1
|
Willis ZI, Oliveira CR, Abzug MJ, Anosike BI, Ardura MI, Bio LL, Boguniewicz J, Chiotos K, Downes K, Grapentine SP, Hersh AL, Heston SM, Hijano DR, Huskins WC, James SH, Jones S, Lockowitz CR, Lloyd EC, MacBrayne C, Maron GM, Hayes McDonough M, Miller CM, Morton TH, Olivero RM, Orscheln RC, Schwenk HT, Singh P, Soma VL, Sue PK, Vora SB, Nakamura MM, Wolf J. Guidance for prevention and management of COVID-19 in children and adolescents: A consensus statement from the Pediatric Infectious Diseases Society Pediatric COVID-19 Therapies Taskforce. J Pediatric Infect Dis Soc 2024; 13:159-185. [PMID: 38339996 PMCID: PMC11494238 DOI: 10.1093/jpids/piad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Since November 2019, the SARS-CoV-2 pandemic has created challenges for preventing and managing COVID-19 in children and adolescents. Most research to develop new therapeutic interventions or to repurpose existing ones has been undertaken in adults, and although most cases of infection in pediatric populations are mild, there have been many cases of critical and fatal infection. Understanding the risk factors for severe illness and the evidence for safety, efficacy, and effectiveness of therapies for COVID-19 in children is necessary to optimize therapy. METHODS A panel of experts in pediatric infectious diseases, pediatric infectious diseases pharmacology, and pediatric intensive care medicine from 21 geographically diverse North American institutions was re-convened. Through a series of teleconferences and web-based surveys and a systematic review with meta-analysis of data for risk factors, a guidance statement comprising a series of recommendations for risk stratification, treatment, and prevention of COVID-19 was developed and refined based on expert consensus. RESULTS There are identifiable clinical characteristics that enable risk stratification for patients at risk for severe COVID-19. These risk factors can be used to guide the treatment of hospitalized and non-hospitalized children and adolescents with COVID-19 and to guide preventative therapy where options remain available.
Collapse
Affiliation(s)
- Zachary I Willis
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Carlos R Oliveira
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Mark J Abzug
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Brenda I Anosike
- Department of Pediatrics, The Children’s Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica I Ardura
- Department of Pediatrics, ID Host Defense Program, Nationwide Children’s Hospital & The Ohio State University, Columbus, OH, USA
| | - Laura L Bio
- Department of Pharmacy, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Juri Boguniewicz
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Kathleen Chiotos
- Departments of Anesthesiology, Critical Care Medicine, and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Divisions of Critical Care Medicine and Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin Downes
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steven P Grapentine
- Department of Pharmacy, University of California San Francisco Benioff Children’s Hospital, San Francisco, CA, USA
| | - Adam L Hersh
- Department of Pediatrics, Division of Infectious Diseases, University of Utah, Salt Lake City, UT, USA
| | - Sarah M Heston
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Diego R Hijano
- Department of Infectious Diseases, St. Jude Children’s Research Hospital and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - W Charles Huskins
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Scott H James
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah Jones
- Department of Pharmacy, Boston Children’s Hospital, Boston, MA, USA
| | | | - Elizabeth C Lloyd
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Gabriela M Maron
- Department of Infectious Diseases, St. Jude Children’s Research Hospital and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Molly Hayes McDonough
- Center for Healthcare Quality & Analytics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christine M Miller
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Theodore H Morton
- Department of Pharmacy, St Jude’s Children’s Research Hospital, Memphis, Tennessee, USA
| | - Rosemary M Olivero
- Department of Pediatrics and Human Development, Michigan State College of Human Medicine and Helen DeVos Children’s Hospital of Corewell Health, Grand Rapids, MI, USA
| | | | - Hayden T Schwenk
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - Prachi Singh
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Vijaya L Soma
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Paul K Sue
