1
|
Chuang YC, Ou JHJ. Hepatitis B virus entry, assembly, and egress. Microbiol Mol Biol Rev 2024:e0001424. [PMID: 39440957 DOI: 10.1128/mmbr.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J-H James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
2
|
Whitworth IT, Romero S, Kissi-Twum A, Knoener R, Scalf M, Sherer NM, Smith LM. Identification of Host Proteins Involved in Hepatitis B Virus Genome Packaging. J Proteome Res 2024; 23:4128-4138. [PMID: 39078123 DOI: 10.1021/acs.jproteome.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A critical part of the hepatitis B virus (HBV) life cycle is the packaging of the pregenomic RNA (pgRNA) into nucleocapsids. While this process is known to involve several viral elements, much less is known about the identities and roles of host proteins in this process. To better understand the role of host proteins, we isolated pgRNA and characterized its protein interactome in cells expressing either packaging-competent or packaging-incompetent HBV genomes. We identified over 250 host proteins preferentially associated with pgRNA from the packaging-competent version of the virus. These included proteins already known to support capsid formation, enhance viral gene expression, catalyze nucleocapsid dephosphorylation, and bind to the viral genome, demonstrating the ability of the approach to effectively reveal functionally significant host-virus interactors. Three of these host proteins, AURKA, YTHDF2, and ATR, were selected for follow-up analysis. RNA immunoprecipitation qPCR (RIP-qPCR) confirmed pgRNA-protein association in cells, and siRNA knockdown of the proteins showed decreased encapsidation efficiency. This study provides a template for the use of comparative RNA-protein interactome analysis in conjunction with virus engineering to reveal functionally significant host-virus interactions.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Abena Kissi-Twum
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rachel Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Chang CH, Shih C. Significance of hepatitis B virus capsid dephosphorylation via polymerase. J Biomed Sci 2024; 31:34. [PMID: 38561844 PMCID: PMC10983652 DOI: 10.1186/s12929-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND It is generally believed that hepatitis B virus (HBV) core protein (HBc) dephosphorylation (de-P) is important for viral DNA synthesis and virion secretion. HBV polymerase contains four domains for terminal protein, spacer, reverse transcriptase, and RNase H activities. METHODS HBV Polymerase mutants were transfected into HuH-7 cells and assayed for replication and HBc de-P by the Phos-tag gel analysis. Infection assay was performed by using a HepG2-NTCP-AS2 cell line. RESULTS Here, we show that a novel phosphatase activity responsible for HBc de-P can be mapped to the C-terminal domain of the polymerase overlapping with the RNase H domain. Surprisingly, while HBc de-P is crucial for viral infectivity, it is essential for neither viral DNA synthesis nor virion secretion. The potential origin, significance, and mechanism of this polymerase-associated phosphatase activity are discussed in the context of an electrostatic homeostasis model. The Phos-tag gel analysis revealed an intriguing pattern of "bipolar distribution" of phosphorylated HBc and a de-P HBc doublet. CONCLUSIONS It remains unknown if such a polymerase-associated phosphatase activity can be found in other related biosystems. This polymerase-associated phosphatase activity could be a druggable target in clinical therapy for hepatitis B.
Collapse
Affiliation(s)
- Chih-Hsu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 112, Taiwan
| | - Chiaho Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 112, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Graduate Institute of Cell Biology, China Medical University, Taichung, 406, Taiwan.
| |
Collapse
|
4
|
Corda PO, Bollen M, Ribeiro D, Fardilha M. Emerging roles of the Protein Phosphatase 1 (PP1) in the context of viral infections. Cell Commun Signal 2024; 22:65. [PMID: 38267954 PMCID: PMC10807198 DOI: 10.1186/s12964-023-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit Leuven, Louvain, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
5
|
Yang R, Ko YH, Li F, Lokareddy RK, Hou CFD, Kim C, Klein S, Antolínez S, Marín JF, Pérez-Segura C, Jarrold MF, Zlotnick A, Hadden-Perilla JA, Cingolani G. Structural basis for nuclear import of hepatitis B virus (HBV) nucleocapsid core. SCIENCE ADVANCES 2024; 10:eadi7606. [PMID: 38198557 PMCID: PMC10780889 DOI: 10.1126/sciadv.adi7606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Nuclear import of the hepatitis B virus (HBV) nucleocapsid is essential for replication that occurs in the nucleus. The ~360-angstrom HBV capsid translocates to the nuclear pore complex (NPC) as an intact particle, hijacking human importins in a reaction stimulated by host kinases. This paper describes the mechanisms of HBV capsid recognition by importins. We found that importin α1 binds a nuclear localization signal (NLS) at the far end of the HBV coat protein Cp183 carboxyl-terminal domain (CTD). This NLS is exposed to the capsid surface through a pore at the icosahedral quasi-sixfold vertex. Phosphorylation at serine-155, serine-162, and serine-170 promotes CTD compaction but does not affect the affinity for importin α1. The binding of 30 importin α1/β1 augments HBV capsid diameter to ~620 angstroms, close to the maximum size trafficable through the NPC. We propose that phosphorylation favors CTD externalization and prompts its compaction at the capsid surface, exposing the NLS to importins.
