1
|
Prat M, Jeanneau M, Rakotoarivony I, Duhayon M, Simonin Y, Savini G, Labbé P, Alout H. Virulence and transmission vary between Usutu virus lineages in Culex pipiens. PLoS Negl Trop Dis 2024; 18:e0012295. [PMID: 38935783 PMCID: PMC11236178 DOI: 10.1371/journal.pntd.0012295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/10/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Usutu virus (USUV) is a zoonotic arbovirus infecting mainly wild birds. It is transmitted by ornithophilic mosquitoes, mainly of the genus Culex from birds to birds and to several vertebrate dead-end hosts. Several USUV lineages, differing in their virulence have emerged in the last decades and now co-circulate in Europe, impacting human populations. However, their relative transmission and effects on their mosquito vectors is still not known. We thus compared the vector competence and survival of Culex pipiens mosquitoes experimentally infected with two distinct USUV lineages, EU2 and EU3, that are known to differ in their virulence and replication in vertebrate hosts. Infection rate was variable among blood feeding assays but variations between EU2 and EU3 lineages were consistent suggesting that Culex pipiens was equally susceptible to infection by both lineages. However, EU3 viral load increased with viral titer in the blood meal while EU2 viral load was high at all titers which suggest a greater replication of EU2 than EU3 in mosquito. While their relative transmission efficiencies are similar, at least at low blood meal titer, positive correlation between transmission and blood meal titer was observed for EU3 only. Contrary to published results in vertebrates, EU3 induced a higher mortality to mosquitoes (i.e. virulence) than EU2 whatever the blood meal titer. Therefore, we found evidence of lineage-specific differences in vectorial capacity and virulence to both the vector and vertebrate host which lead to balanced propagation of both viral lineages. These results highlight the need to decipher the interactions between vectors, vertebrate hosts, and the diversity of arbovirus lineages to fully understand transmission dynamics.
Collapse
Affiliation(s)
- Maxime Prat
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier-CNRS-IRD, Montpellier, France
- UMR ASTRE, Univ Montpellier, INRAE-CIRAD, Montpellier, France
| | | | | | - Maxime Duhayon
- UMR ASTRE, Univ Montpellier, INRAE-CIRAD, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, Université de Montpellier-INSERM-EFS, Montpellier, France
| | - Giovanni Savini
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", Teramo, Italy
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier-CNRS-IRD, Montpellier, France
| | - Haoues Alout
- UMR ASTRE, Univ Montpellier, INRAE-CIRAD, Montpellier, France
| |
Collapse
|
2
|
Marano JM, Weger-Lucarelli J. Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness. Front Cell Infect Microbiol 2023; 13:1130749. [PMID: 36968111 PMCID: PMC10034770 DOI: 10.3389/fcimb.2023.1130749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Flaviviruses like dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne viruses that cause febrile, hemorrhagic, and neurological diseases in humans, resulting in 400 million infections annually. Due to their co-circulation in many parts of the world, flaviviruses must replicate in the presence of pre-existing adaptive immune responses targeted at serologically closely related pathogens, which can provide protection or enhance disease. However, the impact of pre-existing cross-reactive immunity as a driver of flavivirus evolution, and subsequently the implications on the emergence of immune escape variants, is poorly understood. Therefore, we investigated how replication in the presence of convalescent dengue serum drives ZIKV evolution. Methods We used an in vitro directed evolution system, passaging ZIKV in the presence of serum from humans previously infected with DENV (anti-DENV) or serum from DENV-naïve patients (control serum). Following five passages in the presence of serum, we performed next-generation sequencing to identify mutations that arose during passaging. We studied two non-synonymous mutations found in the anti-DENV passaged population (E-V355I and NS1-T139A) by generating individual ZIKV mutants and assessing fitness in mammalian cells and live mosquitoes, as well as their sensitivity to antibody neutralization. Results and discussion Both viruses had increased fitness in Vero cells with and without the addition of anti-DENV serum and in human lung epithelial and monocyte cells. In Aedes aegypti mosquitoes-using blood meals with and without anti-DENV serum-the mutant viruses had significantly reduced fitness compared to wild-type ZIKV. These results align with the trade-off hypothesis of constrained mosquito-borne virus evolution. Notably, only the NS1-T139A mutation escaped neutralization, while E-V335I demonstrated enhanced neutralization sensitivity to neutralization by anti-DENV serum, indicating that neutralization escape is not necessary for viruses passaged under cross-reactive immune pressures. Future studies are needed to assess cross-reactive immune selection in humans and relevant animal models or with different flaviviruses.