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Surabhi B Vora
- Department of Pediatrics, University of Washington School of Medicine, and Division of Infectious Diseases, Seattle Children’s Hospital, Seattle, WA, USA
| | - Mari M Nakamura
- Antimicrobial Stewardship Program and Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children’s Research Hospital and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Beijnen EMS, Odumade OA, Haren SDV. Molecular Determinants of the Early Life Immune Response to COVID-19 Infection and Immunization. Vaccines (Basel) 2023; 11:vaccines11030509. [PMID: 36992093 DOI: 10.3390/vaccines11030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Clinical manifestations from primary COVID infection in children are generally less severe as compared to adults, and severe pediatric cases occur predominantly in children with underlying medical conditions. However, despite the lower incidence of disease severity, the burden of COVID-19 in children is not negligible. Throughout the course of the pandemic, the case incidence in children has substantially increased, with estimated cumulative rates of SARS-CoV-2 infection and COVID-19 symptomatic illness in children comparable to those in adults. Vaccination is a key approach to enhance immunogenicity and protection against SARS-CoV-2. Although the immune system of children is functionally distinct from that of other age groups, vaccine development specific for the pediatric population has mostly been limited to dose-titration of formulations that were developed primarily for adults. In this review, we summarize the literature pertaining to age-specific differences in COVID-19 pathogenesis and clinical manifestation. In addition, we review molecular distinctions in how the early life immune system responds to infection and vaccination. Finally, we discuss recent advances in development of pediatric COVID-19 vaccines and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Oludare A Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA 02115, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Lota-Salvado R, Padua JR, Agrupis KA, Malijan GM, Sayo AR, Suzuki S, Go GD, Smith C. Epidemiological and clinical characteristics of children with confirmed COVID-19 infection in a tertiary referral hospital in Manila, Philippines. Trop Med Health 2023; 51:9. [PMID: 36814333 PMCID: PMC9944764 DOI: 10.1186/s41182-023-00507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND COVID-19 has challenged the under-resourced health systems of low- and middle-income countries, significantly affecting child health. Available published data on Filipino children with COVID-19 infection are limited. This study aims to describe the epidemiological and clinical characteristics of pediatric patients with confirmed COVID-19 in an infectious disease hospital in Manila, Philippines. MAIN TEXT This cross-sectional study reviewed data on patients ages 0 to 18 years with confirmed COVID-19 infection, admitted to San Lazaro Hospital from January 25, 2020 to January 25, 2022. Demographic data and clinical characteristics obtained from COVID-19 case investigation forms were summarized and compared between severe and non-severe cases. Risk factors for disease severity and mortality were analyzed. Of 115 patients, 64% were males. There were 87 patients (75.7%) with asymptomatic, mild, or moderate disease, and 28 cases (24.3%) with severe or critical illness. The median age of all patients was 10 years (interquartile range: 4-15 years). The majority of patients (40.9%) were adolescents ages 13 to 18 years. Predominant symptoms were fever (73.9%) and cough (55.7%). Patients with severe or critical illness were more likely to experience difficulty of breathing (55.2% vs 44.8%, p < 0.001), and have a longer hospital stay (11 days vs 8 days, p = 0.043). Among all patients, 48.7% had at least one underlying disease; and common infectious co-morbidities were tuberculosis (17.4%), dengue (12.2%), and HIV (4.3%). Having tuberculosis (p = 0.008) or at least one co-morbidity (p < 0.001) was associated with disease severity. Ten patients (8.7%) died; and mortality was higher among those with severe or critical illness (80% vs 20%, p < 0.001). Sepsis (p = 0.020) or having at least one co-morbidity (p = 0.007) was associated with death. CONCLUSION Children of all ages remain susceptible to COVID-19 infection, and usually present with mild or moderate symptoms. In this study, many adolescents are affected, highlighting the value of COVID-19 vaccination in this age group. Understanding the clinical features of COVID-19 in Filipino children is essential to identifying and optimally managing those at highest risk of severe disease.
