1
|
Wang M, Chen J, Xu Y, Wang Y, Mohamed HI, Wei D, Gao C. RHPS4 Targeted the G-Quadruplex of the 1a Gene of Cucumber Mosaic Virus to Inhibit Viral Proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25015-25022. [PMID: 39497360 DOI: 10.1021/acs.jafc.4c07174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Small molecules targeting G-quadruplexes (G4s) in viruses could inhibit viral proliferation. The 1a protein of cucumber mosaic virus (CMV) act as RNA-dependent RNA polymerase (RdRp) that plays a crucial role in regulating the replication of CMV. In this study, four putative G4 sequences (CMV PQS1-PQS4) in the genetic coding region of CMV 1a were identified, and three of them (PQS2, PQS3, and PQS4) were confirmed to fold into G4 structures. The G4-ligand, RHPS4, could bind to CMV PQS2 and PQS4 with a strong binding affinity and preferred to interact with the 3' terminal G-quartet surfaces of CMV PQS2, and 5' terminal of CMV PQS4. RHPS4 was also found to stabilize the CMV PQS2 and PQS4 G4s. Further studies revealed that RHPS4 exhibited an excellent anti-CMV activity. This study suggested that CMV PQS2 and PQS4 could be considered potential targets for screening viral inhibitors.
Collapse
Affiliation(s)
- Mengxi Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jixin Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yang Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yuchan Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Hany I Mohamed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chao Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| |
Collapse
|
2
|
Crawshaw S, Watt LG, Murphy AM, Carr JP. Strain-specific differences in the interactions of the cucumber mosaic virus 2b protein with the viral 1a and host Argonaute 1 proteins. J Virol 2024; 98:e0099324. [PMID: 39162432 PMCID: PMC11406993 DOI: 10.1128/jvi.00993-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
The cucumber mosaic virus (CMV) 2b protein is a potent counter-defense factor and symptom determinant that inhibits antiviral silencing by titrating short double-stranded RNAs. Expression of the CMV subgroup IA strain Fny-CMV 2b protein in transgenic Arabidopsis thaliana plants disrupts microRNA-mediated cleavage of host mRNAs by binding Argonaute 1 (AGO1), leading to symptom-like phenotypes. This also triggers AGO2-mediated antiviral resistance and resistance to CMV's aphid vectors. However, in authentic viral infections, the Fny-CMV 1a protein modulates 2b-AGO1 interactions, inhibiting induction of AGO2-mediated virus resistance and aphid resistance. Contrastingly, 2b proteins encoded by the subgroup II strain LS-CMV and the recently discovered subgroup IA strain Ho-CMV induce no symptoms. Confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation showed that Fny-CMV and Ho-CMV 2b proteins interact with Fny-CMV and LS-CMV 1a proteins, while the CMV-LS 2b protein cannot. However, Fny-CMV, Ho-CMV, and LS-CMV 2b proteins, all interacted with AGO1, but while AGO1-Fny2b complexes occurred in the nucleus and cytoplasm, corresponding AGO1-2b complexes for LS-CMV and Ho-CMV accumulated almost exclusively in nuclei. AGO2 transcript accumulation was used to assess the inhibition of AGO1-mediated mRNA degradation. Fny-CMV 2b induced a fivefold increase in AGO2 accumulation, but LS-CMV and Ho-CMV 2b proteins induced only twofold increases. Thus, these 2b proteins bind AGO1 but are less effective at inhibiting AGO1 activity. We conclude that the intracellular localization of 2b-AGO1 complexes influences the degree to which a 2b protein inhibits microRNA-mediated host mRNA degradation and that cytoplasmic AGO1 has the strongest influence on miRNA-mediated cellular mRNA turnover. IMPORTANCE The cucumber mosaic virus (CMV) 2b protein was among the first discovered viral suppressors of RNA silencing. It has additional pro-viral functions through effects on plant defensive signaling pathways mediated by salicylic acid and jasmonic acid, the abscisic acid pathway and virus-induced drought resistance, and on host plant interactions with insect vectors. Many of these effects occur due to interaction with the important host RNA silencing component Argonaute 1 (AGO1). It was thought that only 2b proteins of "severe" CMV strains interacted with AGO1 and inhibited its microRNA-mediated "slicing" of cellular mRNAs and that the lack of interaction with AGO1 explained the moderate symptoms typically seen in plants infected with mild CMV strains. Our work overthrows this paradigm by showing that mild strain CMV 2b proteins can interact with AGO1, but their in vivo localization prevents them from interacting with AGO1 molecules present in the infected cell cytoplasm.
