1
|
Wei Y, Zeng Q, Gou H, Bao S. Update on feline calicivirus: viral evolution, pathogenesis, epidemiology, prevention and control. Front Microbiol 2024; 15:1388420. [PMID: 38756726 PMCID: PMC11096512 DOI: 10.3389/fmicb.2024.1388420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Feline calicivirus (FCV) is a prevalent and impactful viral pathogen affecting domestic cats. As an RNA virus, FCV exhibits high mutability and genetic plasticity, enabling its persistence within cat populations. Viral genetic diversity is associated with a broad spectrum of clinical manifestations, ranging from asymptomatic infections and mild oral and upper respiratory tract diseases to the potential development of virulent systemic, and even fatal conditions. This diversity poses distinctive challenges in diagnosis, treatment, and prevention of diseases caused by FCV. Over the past four decades, research has significantly deepened understanding of this pathogen, with an emphasis on molecular biology, evolutionary dynamics, vaccine development, and disease management strategies. This review discusses various facets of FCV, including its genomic structure, evolution, innate immunity, pathogenesis, epidemiology, and approaches to disease management. FCV remains a complex and evolving concern in feline health, requiring continuous research to enhance understanding of its genetic diversity, to improve vaccine efficacy, and to explore novel treatment options.
Collapse
Affiliation(s)
| | | | - Huitian Gou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shijun Bao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Yan Y, Yang M, Jiao Y, Li L, Liu Z, Shi J, Shen Z, Peng G. Drug screening identified that handelin inhibits feline calicivirus infection by inhibiting HSP70 expression in vitro. J Gen Virol 2024; 105. [PMID: 38175184 DOI: 10.1099/jgv.0.001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Feline calicivirus (FCV) is considered one of the major pathogens of cats worldwide and causes upper respiratory tract disease in all cats. In some cats, infection is by a highly virulent strain of FCV (vs.-FCV), which can cause severe and fatal systemic disease symptoms. At present, few antiviral drugs are approved for clinical treatment against FCV. Therefore, there is an imminent need for effective FCV antiviral agents. Here, we used observed a cytopathic effect (CPE) assay to screen 1746 traditional Chinese medicine monomer compounds and found one that can effectively inhibit FCV replication, namely, handelin, with an effective concentration (EC50) value of approximately 2.5 µM. Further study showed that handelin inhibits FCV replication via interference with heat shock protein 70 (HSP70), which is a crucial host factor and plays a positive role in regulating viral replication. Moreover, handelin and HSP70 inhibitors have broad-spectrum antiviral activity. These findings indicate that handelin is a potential candidate for the treatment of FCV infection and that HSP70 may be an important drug target.
Collapse
Affiliation(s)
- Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Yuzhou Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| |
Collapse
|
3
|
Lanave G, Buonavoglia A, Pellegrini F, Di Martino B, Di Profio F, Diakoudi G, Catella C, Omar AH, Vasinioti VI, Cardone R, Santo G, Martella V, Camero M. An Outbreak of Limping Syndrome Associated with Feline Calicivirus. Animals (Basel) 2023; 13:1778. [PMID: 37889723 PMCID: PMC10251824 DOI: 10.3390/ani13111778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 10/29/2023] Open
Abstract
Feline calicivirus (FCV) is a common viral pathogen found in domestic cats. FCV is highly contagious and demonstrates a high genetic variability. Upper respiratory tract disease, oral ulcerations, salivation, and gingivitis-stomatitis have been regarded as typical clinical signs of FCV infection. Ulcerative dermatitis, abortion, severe pneumonia, enteritis, chronic stomatitis, and virulent systemic disease have been reported more sporadically. Limping syndrome has been also described either in naturally or experimentally FCV-infected cats. In this study, we monitored a small outbreak of FCV infection in two household cats, in which limping disease was monitored with a 12-day lag time. The complete genome sequence was determined for the viruses isolated from the oropharyngeal and rectal swabs of the two animals, mapping up to 39 synonymous nucleotide mutations. The four isolates were sensitive to low pH conditions and trypsin treatment, a pattern usually associated with viruses isolated from the upper respiratory tract. Overall, the asynchronous pattern of infections and the results of genome sequencing suggest that a virus of respiratory origin was transmitted between the animals and that the FCV strain was able to retain the limping disease pathotype during the transmission chain, as previously observed in experimental studies with FCV strains associated with lameness.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (A.B.); (F.P.); (G.D.); (C.C.); (A.H.O.); (V.I.V.); (R.C.); (V.M.); (M.C.)