Collapse
Affiliation(s)
- Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ravi K. Lokareddy
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Christine Kim
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | - Shelby Klein
- Department of Chemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | - Santiago Antolínez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Juan F. Marín
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | | | - Gino Cingolani
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Zhang T, Zheng H, Lu D, Guan G, Li D, Zhang J, Liu S, Zhao J, Guo JT, Lu F, Chen X. RNA binding protein TIAR modulates HBV replication by tipping the balance of pgRNA translation. Signal Transduct Target Ther 2023; 8:346. [PMID: 37699883 PMCID: PMC10497612 DOI: 10.1038/s41392-023-01573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 09/14/2023] Open
Abstract
The pregenomic RNA (pgRNA) of hepatitis B virus (HBV) serves not only as a bicistronic message RNA to translate core protein (Cp) and DNA polymerase (Pol), but also as the template for reverse transcriptional replication of viral DNA upon packaging into nucleocapsid. Although it is well known that pgRNA translates much more Cp than Pol, the molecular mechanism underlying the regulation of Cp and Pol translation efficiency from pgRNA remains elusive. In this study, we systematically profiled HBV nucleocapsid- and pgRNA-associated cellular proteins by proteomic analysis and identified TIA-1-related protein (TIAR) as a novel cellular protein that binds pgRNA and promotes HBV DNA replication. Interestingly, loss- and gain-of-function genetic analyses showed that manipulation of TIAR expression did not alter the levels of HBV transcripts nor the secretion of HBsAg and HBeAg in human hepatoma cells supporting HBV replication. However, Ribo-seq and PRM-based mass spectrometry analyses demonstrated that TIAR increased the translation of Pol but decreased the translation of Cp from pgRNA. RNA immunoprecipitation (RIP) and pulldown assays further revealed that TIAR directly binds pgRNA at the 5' stem-loop (ε). Moreover, HBV replication or Cp expression induced the increased expression and redistribution of TIAR from the nucleus to the cytoplasm of hepatocytes. Our results thus imply that TIAR is a novel cellular factor that regulates HBV replication by binding to the 5' ε structure of pgRNA to tip the balance of Cp and Pol translation. Through induction of TIAR translocation from the nucleus to the cytoplasm, Cp indirectly regulates the Pol translation and balances Cp and Pol expression levels in infected hepatocytes to ensure efficient viral replication.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Huiling Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Danjuan Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Deyao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ju-Tao Guo
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
7
|
Zheng Y, Yang L, Yu L, Zhu Y, Wu Y, Zhang Z, Xia T, Deng Q. Canocapavir Is a Novel Capsid Assembly Modulator Inducing a Conformational Change of the Linker Region of HBV Core Protein. Viruses 2023; 15:v15051195. [PMID: 37243280 DOI: 10.3390/v15051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Canocapavir is a novel antiviral agent with characteristics of core protein allosteric modulators (CpAMs) that is currently in a phase II clinical trial for treatment of hepatitis B virus (HBV) infection. Herein, we show that Canocapavir prevented the encapsidation of HBV pregenomic RNA and increased the accumulation of cytoplasmic empty capsids, presumably by targeting the hydrophobic pocket at the dimer-dimer interface of HBV core protein (HBc). Canocapavir treatment markedly reduced the egress of naked capsids, which could be reversed by Alix overexpression through a mechanism other than direct association of Alix with HBc. Moreover, Canocapavir interfered with the interaction between HBc and HBV large surface protein, resulting in diminished production of empty virions. Of particular note, Canocapavir induced a conformational change of capsids, with the C-terminus of HBc linker region fully exposed on the exterior of capsids. We posit that the allosteric effect may have great importance in the anti-HBV activity of Canocapavir, given the emerging virological significance of HBc linker region. In support of this notion, the mutation at HBc V124W typically recapitulated the conformational change of the empty capsid with aberrant cytoplasmic accumulation. Collectively, our results indicate Canocapavir as a mechanistically distinct type of CpAMs against HBV infection.
Collapse
Affiliation(s)
- Yuan Zheng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| | - Le Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| | - Lin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhijun Zhang
- Shanghai Zhimeng Biopharma, Inc., 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai 201210, China
| | - Tian Xia
- Shanghai Zhimeng Biopharma, Inc., 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai 201210, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China
| |
Collapse
|
8
|
Heat Shock Protein Family A Member 1 Promotes Intracellular Amplification of Hepatitis B Virus Covalently Closed Circular DNA. J Virol 2023; 97:e0126122. [PMID: 36519896 PMCID: PMC9888207 DOI: 10.1128/jvi.01261-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) contains a partially double-stranded relaxed circular DNA (rcDNA) genome that is converted into a covalently closed circular DNA (cccDNA) in the nucleus of the infected hepatocyte by cellular DNA repair machinery. cccDNA associates with nucleosomes to form a minichromosome that transcribes RNA to support the expression of viral proteins and reverse transcriptional replication of viral DNA. In addition to the de novo synthesis from incoming virion rcDNA, cccDNA can also be synthesized from rcDNA in the progeny nucleocapsids within the cytoplasm of infected hepatocytes via the intracellular amplification pathway. In our efforts to identify cellular DNA repair proteins required for cccDNA synthesis using a chemogenetic screen, we found that B02, a small-molecule inhibitor of DNA homologous recombination repair protein RAD51, significantly enhanced the synthesis of cccDNA via the intracellular amplification pathway in human hepatoma cells. Ironically, neither small interfering RNA (siRNA) knockdown of RAD51 expression nor treatment with another structurally distinct RAD51 inhibitor or activator altered cccDNA amplification. Instead, it was found that B02 treatment significantly elevated the levels of multiple heat shock protein mRNA, and siRNA knockdown of HSPA1 expression or treatment with HSPA1 inhibitors significantly attenuated B02 enhancement of cccDNA amplification. Moreover, B02-enhanced cccDNA amplification was efficiently inhibited by compounds that selectively inhibit DNA polymerase α or topoisomerase II, the enzymes required for cccDNA intracellular amplification. Our results thus indicate that B02 treatment induces a heat shock protein-mediated cellular response that positively regulates the conversion of rcDNA into cccDNA via the authentic intracellular amplification pathway. IMPORTANCE Elimination or functional inactivation of cccDNA minichromosomes in HBV-infected hepatocytes is essential for the cure of chronic hepatitis B virus (HBV) infection. However, lack of knowledge of the molecular mechanisms of cccDNA metabolism and regulation hampers the development of antiviral drugs to achieve this therapeutic goal. Our findings reported here imply that enhanced cccDNA amplification may occur under selected pathobiological conditions, such as cellular stress, to subvert the dilution or elimination of cccDNA and maintain the persistence of HBV infection. Therapeutic inhibition of HSPA1-enhanced cccDNA amplification under these pathobiological conditions should facilitate the elimination of cccDNA and cure of chronic hepatitis B.