Collapse
Affiliation(s)
- Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Lewis G. Watt
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Crawshaw S, Murphy AM, Rowling PJE, Nietlispach D, Itzhaki LS, Carr JP. Investigating the Interactions of the Cucumber Mosaic Virus 2b Protein with the Viral 1a Replicase Component and the Cellular RNA Silencing Factor Argonaute 1. Viruses 2024; 16:676. [PMID: 38793558 PMCID: PMC11125589 DOI: 10.3390/v16050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
The cucumber mosaic virus (CMV) 2b protein is a suppressor of plant defenses and a pathogenicity determinant. Amongst the 2b protein's host targets is the RNA silencing factor Argonaute 1 (AGO1), which it binds to and inhibits. In Arabidopsis thaliana, if 2b-induced inhibition of AGO1 is too efficient, it induces reinforcement of antiviral silencing by AGO2 and triggers increased resistance against aphids, CMV's insect vectors. These effects would be deleterious to CMV replication and transmission, respectively, but are moderated by the CMV 1a protein, which sequesters sufficient 2b protein molecules into P-bodies to prevent excessive inhibition of AGO1. Mutant 2b protein variants were generated, and red and green fluorescent protein fusions were used to investigate subcellular colocalization with AGO1 and the 1a protein. The effects of mutations on complex formation with the 1a protein and AGO1 were investigated using bimolecular fluorescence complementation and co-immunoprecipitation assays. Although we found that residues 56-60 influenced the 2b protein's interactions with the 1a protein and AGO1, it appears unlikely that any single residue or sequence domain is solely responsible. In silico predictions of intrinsic disorder within the 2b protein secondary structure were supported by circular dichroism (CD) but not by nuclear magnetic resonance (NMR) spectroscopy. Intrinsic disorder provides a plausible model to explain the 2b protein's ability to interact with AGO1, the 1a protein, and other factors. However, the reasons for the conflicting conclusions provided by CD and NMR must first be resolved.
Collapse
Affiliation(s)
- Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (S.C.); (A.M.M.)
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (S.C.); (A.M.M.)
| | - Pamela J. E. Rowling
- Department of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge CB2 1PD, UK; (P.J.E.R.); (L.S.I.)
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Rd., Cambridge CB2 1GA, UK;
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge CB2 1PD, UK; (P.J.E.R.); (L.S.I.)
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (S.C.); (A.M.M.)
| |
Collapse
|
4
|
Arinaitwe W, Tungadi TD, Pate AE, Joyce J, Baek E, Murphy AM, Carr JP. Induction of aphid resistance in tobacco by the cucumber mosaic virus CMV∆2b mutant is jasmonate-dependent. MOLECULAR PLANT PATHOLOGY 2023; 24:391-395. [PMID: 36775660 PMCID: PMC10013749 DOI: 10.1111/mpp.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Cucumber mosaic virus (CMV) is vectored by aphids, including Myzus persicae. Tobacco (Nicotiana tabacum 'Xanthi') plants infected with a mutant of the Fny strain of CMV (Fny-CMVΔ2b, which cannot express the CMV 2b protein) exhibit strong resistance against M. persicae, which is manifested by decreased survival and reproduction of aphids confined on the plants. Previously, we found that the Fny-CMV 1a replication protein elicits aphid resistance in plants infected with Fny-CMVΔ2b, whereas in plants infected with wild-type Fny-CMV this is counteracted by the CMV 2b protein, a counterdefence protein that, among other things, inhibits jasmonic acid (JA)-dependent immune signalling. We noted that in nontransformed cv. Petit Havana SR1 tobacco plants aphid resistance was not induced by Fny-CMVΔ2b, suggesting that not all tobacco varieties possess the factor(s) with which the 1a protein interacts. To determine if 1a protein-induced aphid resistance is JA-dependent in Xanthi tobacco, transgenic plants were made that expressed an RNA silencing construct to diminish expression of the JA co-receptor CORONATINE-INSENSITIVE 1. Fny-CMVΔ2b did not induce resistance to M. persicae in these transgenic plants. Thus, aphid resistance induction by the 1a protein requires JA-dependent defensive signalling, which is countered by the CMV 2b protein.