| | - Alessio Buonavoglia
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (A.B.); (F.P.); (G.D.); (C.C.); (A.H.O.); (V.I.V.); (R.C.); (V.M.); (M.C.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (A.B.); (F.P.); (G.D.); (C.C.); (A.H.O.); (V.I.V.); (R.C.); (V.M.); (M.C.)
| | - Barbara Di Martino
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (B.D.M.); (F.D.P.)
| | - Federica Di Profio
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (B.D.M.); (F.D.P.)
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (A.B.); (F.P.); (G.D.); (C.C.); (A.H.O.); (V.I.V.); (R.C.); (V.M.); (M.C.)
| | - Cristiana Catella
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (A.B.); (F.P.); (G.D.); (C.C.); (A.H.O.); (V.I.V.); (R.C.); (V.M.); (M.C.)
| | - Ahmed H. Omar
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (A.B.); (F.P.); (G.D.); (C.C.); (A.H.O.); (V.I.V.); (R.C.); (V.M.); (M.C.)
| | - Violetta I. Vasinioti
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (A.B.); (F.P.); (G.D.); (C.C.); (A.H.O.); (V.I.V.); (R.C.); (V.M.); (M.C.)
| | - Roberta Cardone
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (A.B.); (F.P.); (G.D.); (C.C.); (A.H.O.); (V.I.V.); (R.C.); (V.M.); (M.C.)
| | | | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (A.B.); (F.P.); (G.D.); (C.C.); (A.H.O.); (V.I.V.); (R.C.); (V.M.); (M.C.)
| | - Michele Camero
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Valenzano, Italy; (A.B.); (F.P.); (G.D.); (C.C.); (A.H.O.); (V.I.V.); (R.C.); (V.M.); (M.C.)
| |
Collapse
|
4
|
Feline Calicivirus P39 Inhibits Innate Immune Responses by Autophagic Degradation of Retinoic Acid Inducible Gene I. Int J Mol Sci 2023; 24:ijms24065254. [PMID: 36982330 PMCID: PMC10048920 DOI: 10.3390/ijms24065254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Feline calicivirus (FCV) is a feline pathogen that can cause severe upper respiratory tract disease in cats, thus posing a major threat to their health. The exact pathogenic mechanism of FCV is still unclear, although it has been identified as having the ability to induce immune depression. In this study, we discovered that FCV infection triggers autophagy and that its non-structural proteins, P30, P32, and P39, are responsible for initiating this process. Additionally, we observed that altering autophagy levels via chemical modulation resulted in different influences on FCV replication. Moreover, our findings indicate that autophagy can modify the innate immunity induced by FCV infection, with increased autophagy further suppressing FCV-induced RIG-I signal transduction. This research provides insights into the mechanism of FCV replication and has the potential to aid in the development of autophagy-targeted drugs to inhibit or prevent FCV infection.