Collapse
|
9
|
Wong TL, Mooney BP, Cavallero GJ, Guan M, Li L, Zaia J, Wan XF. Glycoproteomic Analyses of Influenza A Viruses Using timsTOF Pro MS. J Proteome Res 2023; 22:62-77. [PMID: 36480915 DOI: 10.1021/acs.jproteome.2c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N-Linked glycosylation in hemagglutinin and neuraminidase glycoproteins of influenza viruses affects antigenic and receptor binding properties, and precise analyses of site-specific glycoforms in these proteins are critical in understanding the antigenic and immunogenic properties of influenza viruses. In this study, we developed a glycoproteomic approach by using a timsTOF Pro mass spectrometer (MS) to determine the abundance and heterogeneity of site-specific glycosylation for influenza glycoproteins. Compared with a Q Exactive HF MS, the timsTOF Pro MS method without the hydrophilic interaction liquid chromatography column enrichment achieved similar glycopeptide coverage and quantities but was more effective in identifying low-abundance glycopeptides. We quantified the distributions of intact site-specific glycopeptides in hemagglutinin of A/chicken/Wuxi/0405005/2013 (H7N9) and A/mute swan/Rhode Island/A00325125/2008 (H7N3). Results showed that hemagglutinin for both viruses had complex N-glycans at N22, N38, N240, and N483 but only high-mannose glycans at N411 and, however, that the type and quantities of glycans were distinct between these viruses. Collisional cross section (CCS) provided by the ion mobility spectrometry from the timsTOF Pro MS data differentiated sialylation linkages of the glycopeptides. In summary, timsTOF Pro MS method can quantify intact site-specific glycans for influenza glycoproteins without enrichment and thus facilitate influenza vaccine development and production.
Collapse
Affiliation(s)
- Tin Long Wong
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri65211, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri65211, United States.,Bond Life Sciences Center, University of Missouri, Columbia, Missouri65211, United States
| | - Brian P Mooney
- Department of Biochemistry and Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri65211, United States
| | - Gustavo J Cavallero
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts02118, United States
| | - Minhui Guan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri65211, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri65211, United States.,Bond Life Sciences Center, University of Missouri, Columbia, Missouri65211, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia30302, United States
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts02118, United States
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri65211, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri65211, United States.,Bond Life Sciences Center, University of Missouri, Columbia, Missouri65211, United States.,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri65211, United States
| |
Collapse
|
10
|
Shi Y, Jin X, Wu S, Liu J, Zhang H, Cai X, Yang Y, Zhang X, Wei J, Luo M, Zhou H, Zhou H, Huang A, Wang D. Release of hepatitis B virions is positively regulated by glucose-regulated protein 78 through direct interaction with preS1. J Med Virol 2023; 95:e28271. [PMID: 36321566 PMCID: PMC10107996 DOI: 10.1002/jmv.28271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 12/04/2022]
Abstract
In this study, we investigated the mechanism of hepatitis B virus (HBV)-enveloped particle release. Specifically, we used preS1 as a bait protein to screen host proteins using mass spectroscopy, with the results of immunofluorescence, western blot, co-immunoprecipitation, isothermal titration calorimetry, and pull-down assays identifying glucose-regulated protein (GRP)78 as a specific target for preS1 binding. We employed transcriptome sequencing, enzyme-linked immunosorbent assays, and particle gel assays to investigate the mechanism of GRP78-mediated positive regulation of HBV-enveloped particle release. Additionally, we performed phage-display, surface plasmon resonance, and molecular-docking assays to assess peptides inhibiting enveloped-particle release. We found that HBV upregulated GRP78 expression in liver cell lines and the serum of patients with chronic hepatitis B. Furthermore, GRP78 promoted the release of HBV-enveloped particles in vitro and in vivo within an HBV transgenic mouse model. Moreover, we identified interactions of preS1 peptides with GRP78 via hydrogen bonding and hydrophobic interactions, which effectively inhibited its interaction with HBV-enveloped particles and their subsequent release. These findings provide novel insights regarding HBV virion release, and demonstrated that GRP78 interacted with preS1 to positively regulate the release of HBV-enveloped particles, suggesting GRP78 as a potential therapeutic target for inhibiting HBV infection.
Collapse
Affiliation(s)
- Yueyuan Shi
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China.,College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China.,Department of Clinical Laboratory, The People's Hospital of Yubei District of Chongqing City, Yubei, Chongqing, China
| | - Xin Jin
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China.,Department of Clinical Laboratory, The Second Hospital of Harbin, Harbin City, Heilongjiang Province, China
| | - Shuang Wu
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China.,Department of Clinical Laboratory, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an City, Shanxi Province, China
| | - Junye Liu
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China.,Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shanxi Province, China
| | - Hongpeng Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China.,Department of Blood Transfusion, Women and Children's Hospital of Chongqing Medical University, Yubei, Chongqing, China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Yuan Yang
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Xiang Zhang
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Jie Wei
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Miao Luo
- Department of Clinical Laboratory, The People's Hospital of Yubei District of Chongqing City, Yubei, Chongqing, China
| | - Hua Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China.,College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| |
Collapse
|
11
|
Patent Highlights June–July 2022. Pharm Pat Anal 2022; 12:5-11. [PMID: 36511078 DOI: 10.4155/ppa-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
12
|
Prange R. Hepatitis B virus movement through the hepatocyte: An update. Biol Cell 2022; 114:325-348. [PMID: 35984727 DOI: 10.1111/boc.202200060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Viruses are obligate intracellular pathogens that utilize cellular machinery for many aspects of their propagation and effective egress of virus particles from host cells is one important determinant of virus infectivity. Hijacking host cell processes applies in particular to the hepatitis B virus (HBV), as its DNA genome with about 3 kb in size is one of the smallest viral genomes known. HBV is a leading cause of liver disease and still displays one of the most successful pathogens in human populations worldwide. The extremely successful spread of this virus is explained by its efficient transmission strategies and its versatile particle types, including virions, empty envelopes, naked capsids and others. HBV exploits distinct host trafficking machineries to assemble and release its particle types including nucleocytoplasmic shuttling transport, secretory and exocytic pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Understanding how HBV uses and subverts host membrane trafficking systems offers the chance of obtaining new mechanistic insights into the regulation and function of this essential cellular processes. It can also help to identify potential targets for antiviral interventions. Here, I will provide an overview of HBV maturation, assembly, and budding, with a focus on recent advances, and will point out areas where questions remain that can benefit from future studies. Unless otherwise indicated, almost all presented knowledge was gained from cell culture-based, HBV in vitro -replication and in vitro -infection systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Reinhild Prange