Collapse
Affiliation(s)
- Warren Arinaitwe
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Alliance of Bioversity International and International Center for Tropical AgricultureDong Dok, Ban Nongviengkham, VientianeLao People's Democratic Republic
| | - Trisna D. Tungadi
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
School of Life Sciences, Keele UniversityNewcastleUK
| | | | - Joshua Joyce
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
John Innes CentreNorwichUK
| | - Eseul Baek
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Department of Horticultural SciencesSeoul Women's UniversitySeoulKorea
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
5
|
Mohan Kumar R, Anantapur R, Peter A, H V C. Computational investigation of phytoalexins as potential antiviral RAP-1 and RAP-2 (Replication Associated Proteins) inhibitor for the management of cucumber mosaic virus (CMV): a molecular modeling, in silico docking and MM-GBSA study. J Biomol Struct Dyn 2022; 40:12165-12183. [PMID: 34463218 DOI: 10.1080/07391102.2021.1968500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Replication Associated Proteins (RAP-1 and RAP-2) encoded by CMV ORF 1a and ORF 2a are required for the different stages of the viral replication cycle; being multi-functional, they are good inhibitory targets for anti-CMV compounds. As a new perspective for sustainable crop improvement, we investigated the natural plant-based antimicrobial phytoalexins for their anti-CMV potential. Here, we modeled and predicted the functional domains of RAP-1 and RAP-2, docked with a ligand library comprising 128 phytoalexins reported with broad-spectrum activity, determined their binding energies (BEs), molecular interactions, and inhibition constant (Ki), and compared with the reference plant antiviral compounds ribavirin, ningnanmycin, and benzothiadiazole (BTH). Further, the change in Gibb's free energy of binding (ΔG) and the per residue contribution of the selected top-scored ligand molecules was assessed by the prime MM-GBSA approach. Our results revealed RAP-1 as a discontinuous two-domain and RAP-2 as a multi-domain protein. The compounds glyceollidin (9.8 kcal/mol) and moracin D (7.8 kcal/mol) topped the list for RAP-1 and RAP-2 protein targets respectively and also, the lead molecules had energetically more favorable and comparative ΔG values than the top-scored plant antiviral agent ningnanmycin. The evaluation of in vitro toxicity and agrochemical-like properties showed the least toxicity of these anti-CMV compounds. Taken together, our results provide new insights in understanding the inhibitory effects of phytoalexins towards the RAP proteins and could be employed as new promising anti-CMV candidate compounds for their application in agriculture as biopesticides to combat the CMV disease incidence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Roshni Mohan Kumar
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Ramachandra Anantapur
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Anitha Peter
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Chaitra H V
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
6
|
Arinaitwe W, Guyon A, Tungadi TD, Cunniffe NJ, Rhee SJ, Khalaf A, Mhlanga NM, Pate AE, Murphy AM, Carr JP. The Effects of Cucumber Mosaic Virus and Its 2a and 2b Proteins on Interactions of Tomato Plants with the Aphid Vectors Myzus persicae and Macrosiphum euphorbiae. Viruses 2022; 14:v14081703. [PMID: 36016326 PMCID: PMC9416248 DOI: 10.3390/v14081703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Cucumber mosaic virus (CMV), a major tomato pathogen, is aphid-vectored in the non-persistent manner. We investigated if CMV-induced volatile organic compounds (VOCs) or other virus-induced cues alter aphid-tomato interactions. Y-tube olfactometry showed that VOCs emitted by plants infected with CMV (strain Fny) attracted generalist (Myzus persicae) and Solanaceae specialist (Macrosiphum euphorbiae) aphids. Myzus persicae preferred settling on infected plants (3 days post-inoculation: dpi) at 1h post-release, but at 9 and 21 dpi, aphids preferentially settled on mock-inoculated plants. Macrosiphum euphorbiae showed no strong preference for mock-inoculated versus infected plants at 3 dpi but settled preferentially on mock-inoculated plants at 9 and 21 dpi. In darkness aphids showed no settling or migration bias towards either mock-inoculated or infected plants. However, tomato VOC blends differed in light and darkness, suggesting aphids respond to a complex mix of olfactory, visual, and other cues influenced by infection. The LS-CMV strain induced no changes in aphid-plant interactions. Experiments using inter-strain recombinant and pseudorecombinant viruses showed that the Fny-CMV 2a and 2b proteins modified tomato interactions with Macrosiphum euphorbiae and Myzus persicae, respectively. The defence signal salicylic acid prevents excessive CMV-induced damage to tomato plants but is not involved in CMV-induced changes in aphid-plant interactions.