Collapse
Affiliation(s)
- Jeffrey M. Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
3
|
Oliveira G, Vogels CBF, Zolfaghari A, Saraf S, Klitting R, Weger-Lucarelli J, P. Leon K, Ontiveros CO, Agarwal R, Tsetsarkin KA, Harris E, Ebel GD, Wohl S, Grubaugh ND, Andersen KG. Genomic and phenotypic analyses suggest moderate fitness differences among Zika virus lineages. PLoS Negl Trop Dis 2023; 17:e0011055. [PMID: 36753510 PMCID: PMC9907835 DOI: 10.1371/journal.pntd.0011055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/22/2022] [Indexed: 02/09/2023] Open
Abstract
RNA viruses have short generation times and high mutation rates, allowing them to undergo rapid molecular evolution during epidemics. However, the extent of RNA virus phenotypic evolution within epidemics and the resulting effects on fitness and virulence remain mostly unknown. Here, we screened the 2015-2016 Zika epidemic in the Americas for lineage-specific fitness differences. We engineered a library of recombinant viruses representing twelve major Zika virus lineages and used them to measure replicative fitness within disease-relevant human primary cells and live mosquitoes. We found that two of these lineages conferred significant in vitro replicative fitness changes among human primary cells, but we did not find fitness changes in Aedes aegypti mosquitoes. Additionally, we found evidence for elevated levels of positive selection among five amino acid sites that define major Zika virus lineages. While our work suggests that Zika virus may have acquired several phenotypic changes during a short time scale, these changes were relatively moderate and do not appear to have enhanced transmission during the epidemic.
Collapse
Affiliation(s)
- Glenn Oliveira
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ashley Zolfaghari
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sharada Saraf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raphaelle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Karla P. Leon
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Carlos O. Ontiveros
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rimjhim Agarwal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Konstantin A. Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shirlee Wohl
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
4
|
Dieme C, Maffei JG, Diarra M, Koetzner CA, Kuo L, Ngo KA, Dupuis AP, Zink SD, Bryon Backenson P, Kramer LD, Ciota AT. Aedes albopictus and Cache Valley virus: a new threat for virus transmission in New York State. Emerg Microbes Infect 2022; 11:741-748. [PMID: 35179429 PMCID: PMC8903793 DOI: 10.1080/22221751.2022.2044733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report surveillance results of Cache Valley virus (CVV; Peribunyaviridae, Orthobunyavirus) from 2017 to 2020 in New York State (NYS). Infection rates were calculated using the maximum likelihood estimation (MLE) method by year, region, and mosquito species. The highest infection rates were identified among Anopheles spp. mosquitoes and we detected the virus in Aedes albopictus for the first time in NYS. Based on our previous Anopheles quadrimaculatus vector competence results for nine CVV strains, we selected among them three stains for further characterization. These include two CVV reassortants (PA and 15041084) and one CVV lineage 2 strain (Hu-2011). We analyzed full genomes, compared in vitro growth kinetics and assessed vector competence of Aedes albopictus. Sequence analysis of the two reassortant strains (PA and 15041084) revealed 0.3%, 0.4%, and 0.3% divergence; and 1, 10, and 6 amino acid differences for the S, M, and L segments, respectively. We additionally found that the PA strain was attenuated in vertebrate (Vero) and mosquito (C6/36) cell culture. Furthemore, Ae. albopictus mosquitoes are competent vectors for CVV Hu-2011 (16.7–62.1% transmission rates) and CVV 15041084 (27.3–48.0% transmission rates), but not for the human reassortant (PA) isolate, which did not disseminate from the mosquito midgut. Together, our results demonstrate significant phenotypic variability among strains and highlight the capacity for Ae. albopictus to act as a vector of CVV.