- Department of Virology, University Medical Center of the Johannes Gutenberg University Mainz, Augustusplatz, Mainz, D-55131, Germany
| |
Collapse
|
13
|
Chu JYK, Chuang YC, Tsai KN, Pantuso J, Ishida Y, Saito T, Ou JHJ. Autophagic membranes participate in hepatitis B virus nucleocapsid assembly, precore and core protein trafficking, and viral release. Proc Natl Acad Sci U S A 2022; 119:e2201927119. [PMID: 35858426 PMCID: PMC9335259 DOI: 10.1073/pnas.2201927119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/05/2022] [Indexed: 01/21/2023] Open
Abstract
Hepatitis B virus (HBV) DNA replication takes place inside the viral core particle and is dependent on autophagy. Here we show that HBV core particles are associated with autophagosomes and phagophores in cells that productively replicate HBV. These autophagic membrane-associated core particles contain almost entirely the hypophosphorylated core protein and are DNA replication competent. As the hyperphosphorylated core protein can be localized to phagophores and the dephosphorylation of the core protein is associated with the packaging of viral pregenomic RNA (pgRNA), these results are in support of the model that phagophores can serve as the sites for the packaging of pgRNA. In contrast, in cells that replicate HBV, the precore protein derivatives, which are related to the core protein, are associated with autophagosomes but not with phagophores via a pathway that is independent of its signal peptide. Interestingly, when the core protein is expressed by itself, it is associated with phagophores but not with autophagosomes. These observations indicate that autophagic membranes are differentially involved in the trafficking of precore and core proteins. HBV induces the fusion of autophagosomes and multivesicular bodies and the silencing of Rab11, a regulator of this fusion, is associated with the reduction of release of mature HBV particles. Our studies thus indicate that autophagic membranes participate in the assembly of HBV nucleocapsids, the trafficking of HBV precore and core proteins, and likely also the egress of HBV particles.
Collapse
Affiliation(s)
- Ja Yeon Kim Chu
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Jessica Pantuso
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
- Research and Development Department, PhoenixBio, Co., Ltd, Kagamiyama, Higashi-Hiroshima City, 739-0046 Japan
| | - Takeshi Saito
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| | - Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033
| |
Collapse
|
14
|
Xi J, Cui X, Liu K, Liu H, Wang J, Hu J. Region-Specific Hepatitis B Virus Genome Exposure from Nucleocapsid Modulated by Capsid Linker Sequence and Inhibitor: Implications for Uncoating. J Virol 2022; 96:e0039922. [PMID: 35389266 PMCID: PMC9044944 DOI: 10.1128/jvi.00399-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) contains a partially double-stranded, relaxed circular (RC) DNA genome synthesized within a nucleocapsid (NC) in the host cell cytoplasm. The release of RC DNA from the NC, in an ill-defined process called uncoating, to the nucleus is required for its conversion to the covalently closed circular (CCC) DNA, the viral episome serving as the transcriptional template for all viral RNAs necessary for replication and, thus, essential for establishing and sustaining viral infection. In efforts to better understand uncoating, we analyzed HBV core (HBc) mutants that show various levels of nuclear CCC DNA but little to no cytoplasmic RC DNA. We found that RC DNA could be synthesized by these mutants outside the cell, but in contrast to the wild type (wt), the mutant NCs were unable to protect RC DNA from digestion by the endogenous nuclease(s) in cellular lysates or exogenous DNase. Subcellular fractionation suggested that the major RC DNA-degrading activity was membrane associated. Digestion with sequence-specific and nonspecific DNases revealed the exposure of specific regions of RC DNA from the mutant NC. Similarly, treatment of wt NCs with a core inhibitor known to increase CCC DNA by affecting uncoating also led to region-specific exposure of RC DNA. Furthermore, a subpopulation of untreated wild type (wt) mature NCs showed site-specific exposure of RC DNA as well. Competition between RC DNA degradation and its conversion to CCC DNA during NC uncoating thus likely plays an important role in the establishment and persistence of HBV infection and has implications for the development of capsid-targeted antivirals. IMPORTANCE Disassembly of the hepatitis B virus (HBV) nucleocapsid (NC) to release its genomic DNA, in an ill-understood process called uncoating, is required to form the viral nuclear episome in the host cell nucleus, a viral DNA essential for establishing and sustaining HBV infection. The elimination of the HBV nuclear episome remains the holy grail for the development of an HBV cure. We report here that the HBV genomic DNA is exposed in a region-specific manner during uncoating, which is enhanced by mutations of the capsid protein and a capsid-targeted antiviral compound. The exposure of the viral genome can result in its rapid degradation or, alternatively, can enhance the formation of the nuclear episome, thus having a major impact on HBV infection and persistence. These results are thus important for understanding fundamental mechanisms of HBV replication and persistence and for the ongoing pursuit of an HBV cure.
Collapse
Affiliation(s)
- Ji Xi
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xiuji Cui
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kuancheng Liu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Haitao Liu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Joseph Wang
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
15
|
Taverniti V, Ligat G, Debing Y, Kum DB, Baumert TF, Verrier ER. Capsid Assembly Modulators as Antiviral Agents against HBV: Molecular Mechanisms and Clinical Perspectives. J Clin Med 2022; 11:1349. [PMID: 35268440 PMCID: PMC8911156 DOI: 10.3390/jcm11051349] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Despite a preventive vaccine being available, more than 250 million people suffer from chronic hepatitis B virus (HBV) infection, a major cause of liver disease and HCC. HBV infects human hepatocytes where it establishes its genome, the cccDNA with chromosomal features. Therapies controlling HBV replication exist; however, they are not sufficient to eradicate HBV cccDNA, the main cause for HBV persistence in patients. Core protein is the building block of HBV nucleocapsid. This viral protein modulates almost every step of the HBV life cycle; hence, it represents an attractive target for the development of new antiviral therapies. Capsid assembly modulators (CAM) bind to core dimers and perturb the proper nucleocapsid assembly. The potent antiviral activity of CAM has been demonstrated in cell-based and in vivo models. Moreover, several CAMs have entered clinical development. The aim of this review is to summarize the mechanism of action (MoA) and the advancements in the clinical development of CAMs and in the characterization of their mod of action.