Collapse
Affiliation(s)
- Warren Arinaitwe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT), Dong Dok, Ban Nongviengkham, Vientiane CB10 1RQ, Laos
| | - Alex Guyon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Sainsbury Laboratory, Cambridge University, Bateman St, Cambridge CB2 1LR, UK
| | - Trisna D. Tungadi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- School of Life Sciences, Keele University, Newcastle ST5 5BG, UK
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - Sun-Ju Rhee
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - Amjad Khalaf
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden CB10 1RQ, UK
| | - Netsai M. Mhlanga
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- National Institute for Agricultural Botany-East Malling (NIAB-EMR), West Malling ME19 6BJ, UK
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Correspondence:
| |
Collapse
|
7
|
Zhao L, Che X, Wang Z, Zhou X, Xie Y. Functional Characterization of Replication-Associated Proteins Encoded by Alphasatellites Identified in Yunnan Province, China. Viruses 2022; 14:222. [PMID: 35215816 PMCID: PMC8875141 DOI: 10.3390/v14020222] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Alphasatellites, which encode only a replication-associated protein (alpha-Rep), are frequently found to be non-essential satellite components associated with begomovirus/betasatellite complexes, and their presence can modulate disease symptoms and/or viral DNA accumulation during infection. Our previous study has shown that there are three types of alphasatellites associated with begomovirus/betasatellite complexes in Yunnan province in China and they encode three corresponding types of alpha-Rep proteins. However, the biological functions of alpha-Reps remain poorly understood. In this study, we investigated the biological functions of alpha-Reps in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) using 16c and 16-TGS transgenic Nicotiana benthamiana plants. Results showed that all the three types of alpha-Rep proteins were capable of suppressing the PTGS and reversing the TGS. Among them, the alpha-Rep of Y10DNA1 has the strongest PTGS and TGS suppressor activities. We also found that the alpha-Rep proteins were able to increase the accumulation of their helper virus during coinfection. These results suggest that the alpha-Reps may have a role in overcoming host defense, which provides a possible explanation for the selective advantage provided by the association of alphasatellites with begomovirus/betasatellite complexes.
Collapse
Affiliation(s)
- Liling Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.Z.); (X.C.); (X.Z.)
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Xuan Che
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.Z.); (X.C.); (X.Z.)
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China;
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.Z.); (X.C.); (X.Z.)
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.Z.); (X.C.); (X.Z.)