Collapse
Affiliation(s)
- Constentin Dieme
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Joseph G Maffei
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Maryam Diarra
- Institut Pasteur de Dakar, Dakar, Senegal (M. Diarra)
| | - Cheri A Koetzner
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Kiet A Ngo
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Steven D Zink
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, New York (P.B. Backenson)
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota).,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA (L.D. Kramer, and A.T. Ciota)
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota).,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA (L.D. Kramer, and A.T. Ciota)
| |
Collapse
|
5
|
Bohm EK, Vangorder-Braid JT, Jaeger AS, Moriarty RV, Baczenas JJ, Bennett NC, O’Connor SL, Fritsch MK, Fuhler NA, Noguchi KK, Aliota MT. Zika Virus Infection of Pregnant Ifnar1-/- Mice Triggers Strain-Specific Differences in Fetal Outcomes. J Virol 2021; 95:e0081821. [PMID: 34379510 PMCID: PMC8513483 DOI: 10.1128/jvi.00818-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 01/22/2023] Open
Abstract
Zika virus (ZIKV) is a flavivirus that causes a constellation of adverse fetal outcomes collectively termed congenital Zika syndrome (CZS). However, not all pregnancies exposed to ZIKV result in an infant with apparent defects. During the 2015 to 2016 American outbreak of ZIKV, CZS rates varied by geographic location. The underlying mechanisms responsible for this heterogeneity in outcomes have not been well defined. Therefore, we sought to characterize and compare the pathogenic potential of multiple Asian-/American-lineage ZIKV strains in an established Ifnar1-/- pregnant mouse model. Here, we show significant differences in the rate of fetal demise following maternal inoculation with ZIKV strains from Puerto Rico, Panama, Mexico, Brazil, and Cambodia. Rates of fetal demise broadly correlated with maternal viremia but were independent of fetus and placenta virus titer, indicating that additional underlying factors contribute to fetal outcome. Our results, in concert with those from other studies, suggest that subtle differences in ZIKV strains may have important phenotypic impacts. With ZIKV now endemic in the Americas, greater emphasis needs to be placed on elucidating and understanding the underlying mechanisms that contribute to fetal outcome. IMPORTANCE Zika virus (ZIKV) transmission has been reported in 87 countries and territories around the globe. ZIKV infection during pregnancy is associated with adverse fetal outcomes, including birth defects, microcephaly, neurological complications, and even spontaneous abortion. Rates of adverse fetal outcomes vary between regions, and not every pregnancy exposed to ZIKV results in birth defects. Not much is known about how or if the infecting ZIKV strain is linked to fetal outcomes. Our research provides evidence of phenotypic heterogeneity between Asian-/American-lineage ZIKV strains and provides insight into the underlying causes of adverse fetal outcomes. Understanding ZIKV strain-dependent pathogenic potential during pregnancy and elucidating underlying causes of diverse clinical sequelae observed during human infections is critical to understanding ZIKV on a global scale.