Collapse
Affiliation(s)
- Valerio Taverniti
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| | - Gaëtan Ligat
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| | - Yannick Debing
- Aligos Belgium BV, 3001 Leuven, Belgium; (Y.D.); (D.B.K.)
| | | | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (V.T.); (G.L.); (T.F.B.)
| |
Collapse
|
16
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
17
|
Lubyova B, Tikalova E, Krulova K, Hodek J, Zabransky A, Hirsch I, Weber J. ATM-Dependent Phosphorylation of Hepatitis B Core Protein in Response to Genotoxic Stress. Viruses 2021; 13:v13122438. [PMID: 34960710 PMCID: PMC8705010 DOI: 10.3390/v13122438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic hepatitis caused by infection with the Hepatitis B virus is a life-threatening condition. In fact, 1 million people die annually due to liver cirrhosis or hepatocellular carcinoma. Recently, several studies demonstrated a molecular connection between the host DNA damage response (DDR) pathway and HBV replication and reactivation. Here, we investigated the role of Ataxia-telangiectasia-mutated (ATM) and Ataxia telangiectasia and Rad3-related (ATR) PI3-kinases in phosphorylation of the HBV core protein (HBc). We determined that treatment of HBc-expressing hepatocytes with genotoxic agents, e.g., etoposide or hydrogen peroxide, activated the host ATM-Chk2 pathway, as determined by increased phosphorylation of ATM at Ser1981 and Chk2 at Thr68. The activation of ATM led, in turn, to increased phosphorylation of cytoplasmic HBc at serine-glutamine (SQ) motifs located in its C-terminal domain. Conversely, down-regulation of ATM using ATM-specific siRNAs or inhibitor effectively reduced etoposide-induced HBc phosphorylation. Detailed mutation analysis of S-to-A HBc mutants revealed that S170 (S168 in a 183-aa HBc variant) is the primary site targeted by ATM-regulated phosphorylation. Interestingly, mutation of two major phosphorylation sites involving serines at positions 157 and 164 (S155 and S162 in a 183-aa HBc variant) resulted in decreased etoposide-induced phosphorylation, suggesting that the priming phosphorylation at these serine-proline (SP) sites is vital for efficient phosphorylation of SQ motifs. Notably, the mutation of S172 (S170 in a 183-aa HBc variant) had the opposite effect and resulted in massively up-regulated phosphorylation of HBc, particularly at S170. Etoposide treatment of HBV infected HepG2-NTCP cells led to increased levels of secreted HBe antigen and intracellular HBc protein. Together, our studies identified HBc as a substrate for ATM-mediated phosphorylation and mapped the phosphorylation sites. The increased expression of HBc and HBe antigens in response to genotoxic stress supports the idea that the ATM pathway may provide growth advantage to the replicating virus.
Collapse
Affiliation(s)
- Barbora Lubyova
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
- Correspondence: (B.L.); (J.W.)
| | - Eva Tikalova
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
| | - Kristyna Krulova
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
| | - Jan Hodek
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
| | - Ales Zabransky
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
| | - Ivan Hirsch
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Jan Weber
- IOCB Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic; (E.T.); (K.K.); (J.H.); (A.Z.); (I.H.)
- Correspondence: (B.L.); (J.W.)
| |
Collapse
|
18
|
Liu H, Cheng J, Viswanathan U, Chang J, Lu F, Guo JT. Amino acid residues at core protein dimer-dimer interface modulate multiple steps of hepatitis B virus replication and HBeAg biogenesis. PLoS Pathog 2021; 17:e1010057. [PMID: 34752483 PMCID: PMC8604296 DOI: 10.1371/journal.ppat.1010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
The core protein (Cp) of hepatitis B virus (HBV) assembles pregenomic RNA (pgRNA) and viral DNA polymerase to form nucleocapsids where the reverse transcriptional viral DNA replication takes place. Core protein allosteric modulators (CpAMs) inhibit HBV replication by binding to a hydrophobic "HAP" pocket at Cp dimer-dimer interfaces to misdirect the assembly of Cp dimers into aberrant or morphologically "normal" capsids devoid of pgRNA. We report herein that a panel of CpAM-resistant Cp with single amino acid substitution of residues at the dimer-dimer interface not only disrupted pgRNA packaging, but also compromised nucleocapsid envelopment, virion infectivity and covalently closed circular (ccc) DNA biosynthesis. Interestingly, these mutations also significantly reduced the secretion of HBeAg. Biochemical analysis revealed that the CpAM-resistant mutations in the context of precore protein (p25) did not affect the levels of p22 produced by signal peptidase removal of N-terminal 19 amino acid residues, but significantly reduced p17, which is produced by furin cleavage of C-terminal arginine-rich domain of p22 and secreted as HBeAg. Interestingly, p22 existed as both unphosphorylated and phosphorylated forms. While the unphosphorylated p22 is in the membranous secretary organelles and the precursor of HBeAg, p22 in the cytosol and nuclei is hyperphosphorylated at the C-terminal arginine-rich domain and interacts with Cp to disrupt capsid assembly and viral DNA replication. The results thus indicate that in addition to nucleocapsid assembly, interaction of Cp at dimer-dimer interface also plays important roles in the production and infectivity of progeny virions through modulation of nucleocapsid envelopment and uncoating. Similar interaction at reduced p17 dimer-dimer interface appears to be important for its metabolic stability and sensitivity to CpAM suppression of HBeAg secretion.