Collapse
|
5
|
Mizenko RR, Brostoff T, Jackson K, Pesavento PA, Carney RP. Extracellular Vesicles (EVs) Are Copurified with Feline Calicivirus, yet EV-Enriched Fractions Remain Infectious. Microbiol Spectr 2022; 10:e0121122. [PMID: 35876590 PMCID: PMC9430557 DOI: 10.1128/spectrum.01211-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Feline calicivirus (FCV) is a major cause of upper respiratory disease in cats and is often used as a model for human norovirus, making it of great veterinary and human medical importance. However, questions remain regarding the route of entry of FCV in vivo. Increasing work has shown that extracellular vesicles (EVs) can be active in viral infectivity, yet there is no work examining the role of EVs in FCV infection. Here, we begin to address this knowledge gap by characterizing EVs produced by a feline mammary epithelial cell line (FMEC). We have confirmed that EVs are produced by infected and mock-infected FMECs and that both virions and EVs are coisolated with standard methods of virus purification. We also show that they can be enriched differentially by continuous iodixanol density gradient. EVs were enriched at a density of 1.10 g/mL confirmed by tetraspanin expression, size profile, and transmission electron microscopy (TEM). Maximum enrichment of FCV at a density of 1.18 g/mL was confirmed by titration, quantitative reverse transcriptase PCR (q-RT PCR), and TEM. However, infectious virus was recovered from nearly all samples. When used to infect in vitro epithelium, both EV-rich and virus-rich fractions had the same levels of infectiousness as determined by percentage of wells infected or titer achieved postinfection. These findings highlight the importance of coisolates during viral purification, showing that EVs may represent a parallel route of entry that has previously been overlooked. Additional experiments are necessary to explore the role of EVs in FCV infection. IMPORTANCE Feline calicivirus (FCV) is a common cause of upper respiratory infection in cats. Both healthy and infected cells produce small particles called extracellular vesicles (EVs), which are nanoparticles that act as messengers between cells and can be hijacked during viral infection. Historically, the role of EVs in viral infection has been overlooked, and subsequently no group has studied the role of EVs in FCV infection. We hypothesized that EVs may play a role in FCV infection. Here, we show that EVs are copurified with FCV when collecting virus. To study their individual effects, we successfully enrich for viral particles and EVs separately by taking advantage of their different densities. Our initial studies show that EV-enriched versus virus-enriched fractions are equally able to infect cells in culture. These findings highlight the need to both consider the purity of virus after purification and to further study EVs' role in natural FCV infection.
Collapse
Affiliation(s)
- Rachel R. Mizenko
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Terza Brostoff
- Department of Pathology, University of California, San Diego, California, USA
| | - Kenneth Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis, California, USA
| |
Collapse
|
6
|
Hofmann-Lehmann R, Hosie MJ, Hartmann K, Egberink H, Truyen U, Tasker S, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Addie DD, Lutz H, Thiry E, Radford AD, Möstl K. Calicivirus Infection in Cats. Viruses 2022; 14:937. [PMID: 35632680 PMCID: PMC9145992 DOI: 10.3390/v14050937] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Feline calicivirus (FCV) is a common pathogen in domestic cats that is highly contagious, resistant to many disinfectants and demonstrates a high genetic variability. FCV infection can lead to serious or even fatal diseases. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from 11 European countries, presents the current knowledge of FCV infection and fills gaps with expert opinions. FCV infections are particularly problematic in multicat environments. FCV-infected cats often show painful erosions in the mouth and mild upper respiratory disease and, particularly in kittens, even fatal pneumonia. However, infection can be associated with chronic gingivostomatitis. Rarely, highly virulent FCV variants can induce severe systemic disease with epizootic spread and high mortality. FCV can best be detected by reverse-transcriptase PCR. However, a negative result does not rule out FCV infection and healthy cats can test positive. All cats should be vaccinated against FCV (core vaccine); however, vaccination protects cats from disease but not from infection. Considering the high variability of FCV, changing to different vaccine strain(s) may be of benefit if disease occurs in fully vaccinated cats. Infection-induced immunity is not life-long and does not protect against all strains; therefore, vaccination of cats that have recovered from caliciviral disease is recommended.