Collapse
Affiliation(s)
- Rhanee Lota-Salvado
- grid.174567.60000 0000 8902 2273School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Jay Ron Padua
- grid.517911.aSan Lazaro Hospital, Manila, Philippines
| | - Kristal An Agrupis
- grid.517911.aSan Lazaro Hospital–Nagasaki University Collaborative Research Office, Manila, Philippines
| | - Greco Mark Malijan
- grid.517911.aSan Lazaro Hospital–Nagasaki University Collaborative Research Office, Manila, Philippines
| | - Ana Ria Sayo
- grid.517911.aSan Lazaro Hospital, Manila, Philippines
| | - Shuichi Suzuki
- grid.174567.60000 0000 8902 2273School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan ,grid.517911.aSan Lazaro Hospital–Nagasaki University Collaborative Research Office, Manila, Philippines
| | | | - Chris Smith
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan. .,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
4
|
Milani D, Caruso L, Zauli E, Al Owaifeer AM, Secchiero P, Zauli G, Gemmati D, Tisato V. p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics). Front Pharmacol 2022; 13:871583. [PMID: 35721196 PMCID: PMC9201997 DOI: 10.3389/fphar.2022.871583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection affects different organs and tissues, including the upper and lower airways, the lung, the gut, the olfactory system and the eye, which may represent one of the gates to the central nervous system. Key transcriptional factors, such as p53 and NF-kB and their reciprocal balance, are altered upon SARS-CoV-2 infection, as well as other key molecules such as the virus host cell entry mediator ACE2, member of the RAS-pathway. These changes are thought to play a central role in the impaired immune response, as well as in the massive cytokine release, the so-called cytokine storm that represents a hallmark of the most severe form of SARS-CoV-2 infection. Host genetics susceptibility is an additional key side to consider in a complex disease as COVID-19 characterized by such a wide range of clinical phenotypes. In this review, we underline some molecular mechanisms by which SARS-CoV-2 modulates p53 and NF-kB expression and activity in order to maximize viral replication into the host cells. We also face the RAS-pathway unbalance triggered by virus-ACE2 interaction to discuss potential pharmacological and pharmacogenomics approaches aimed at restoring p53/NF-kB and ACE1/ACE2 balance to counteract the most severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Daniela Milani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Adi Mohammed Al Owaifeer
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
- Ophthalmology Unit, Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis and Thrombosis, University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Frutos AM, Kubale J, Kuan G, Ojeda S, Vydiswaran N, Sanchez N, Plazaola M, Patel M, Lopez R, Balmaseda A, Gordon A. SARS-CoV-2 and endemic coronaviruses: Comparing symptom presentation and severity of symptomatic illness among Nicaraguan children. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000414. [PMID: 35785016 PMCID: PMC9245908 DOI: 10.1371/journal.pgph.0000414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/06/2022] [Indexed: 12/24/2022]
Abstract
It has been proposed that as SARS-CoV-2 transitions to endemicity, children will represent the greatest proportion of SARS-Co-V-2 infections as they currently do with endemic coronavirus infections. While SARS-CoV-2 infection severity is low for children, it is unclear if SARS-CoV-2 infections are distinct in symptom presentation, duration, and severity from endemic coronavirus infections in children. We compared symptom risk and duration of endemic human coronavirus (HCoV) infections from 2011-2016 with SARS-CoV-2 infections from March 2020-September 2021 in a Nicaraguan pediatric cohort. Blood samples were collected from study participants annually in February-April. Respiratory samples were collected from participants that met testing criteria. Blood samples collected in were tested for SARS-CoV-2 antibodies and a subset of 2011-2016 blood samples from four-year-old children were tested for endemic HCoV antibodies. Respiratory samples were tested for each of the endemic HCoVs from 2011-2016 and for SARS-CoV-2 from 2020-2021 via rt-PCR. By April 2021, 854 (49%) cohort participants were ELISA positive for SARS-CoV-2 antibodies. Most participants had antibodies against one alpha and one beta coronavirus by age four. We observed 595 symptomatic endemic HCoV infections from 2011-2016 and 121 symptomatic with SARS-CoV-2 infections from March 2020-September 2021. Symptom presentation of SARS-CoV-2 infection and endemic coronavirus infections were very similar, and SARS-CoV-2 symptomatic infections were as or less severe on average than endemic HCoV infections. This suggests that, for children, SARS-CoV-2 may be just another endemic coronavirus. However, questions about the impact of variants and the long-term effects of SARS-CoV-2 remain.
Collapse
Affiliation(s)
- Aaron M. Frutos
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - John Kubale
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Guillermina Kuan
- Health Center Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Sergio Ojeda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Nivea Vydiswaran
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Nery Sanchez
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Miguel Plazaola
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - May Patel
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Roger Lopez
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
6
|
Soomann M, Wendel-Garcia PD, Kaufmann M, Grazioli S, Perez MH, Hilty MP, André MC, Brotschi B. The SARS-CoV-2 Pandemic Impacts the Management of Swiss Pediatric Intensive Care Units. Front Pediatr 2022; 10:761815. [PMID: 35155302 PMCID: PMC8832059 DOI: 10.3389/fped.2022.761815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic on pediatric intensive care units (PICUs) is difficult to quantify. We conducted an observational study in all eight Swiss PICUs between 02/24/2020 and 06/15/2020 to characterize the logistical and medical aspects of the pandemic and their impact on the management of the Swiss PICUs. The nine patients admitted to Swiss PICUs during the study period suffering from pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) and constituting 14% (9/63) of all SARS-CoV-2 positive hospitalized patients in Swiss children's hospitals caused a higher workload [total Nine Equivalents of nursing Manpower use Score (NEMS) points, p = 0.0008] and were classified to higher workload categories (p < 0.0001) than regular PICU patients (n = 4,881) admitted in 2019. The comparison of the characteristics of the eight Swiss PICUs shows that they were confronted by different organizational issues arising from temporary regulations put in place by the federal council. These general regulations had different consequences for the eight individual PICUs due to the differences between the PICUs. In addition, the temporal relationship of these different regulations influenced the available PICU resources, dependent on the characteristics of the individual PICUs. As pandemic continues, reflecting and learning from experience is essential to reduce workload, optimize bed occupancy and manage resources in each individual PICU. In a small country as Switzerland, with a relatively decentralized health care local differences between PICUs are considerable and should be taken into account when making policy decisions.