Collapse
Affiliation(s)
- Hui Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Junjun Cheng
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Usha Viswanathan
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail: (FL); (J-TG)
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail: (FL); (J-TG)
| |
Collapse
|
19
|
Lv K, Wu S, Tao Z, Wang A, Xu S, Yang L, Gao Q, Wang A, Qin X, Jiang B, Wu W, Jia X, Li Y, Jiang J, Liu M. Identification of (6S)-cyclopropyl-6,7-dihydropyrazolo[1,5-a]pyrazine-5(4H)-carboxamines as new HBV capsid assembly modulators. Eur J Med Chem 2021; 228:113974. [PMID: 34772528 DOI: 10.1016/j.ejmech.2021.113974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022]
Abstract
GYH2-18 is a type II HBV CAM with 6,7-dihydropyrazolo[1,5-a]pyrazine-5(4H)-carboxamine (DPPC) skeleton discovered by Roche INC. A series of GYH2-18 derivatives were designed, synthesized and evaluated for their anti-HBV activity. Two compounds 2f and 3k exhibited excellent anti-HBV activity, low cytotoxicity and accepted oral PK profiles. Chiral separation of 2f and 3k was conducted successfully, and (6S)-cyclopropyl DPPC isomers 2f-1, 2f-3, 3k-1 and 3k-3 were identified to be much more active than the corresponding (6R)-ones. The preliminary structure-activity relationship, particle gel assay and molecular modeling studies were also discussed, which provide useful indications for guiding the further rational design of new (6S)-cyclopropyl DPPC analogues.
Collapse
Affiliation(s)
- Kai Lv
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zeyu Tao
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Aoyu Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shijie Xu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lu Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qiang Gao
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Apeng Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyu Qin
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Bin Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmaceutical Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenhao Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmaceutical Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuedong Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiandong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingliang Liu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
20
|
Niklasch M, Zimmermann P, Nassal M. The Hepatitis B Virus Nucleocapsid-Dynamic Compartment for Infectious Virus Production and New Antiviral Target. Biomedicines 2021; 9:1577. [PMID: 34829806 PMCID: PMC8615760 DOI: 10.3390/biomedicines9111577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV's only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.
Collapse
Affiliation(s)
| | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany; (M.N.); (P.Z.)
| |
Collapse
|
21
|
Abstract
Chronic hepatitis B virus (HBV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma, estimated to be globally responsible for ∼800,000 deaths annually. Although effective vaccines are available to prevent new HBV infection, treatment of existing chronic hepatitis B (CHB) is limited, as the current standard-of-care antiviral drugs can only suppress viral replication without achieving cure. In 2016, the World Health Organization called for the elimination of viral hepatitis as a global public health threat by 2030. The United States and other nations are working to meet this ambitious goal by developing strategies to cure CHB, as well as prevent HBV transmission. This review considers recent research progress in understanding HBV pathobiology and development of therapeutics for the cure of CHB, which is necessary for elimination of hepatitis B by 2030.
Collapse
Affiliation(s)
- Timothy M Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| |
Collapse
|
22
|
Mai H, Xie H, Hou J, Chen H, Zhou B, Hou J, Jiang D. A Genetic Variant of PPP1CB Influences Risk of Hepatitis B Virus-Related Hepatocellular Carcinoma in Han Chinese: A Pathway Based Analysis. J Hepatocell Carcinoma 2021; 8:1055-1064. [PMID: 34513747 PMCID: PMC8422165 DOI: 10.2147/jhc.s321939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Activation of actin cytoskeleton remodeling is an important stage preceding cancer cell metastasis. Previous genome-wide association studies (GWAS) have identified multiple hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC)-associated risk loci. However, limited sample size or strict significance threshold of GWAS may cause HBV-related HCC risk-associated genetic loci to be undetected. We aimed to investigate the performance of the SNP rs13025377 in PPP1CB in HCC. Patients and Methods We performed a case-control study including 1161 cases and 1353 controls to evaluate associations between single nucleotide polymorphisms (SNPs) from 98 actin-cytoskeleton regulatory genes and risk of HBV-related HCC. The effects of SNPs on HBV-related HCC risk were assessed under logistic regression model and corrected by false discovery rate (FDR). Results We found that rs13025377 in PPP1CB was significantly associated with HBV-related HCC risk [odds ratio (OR) = 0.81, 95% confidence interval (CI) = 0.72~0.91, P = 4.88×10-4]. The risk allele A of rs13025377 increased PPP1CB expression levels in normal liver tissue. SNP rs4665434 was tagged by rs13025377 (r2 = 0.9) and its protective allele disrupted CTCF and Cohesin motifs. According to public datasets, PPP1CB, CTCF and Cohesin expression levels are increased in tumor tissues. Kaplan-Meier plots demonstrated that higher PPP1CB expression was significantly associated with shorter overall survival (OS). Moreover, we observed strong correlation between CTCF, Cohesin, and PPP1CB in various liver tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis confirmed that PPP1CB plays a role in HCC through actin-cytoskeleton regulation. Conclusion Thus, these findings indicated that PPP1CB may be a key gene in actin-cytoskeleton regulation and rs13025377 contributes to the risk of HBV-related HCC by regulating PPP1CB expression.