Collapse
Affiliation(s)
- Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC—University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, 80539 Munich, Germany;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Diane D. Addie
- Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Hans Lutz
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Alan D. Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| |
Collapse
|
7
|
Smertina E, Hall RN, Urakova N, Strive T, Frese M. Calicivirus Non-structural Proteins: Potential Functions in Replication and Host Cell Manipulation. Front Microbiol 2021; 12:712710. [PMID: 34335548 PMCID: PMC8318036 DOI: 10.3389/fmicb.2021.712710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The Caliciviridae are a family of viruses with a single-stranded, non-segmented RNA genome of positive polarity. The ongoing discovery of caliciviruses has increased the number of genera in this family to 11 (Norovirus, Nebovirus, Sapovirus, Lagovirus, Vesivirus, Nacovirus, Bavovirus, Recovirus, Salovirus, Minovirus, and Valovirus). Caliciviruses infect a wide range of hosts that include fishes, amphibians, reptiles, birds, and marine and land mammals. All caliciviruses have a genome that encodes a major and a minor capsid protein, a genome-linked viral protein, and several non-structural proteins. Of these non-structural proteins, only the helicase, protease, and RNA-dependent RNA polymerase share clear sequence and structural similarities with proteins from other virus families. In addition, all caliciviruses express two or three non-structural proteins for which functions have not been clearly defined. The sequence diversity of these non-structural proteins and a multitude of processing strategies suggest that at least some have evolved independently, possibly to counteract innate and adaptive immune responses in a host-specific manner. Studying these proteins is often difficult as many caliciviruses cannot be grown in cell culture. Nevertheless, the study of recombinant proteins has revealed many of their properties, such as intracellular localization, capacity to oligomerize, and ability to interact with viral and/or cellular proteins; the release of non-structural proteins from transfected cells has also been investigated. Here, we will summarize these findings and discuss recent in silico studies that identified previously overlooked putative functional domains and structural features, including transmembrane domains that suggest the presence of viroporins.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Robyn N. Hall
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Centre for Invasive Species Solutions, Canberra, ACT, Australia
| | - Nadya Urakova
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Centre for Invasive Species Solutions, Canberra, ACT, Australia
| | - Michael Frese
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
8
|
Feline Calicivirus Proteinase-Polymerase Protein Degrades mRNAs To Inhibit Host Gene Expression. J Virol 2021; 95:e0033621. [PMID: 33853967 DOI: 10.1128/jvi.00336-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To replicate efficiently and evade the antiviral immune response of the host, some viruses degrade host mRNA to induce host gene shutoff via encoding shutoff factors. In this study, we found that feline calicivirus (FCV) infection promotes the degradation of endogenous and exogenous mRNAs and induces host gene shutoff, which results in global inhibition of host protein synthesis. Screening assays revealed that proteinase-polymerase (PP) is a most effective factor in reducing mRNA expression. Moreover, PP from differently virulent strains of FCV could induce mRNA degradation. Further, we found that the key sites of the PP protein required for its proteinase activity are also essential for its shutoff activity but also required for viral replication. The mechanism analysis showed that PP mainly targets Pol II-transcribed RNA in a ribosome-, 5' cap-, and 3' poly(A) tail-independent manner. Moreover, purified glutathione S-transferase (GST)-PP fusion protein exhibits RNase activity in vitro in assays using green fluorescent protein (GFP) RNA transcribed in vitro as a substrate in the absence of other viral or cellular proteins. Finally, PP-induced shutoff requires host Xrn1 to complete further RNA degradation. This study provides a newly discovered strategy in which FCV PP protein induces host gene shutoff by promoting the degradation of host mRNAs. IMPORTANCE Virus infection-induced shutoff is the result of targeted or global manipulation of cellular gene expression and leads to efficient viral replication and immune evasion. FCV is a highly contagious pathogen that persistently infects cats. It is unknown how FCV blocks the host immune response and persistently exists in cats. In this study, we found that FCV infection promotes the degradation of host mRNAs and induces host gene shutoff via a common strategy. Further, PP protein for different FCV strains is a key factor that enhances mRNA degradation. An in vitro assay showed that the GST-PP fusion protein possesses RNase activity in the absence of other viral or cellular proteins. This study demonstrates that FCV induces host gene shutoff by promoting the degradation of host mRNAs, thereby introducing a potential mechanism by which FCV infection inhibits the immune response.
Collapse
|