Sweden
| | - Fredrik Elgh
- Division of Virology, Department of Clinical Microbiology, Umeå University, 901 85 Umeå, Sweden
| | - Hugo Lövheim
- Division of Geriatric Medicine, Department of Community Medicine and Rehabilitation, Umeå University, 901 85 Umeå, Sweden; and.,Wallenberg Centre for Molecular Medicine, Umeå University, 901 85 Umeå, Sweden
| |
Collapse
|