Collapse
Affiliation(s)
- Haoming Mai
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Haisheng Xie
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jia Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| |
Collapse
|
23
|
Regulation of Hepatitis B Virus Replication by Cyclin Docking Motifs in Core Protein. J Virol 2021; 95:JVI.00230-21. [PMID: 33789995 DOI: 10.1128/jvi.00230-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) capsid or core protein (HBc) consists of an N-terminal domain (NTD) and a C-terminal domain (CTD) connected by a short linker peptide. Dynamic phosphorylation and dephosphorylation of HBc regulate its multiple functions in capsid assembly and viral replication. The cellular cyclin-dependent kinase 2 (CDK2) plays a major role in HBc phosphorylation and, furthermore, is incorporated into the viral capsid, accounting for most of the "endogenous kinase" activity associated with the capsid. The packaged CDK2 is thought to play a role in phosphorylating HBc to trigger nucleocapsid disassembly (uncoating), an essential step during viral infection. However, little is currently known on how CDK2 is recruited and packaged into the capsid. We have now identified three RXL motifs in the HBc NTD known as cyclin docking motifs (CDMs), which mediate the interactions of various CDK substrates/regulators with CDK/cyclin complexes. Mutations of the CDMs in the HBc NTD reduced CTD phosphorylation and diminished CDK2 packaging into the capsid. Also, the CDM mutations showed little effects on capsid assembly and pregenomic RNA (pgRNA) packaging but impaired the integrity of mature nucleocapsids. Furthermore, the CDM mutations blocked covalently closed circular DNA (CCC DNA) formation during infection while having no effect on or enhancing CCC DNA formation via intracellular amplification. These results indicate that the HBc NTD CDMs play a role in CDK2 recruitment and packaging, which, in turn, is important for productive infection.IMPORTANCE Hepatitis B virus (HBV) is an important global human pathogen and persistently infects hundreds of millions of people, who are at high risk of cirrhosis and liver cancer. HBV capsid packages a host cell protein kinase, the cyclin-dependent kinase 2 (CDK2), which is thought to be required to trigger disassembly of the viral nucleocapsid during infection by phosphorylating the capsid protein, a prerequisite for successful infection. We have identified docking sites on the capsid protein for recruiting CDK2, in complex with its cyclin partner, to facilitate capsid protein phosphorylation and CDK2 packaging. Mutations of these docking sites reduced capsid protein phosphorylation, impaired CDK2 packaging into HBV capsids, and blocked HBV infection. These results provide novel insights regarding CDK2 packaging into HBV capsids and the role of CDK2 in HBV infection and should facilitate the development of antiviral drugs that target the HBV capsid protein.
Collapse
|
24
|
Identification of hepatitis B virus core protein residues critical for capsid assembly, pgRNA encapsidation and resistance to capsid assembly modulators. Antiviral Res 2021; 191:105080. [PMID: 33933516 DOI: 10.1016/j.antiviral.2021.105080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Assembly of hepatitis B virus (HBV) capsids is driven by the hydrophobic interaction of core protein (Cp) at dimer-dimer interface. Binding of core protein allosteric modulators (CpAMs) to a hydrophobic "HAP" pocket formed between the inter-dimer interface strengths the dimer-dimer interaction and misdirects the assembly of Cp dimers into non-capsid Cp polymers or morphologically normal capsids devoid of viral pregenomic (pg) RNA and DNA polymerase. In this study, we performed a systematic mutagenesis analysis to identify Cp amino acid residues at Cp dimer-dimer interface that are critical for capsid assembly, pgRNA encapsidation and resistance to CpAMs. By analyzing 70 mutant Cp with a single amino acid substitution of 25 amino acid residues around the HAP pocket, our study revealed that residue W102 and Y132 are critical for capsid assembly. However, substitution of many other residues did not significantly alter the amount of capsids, but reduced the amount of encapsidated pgRNA, suggesting their critical roles in pgRNA packaging. Interestingly, several mutant Cp with a single amino acid substitution of residue P25, T33 or I105 supported high levels of DNA replication, but conferred strong resistance to multiple chemotypes of CpAMs. In addition, we also found that WT Cp, but not the assembly incompetent Cp, such as Y132A Cp, interacted with HBV DNA polymerase (Pol). This later finding implies that encapsidation of viral DNA polymerase may depend on the interaction of Pol with a capsid assembly intermediate, but not free Cp dimers. Taking together, our findings reported herein shed new light on the mechanism of HBV nucleocapsid assembly and mode of CpAM action.
Collapse
|
25
|
Xi J, Luckenbaugh L, Hu J. Multiple roles of PP2A binding motif in hepatitis B virus core linker and PP2A in regulating core phosphorylation state and viral replication. PLoS Pathog 2021; 17:e1009230. [PMID: 33493210 PMCID: PMC7861550 DOI: 10.1371/journal.ppat.1009230] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 02/04/2021] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) capsid or core protein (HBc) contains an N-terminal domain (NTD) and a C-terminal domain (CTD) connected by a short linker peptide. HBc plays a critical role in virtually every step of viral replication, which is further modulated by dynamic phosphorylation and dephosphorylation of its CTD. While several cellular kinases have been identified that mediate HBc CTD phosphorylation, there is little information on the cellular phosphatases that mediate CTD dephosphorylation. Herein, a consensus binding motif for the protein phosphatase 2A (PP2A) regulatory subunit B56 was recognized within the HBc linker peptide. Mutations within this motif designed to block or enhance B56 binding showed pleiotropic effects on CTD phosphorylation state as well as on viral RNA packaging, reverse transcription, and virion secretion. Furthermore, linker mutations affected the HBV nuclear episome (the covalently closed circular or CCC DNA) differentially during intracellular amplification vs. infection. The effects of linker mutations on CTD phosphorylation state varied with different phosphorylation sites and were only partially consistent with the linker motif serving to recruit PP2A-B56, specifically, to dephosphorylate CTD, suggesting that multiple phosphatases and/or kinases may be recruited to modulate CTD (de)phosphorylation. Furthermore, pharmacological inhibition of PP2A could decrease HBc CTD dephosphorylation and increase the nuclear HBV episome. These results thus strongly implicate the HBc linker in recruiting PP2A and other host factors to regulate multiple stages of HBV replication. Hepatitis B virus (HBV) causes acute and chronic viral hepatitis, liver fibrosis, cirrhosis and cancer. The dynamic phosphorylation and dephosphorylation of the viral capsid protein (HBc), which are controlled by host cell protein kinases and phosphatases, play a critical role in regulating multiple stages of HBV replication. While a number of cellular kinases have been identified that mediate HBc phosphorylation, there is little information on cellular phosphatases that mediate its dephosphorylation. Herein we have identified a consensus binding motif in HBc for one of the major cellular phosphatases, the protein phosphatase 2A (PP2A). Genetic analysis of this motif revealed that it played multiple roles in regulating CTD phosphorylation state, as well as viral RNA packaging, reverse transcription, virion secretion, and formation of the nuclear HBV episome responsible for viral persistence. Furthermore, pharmacological inhibition of PP2A decreased HBc dephosphorylation and increased the nuclear episome, further supporting a role of PP2A in HBc dephosphorylation and HBV persistence. These results thus suggest that HBc recruits PP2A, among other host factors, to regulate HBc phosphorylation and dephosphorylation dynamics and HBV replication and persistence.