Collapse
Affiliation(s)
- Maarja Soomann
- Department of Pediatric and Neonatal Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Pedro D Wendel-Garcia
- University of Zurich, Zurich, Switzerland.,Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Mark Kaufmann
- Department for Anesthesia, Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital Basel, Basel, Switzerland
| | - Serge Grazioli
- Division of Neonatal and Pediatric Intensive Care, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Marie-Helene Perez
- Pediatric Intensive Care Unit, Lausanne University Hospital, Lausanne, Switzerland
| | - Matthias P Hilty
- University of Zurich, Zurich, Switzerland.,Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Maya C André
- Division of Respiratory and Critical Care Medicine, University of Basel Children's Hospital, Basel, Switzerland.,Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Barbara Brotschi
- Department of Pediatric and Neonatal Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Frutos AM, Kubale J, Kuan G, Ojeda S, Vydiswaran N, Sanchez N, Plazaola M, Patel M, Lopez R, Balmaseda A, Gordon A. SARS-CoV-2 and endemic coronaviruses: Comparing symptom presentation and severity of symptomatic illness among Nicaraguan children.. [PMID: 35075460 PMCID: PMC8786229 DOI: 10.1101/2021.12.09.21267537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been proposed that as SARS-CoV-2 transitions to endemicity, children will represent the greatest proportion of SARS-Co-V-2 infections as they currently do with endemic coronavirus infections. While SARS-CoV-2 infection severity is low for children, it is unclear if SARS-CoV-2 infections are distinct in symptom presentation, duration, and severity from endemic coronavirus infections in children. We compared symptom risk and duration of endemic human coronavirus (HCoV) infections from 2011–2016 with SARS-CoV-2 infections from March 2020-September 2021 in a Nicaraguan pediatric cohort. Blood samples were collected from study participants annually in February-April. Respiratory samples were collected from participants that met testing criteria. Blood samples collected in were tested for SARS-CoV-2 antibodies and a subset of 2011–2016 blood samples from four-year-old children were tested for endemic HCoV antibodies. Respiratory samples were tested for each of the endemic HCoVs from 2011–2016 and for SARS-CoV-2 from 2020–2021 via rt-PCR. By April 2021, 854 (49%) cohort participants were ELISA positive for SARS-CoV-2 antibodies. Most participants had antibodies against one alpha and one beta coronavirus by age four. We observed 595 symptomatic endemic HCoV infections from 2011–2016 and 121 symptomatic with SARS-CoV-2 infections from March 2020-September 2021. Symptom presentation of SARS-CoV-2 infection and endemic coronavirus infections were very similar, and SARS-CoV-2 symptomatic infections were as or less severe on average than endemic HCoV infections. This suggests that, for children, SARS-CoV-2 may be just another endemic coronavirus. However, questions about the impact of variants and the long-term effects of SARS-CoV-2 remain.
Collapse
|
8
|
Rubik B, Brown RR. Evidence for a connection between coronavirus disease-19 and exposure to radiofrequency radiation from wireless communications including 5G. J Clin Transl Res 2021; 7:666-681. [PMID: 34778597 PMCID: PMC8580522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND AIM Coronavirus disease (COVID-19) public health policy has focused on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and its effects on human health while environmental factors have been largely ignored. In considering the epidemiological triad (agent-host-environment) applicable to all disease, we investigated a possible environmental factor in the COVID-19 pandemic: ambient radiofrequency radiation from wireless communication systems including microwaves and millimeter waves. SARS-CoV-2, the virus that caused the COVID-19 pandemic, surfaced in Wuhan, China shortly after the implementation of city-wide (fifth generation [5G] of wireless communications radiation [WCR]), and rapidly spread globally, initially demonstrating a statistical correlation to international communities with recently established 5G networks. In this study, we examined the peer-reviewed scientific literature on the detrimental bioeffects of WCR and identified several mechanisms by which WCR may have contributed to the COVID-19 pandemic as a toxic environmental cofactor. By crossing boundaries between the disciplines of biophysics and pathophysiology, we present evidence that WCR may: (1) cause morphologic changes in erythrocytes including echinocyte and rouleaux formation that can contribute to hypercoagulation; (2) impair microcirculation and reduce erythrocyte and hemoglobin levels exacerbating hypoxia; (3) amplify immune system dysfunction, including immunosuppression, autoimmunity, and hyperinflammation; (4) increase cellular oxidative stress and the production of free radicals resulting in vascular injury and organ damage; (5) increase intracellular Ca2+ essential for viral entry, replication, and release, in addition to promoting pro-inflammatory pathways; and (6) worsen heart arrhythmias and cardiac disorders. RELEVANCE FOR PATIENTS In short, WCR has become a ubiquitous environmental stressor that we propose may have contributed to adverse health outcomes of patients infected with SARS-CoV-2 and increased the severity of the COVID-19 pandemic. Therefore, we recommend that all people, particularly those suffering from SARS-CoV-2 infection, reduce their exposure to WCR as much as reasonably achievable until further research better clarifies the systemic health effects associated with chronic WCR exposure.