Collapse
Affiliation(s)
- Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Jennifer T. Vangorder-Braid
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John J. Baczenas
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Natalie C. Bennett
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael K. Fritsch
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicole A. Fuhler
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin K. Noguchi
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
6
|
Fay RL, Ngo KA, Kuo L, Willsey GG, Kramer LD, Ciota AT. Experimental Evolution of West Nile Virus at Higher Temperatures Facilitates Broad Adaptation and Increased Genetic Diversity. Viruses 2021; 13:1889. [PMID: 34696323 PMCID: PMC8540194 DOI: 10.3390/v13101889] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV, Flaviviridae, Flavivirus) is a mosquito-borne flavivirus introduced to North America in 1999. Since 1999, the Earth's average temperature has increased by 0.6 °C. Mosquitoes are ectothermic organisms, reliant on environmental heat sources. Temperature impacts vector-virus interactions which directly influence arbovirus transmission. RNA viral replication is highly error-prone and increasing temperature could further increase replication rates, mutation frequencies, and evolutionary rates. The impact of temperature on arbovirus evolutionary trajectories and fitness landscapes has yet to be sufficiently studied. To investigate how temperature impacts the rate and extent of WNV evolution in mosquito cells, WNV was experimentally passaged 12 times in Culex tarsalis cells, at 25 °C and 30 °C. Full-genome deep sequencing was used to compare genetic signatures during passage, and replicative fitness was evaluated before and after passage at each temperature. Our results suggest adaptive potential at both temperatures, with unique temperature-dependent and lineage-specific genetic signatures. Further, higher temperature passage was associated with significantly increased replicative fitness at both temperatures and increases in nonsynonymous mutations. Together, these data indicate that if similar selective pressures exist in natural systems, increases in temperature could accelerate emergence of high-fitness strains with greater phenotypic plasticity.
Collapse
Affiliation(s)
- Rachel L. Fay
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA; (R.L.F.); (L.D.K.)
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Kiet A. Ngo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Lili Kuo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Graham G. Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA;
| | - Laura D. Kramer
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA; (R.L.F.); (L.D.K.)
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Alexander T. Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA; (R.L.F.); (L.D.K.)
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| |
Collapse
|
7
|
Jiolle D, Moltini-Conclois I, Obame-Nkoghe J, Yangari P, Porciani A, Scheid B, Kengne P, Ayala D, Failloux AB, Paupy C. Experimental infections with Zika virus strains reveal high vector competence of Aedes albopictus and Aedes aegypti populations from Gabon (Central Africa) for the African virus lineage. Emerg Microbes Infect 2021; 10:1244-1253. [PMID: 34085899 PMCID: PMC8216262 DOI: 10.1080/22221751.2021.1939167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The two main Zika virus (ZIKV) vectors, Aedes albopictus and Aedes aegypti (invasive and native species, respectively), are present in Gabon (Central Africa). The aim of this study was to determine the entomological ZIKV risk associated with these mosquito species in Gabon by evaluating their vector competence for an African (i.e. representative of the endemic strains circulating in sub-Saharan Africa) and two Asian (i.e. representatives of exogenous epidemic strains that could be introduced) ZIKV strains. The transmission efficiency of one Ae. aegypti and two Ae. albopictus field-collected populations from Libreville and Franceville was assayed at day 7, 14 and 21 after experimental oral infection. The two mosquito species could transmit all three ZIKV strains already at day 7 post-infection, but transmission efficiency was higher for the African strain than the non-African strains (>60% versus <14%; incubation period of 14–21 days). The two mosquito species exhibited comparable vector competence for ZIKV, although the amount of viral particles (African strain) in saliva was significantly higher in Ae. albopictus than Ae. aegypti at day 14 post-infection. These findings suggest that overall, ZIKV risk in Gabon is mainly related to virus strains that circulate endemically across sub-Saharan Africa, although the transmission of non-African strains remain possible in case of introduction. Due to its high infestation indexes and ecological/geographical ranges, this risk appears mainly associated with Ae. albopictus. Vector surveillance and control methods against this invasive mosquito must be strengthened in the region to limit the risk of future outbreaks.
Collapse
Affiliation(s)
- Davy Jiolle
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France
| | | | - Judicaël Obame-Nkoghe
- Ecologie des Systèmes Vectoriels, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon.,Laboratoire de Biologie Moléculaire et Cellulaire, Département de Biologie, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Patrick Yangari
- Ecologie des Systèmes Vectoriels, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Angélique Porciani
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France
| | - Bethsabée Scheid
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France
| | - Pierre Kengne
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France.,Ecologie des Systèmes Vectoriels, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Diego Ayala
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France.,Ecologie des Systèmes Vectoriels, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Christophe Paupy
- MIVEGEC Laboratory, Montpellier University, IRD, CNRS, Montpellier, France
| |
Collapse
|