Collapse
Affiliation(s)
- Ji Xi
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Laura Luckenbaugh
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Hwang N, Ban H, Chen J, Ma J, Liu H, Lam P, Kulp J, Menne S, Chang J, Guo JT, Du Y. Synthesis of 4-oxotetrahydropyrimidine-1(2H)-carboxamides derivatives as capsid assembly modulators of hepatitis B virus. Med Chem Res 2021; 30:459-472. [PMID: 33456291 PMCID: PMC7797712 DOI: 10.1007/s00044-020-02677-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
We report herein the synthesis and evaluation of phenyl ureas derived from 4-oxotetrahydropyrimidine as novel capsid assembly modulators of hepatitis B virus (HBV). Among the derivatives, compound 27 (58031) and several analogs showed an activity of submicromolar EC50 against HBV and low cytotoxicities (>50 μM). Structure–activity relationship studies revealed a tolerance for an additional group at position 5 of 4-oxotetrahydropyrimidine. The mechanism study indicates that compound 27 (58031) is a type II core protein allosteric modulator (CpAMs), which induces core protein dimers to assemble empty capsids with fast electrophoresis mobility in native agarose gel. These compounds may thus serve as leads for future developments of novel antivirals against HBV.
Collapse
Affiliation(s)
- Nicky Hwang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA.,Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127 Pudong New District China
| | - Junjun Chen
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Julia Ma
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Hui Liu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA.,Department of Pathogen Biology, Peking University Medical Center, Beijing, China
| | - Patrick Lam
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - John Kulp
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Stephan Menne
- Georgetown University Medical Center, 3900 Reservoir Road, Washington, DC 20057 USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902 USA
| |
Collapse
|
27
|
Shih C, Wu SY, Chou SF, Yuan TTT. Virion Secretion of Hepatitis B Virus Naturally Occurring Core Antigen Variants. Cells 2020; 10:cells10010043. [PMID: 33396864 PMCID: PMC7823318 DOI: 10.3390/cells10010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
In natural infection, hepatitis B virus (HBV) core protein (HBc) accumulates frequent mutations. The most frequent HBc variant in chronic hepatitis B patients is mutant 97L, changing from an isoleucine or phenylalanine to a leucine (L) at HBc amino acid 97. One dogma in the HBV research field is that wild type HBV secretes predominantly virions containing mature double-stranded DNA genomes. Immature genomes, containing single-stranded RNA or DNA, do not get efficiently secreted until reaching genome maturity. Interestingly, HBc variant 97L does not follow this dogma in virion secretion. Instead, it exhibits an immature secretion phenotype, which preferentially secretes virions containing immature genomes. Other aberrant behaviors in virion secretion were also observed in different naturally occurring HBc variants. A hydrophobic pocket around amino acid 97 was identified by bioinformatics, genetic analysis, and cryo-EM. We postulated that this hydrophobic pocket could mediate the transduction of the genome maturation signal for envelopment from the capsid interior to its surface. Virion morphogenesis must involve interactions between HBc, envelope proteins (HBsAg) and host factors, such as components of ESCRT (endosomal sorting complex required for transport). Immature secretion can be offset by compensatory mutations, occurring at other positions in HBc or HBsAg. Recently, we demonstrated in mice that the persistence of intrahepatic HBV DNA is related to virion secretion regulated by HBV genome maturity. HBV virion secretion could be an antiviral drug target.
Collapse
Affiliation(s)
- Chiaho Shih
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Correspondence: (C.S.); (T.-T.T.Y.)
| | - Szu-Yao Wu
- Chimera Bioscience Inc., No. 18 Siyuan St., Zhongzheng Dist., Taipei 10087, Taiwan;
| | - Shu-Fan Chou
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Ta-Tung Thomas Yuan
- TFBS Bioscience, Inc. 3F, No. 103, Ln 169, Kangning St., Xizhi Dist., New Taipei City 221, Taiwan
- Correspondence: (C.S.); (T.-T.T.Y.)
| |
Collapse
|
28
|
Viswanathan U, Mani N, Hu Z, Ban H, Du Y, Hu J, Chang J, Guo JT. Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. Antiviral Res 2020; 182:104917. [PMID: 32818519 DOI: 10.1016/j.antiviral.2020.104917] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
The core (capsid) protein of hepatitis B virus (HBV) is the building block of nucleocapsids where viral DNA reverse transcriptional replication takes place and mediates virus-host cell interaction important for the persistence of HBV infection. The pleiotropic role of core protein (Cp) in HBV replication makes it an attractive target for antiviral therapies of chronic hepatitis B, a disease that affects more than 257 million people worldwide without a cure. Recent clinical studies indicate that core protein allosteric modulators (CpAMs) have a great promise as a key component of hepatitis B curative therapies. Particularly, it has been demonstrated that modulation of Cp dimer-dimer interactions by several chemical series of CpAMs not only inhibit nucleocapsid assembly and viral DNA replication, but also induce the disassembly of double-stranded DNA-containing nucleocapsids to prevent the synthesis of cccDNA. Moreover, the different chemotypes of CpAMs modulate Cp assembly by interaction with distinct amino acid residues at the HAP pocket between Cp dimer-dimer interfaces, which results in the assembly of Cp dimers into either non-capsid Cp polymers (type I CpAMs) or empty capsids with distinct physical property (type II CpAMs). The different CpAMs also differentially modulate Cp metabolism and subcellular distribution, which may impact cccDNA metabolism and host antiviral immune responses, the critical factors for the cure of chronic HBV infection. This review article highlights the recent research progress on the structure and function of core protein in HBV replication cycle, the mode of action of CpAMs, as well as the current status and perspectives on the discovery and development of core protein-targeting antivirals. This article forms part of a symposium in Antiviral Research on "Wide-ranging immune and direct-acting antiviral approaches to curing HBV and HDV infections."
Collapse
Affiliation(s)
- Usha Viswanathan
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Nagraj Mani
- Arbutus Biopharma Inc., 701 Veterans Circle, Warminster, PA, 18974, USA
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| |
Collapse
|