Collapse
Affiliation(s)
- Beverly Rubik
- Department of Mind-Body Medicine, College of Integrative Medicine and Health Sciences, Saybrook University, Pasadena CA, USA
- Institute for Frontier Science, Oakland, CA, USA
| | - Robert R. Brown
- Department of Radiology, Hamot Hospital, University of Pittsburgh Medical Center, Erie, PA; Radiology Partners, Phoenix, AZ, USA
| |
Collapse
|
9
|
Salgado-Albarrán M, Navarro-Delgado EI, Del Moral-Morales A, Alcaraz N, Baumbach J, González-Barrios R, Soto-Reyes E. Comparative transcriptome analysis reveals key epigenetic targets in SARS-CoV-2 infection. NPJ Syst Biol Appl 2021; 7:21. [PMID: 34031419 PMCID: PMC8144203 DOI: 10.1038/s41540-021-00181-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 02/04/2023] Open
Abstract
COVID-19 is an infection caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2), which has caused a global outbreak. Current research efforts are focused on the understanding of the molecular mechanisms involved in SARS-CoV-2 infection in order to propose drug-based therapeutic options. Transcriptional changes due to epigenetic regulation are key host cell responses to viral infection and have been studied in SARS-CoV and MERS-CoV; however, such changes are not fully described for SARS-CoV-2. In this study, we analyzed multiple transcriptomes obtained from cell lines infected with MERS-CoV, SARS-CoV, and SARS-CoV-2, and from COVID-19 patient-derived samples. Using integrative analyses of gene co-expression networks and de-novo pathway enrichment, we characterize different gene modules and protein pathways enriched with Transcription Factors or Epifactors relevant for SARS-CoV-2 infection. We identified EP300, MOV10, RELA, and TRIM25 as top candidates, and more than 60 additional proteins involved in the epigenetic response during viral infection that has therapeutic potential. Our results show that targeting the epigenetic machinery could be a feasible alternative to treat COVID-19.
Collapse
Affiliation(s)
- Marisol Salgado-Albarrán
- grid.7220.70000 0001 2157 0393Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico ,grid.6936.a0000000123222966Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Erick I. Navarro-Delgado
- grid.419167.c0000 0004 1777 1207Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Aylin Del Moral-Morales
- grid.7220.70000 0001 2157 0393Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Nicolas Alcaraz
- grid.5254.60000 0001 0674 042XThe Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Baumbach
- grid.9026.d0000 0001 2287 2617Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany ,grid.10825.3e0000 0001 0728 0170Computational BioMedicine Lab, Institute of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Rodrigo González-Barrios
- grid.419167.c0000 0004 1777 1207Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Ernesto Soto-Reyes
- grid.7220.70000 0001 2157 0393Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| |
Collapse
|
10
|
Zhang W, Wu X, Zhou H, Xu F. Clinical characteristics and infectivity of asymptomatic carriers of SARS-CoV-2 (Review). Exp Ther Med 2021; 21:115. [PMID: 33335578 PMCID: PMC7739853 DOI: 10.3892/etm.2020.9547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023] Open
Abstract
Since December 2019, the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. At present, confirmed patients are the main source of infection, while a number of studies have indicated that asymptomatic carriers also have the ability to spread the virus. As of September 29, 2020, as the first country to report coronavirus disease 2019 (COVID-19), China has 375 asymptomatic infections according to the National Health Commission of China. Asymptomatic carriers have become the current focus of global epidemic prevention and control efforts. The present review article provides a brief introduction on the clinical characteristics and infectivity of asymptomatic carriers, and makes suggestions for the identification of asymptomatic carriers.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xuejie Wu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Hui Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|