| |
Collapse
|
8
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
9
|
Kumari R, Kumar S, Leibman D, Abebie B, Shnaider Y, Ding S, Gal‐On A. Cucumber RDR1s and cucumber mosaic virus suppressor protein 2b association directs host defence in cucumber plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1317-1331. [PMID: 34355485 PMCID: PMC8518566 DOI: 10.1111/mpp.13112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 05/27/2023]
Abstract
RNA-dependent RNA polymerases (RDRs) regulate important aspects of plant development and resistance to pathogens. The role of RDRs in virus resistance has been demonstrated using siRNA signal amplification and through the methylation of viral genomes. Cucumber (Cucumis sativus) has four RDR1 genes that are differentially induced during virus infection: CsRDR1a, CsRDR1b, and duplicated CsRDR1c1/c2. The mode of action of CsRDR1s during viral infection is unknown. Transient expression of the cucumber mosaic virus (CMV)-2b protein (the viral suppressor of RNA silencing) in cucumber protoplasts induced the expression of CsRDR1c, but not of CsRDR1a/1b. Results from the yeast two-hybrid system showed that CsRDR1 proteins interacted with CMV-2b and this was confirmed by bimolecular fluorescence complementation assays. In protoplasts, CsRDR1s localized in the cytoplasm as punctate spots. Colocalization experiments revealed that CsRDR1s and CMV-2b were uniformly dispersed throughout the cytoplasm, suggesting that CsRDR1s are redistributed as a result of interactions. Transient overexpression of individual CsRDR1a/1b genes in protoplasts reduced CMV accumulation, indicating their antiviral role. However, overexpression of CsRDR1c in protoplasts resulted in relatively higher accumulation of CMV and CMVΔ2b. In single cells, CsRDR1c enhances viral replication, leading to CMV accumulation and blocking secondary siRNA amplification of CsRDR1c by CMV-2b protein. This suggests that CMV-2b acts as both a transcription factor that induces CsRDR1c (controlling virus accumulation) and a suppressor of CsRDR1c activity.
Collapse
Affiliation(s)
- Reenu Kumari
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
- College of Horticulture and ForestryDr YS Parmar University of Horticulture and ForestryMandiIndia
| | - Surender Kumar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
- Plant Virology Lab, Biotechnology DivisionCSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Diana Leibman
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Bekele Abebie
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Yulia Shnaider
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Shou‐Wei Ding
- Department of Plant Pathology and Microbiology & Institute for Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Amit Gal‐On
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
10
|
Tungadi T, Watt LG, Groen SC, Murphy AM, Du Z, Pate AE, Westwood JH, Fennell TG, Powell G, Carr JP. Infection of Arabidopsis by cucumber mosaic virus triggers jasmonate-dependent resistance to aphids that relies partly on the pattern-triggered immunity factor BAK1. MOLECULAR PLANT PATHOLOGY 2021; 22:1082-1091. [PMID: 34156752 PMCID: PMC8358999 DOI: 10.1111/mpp.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 05/06/2023]
Abstract
Many aphid-vectored viruses are transmitted nonpersistently via transient attachment of virus particles to aphid mouthparts and are most effectively acquired or transmitted during brief stylet punctures of epidermal cells. In Arabidopsis thaliana, the aphid-transmitted virus cucumber mosaic virus (CMV) induces feeding deterrence against the polyphagous aphid Myzus persicae. This form of resistance inhibits prolonged phloem feeding but promotes virus acquisition by aphids because it encourages probing of plant epidermal cells. When aphids are confined on CMV-infected plants, feeding deterrence reduces their growth and reproduction. We found that CMV-induced inhibition of growth as well as CMV-induced inhibition of reproduction of M. persicae are dependent upon jasmonate-mediated signalling. BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor enabling detection of microbe-associated molecular patterns and induction of pattern-triggered immunity (PTI). In plants carrying the mutant bak1-5 allele, CMV induced inhibition of M. persicae reproduction but not inhibition of aphid growth. We conclude that in wildtype plants CMV induces two mechanisms that diminish performance of M. persicae: a jasmonate-dependent and PTI-dependent mechanism that inhibits aphid growth, and a jasmonate-dependent, PTI-independent mechanism that inhibits reproduction. The growth of two crucifer specialist aphids, Lipaphis erysimi and Brevicoryne brassicae, was not affected when confined on CMV-infected A. thaliana. However, B. brassicae reproduction was inhibited on CMV-infected plants. This suggests that in A. thaliana CMV-induced resistance to aphids, which is thought to incentivize virus vectoring, has greater effects on polyphagous than on crucifer specialist aphids.
Collapse
Affiliation(s)
- Trisna Tungadi
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- NIAB EMREast MallingUK
| | - Lewis G. Watt
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Simon C. Groen
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Department of BiologyNew York UniversityNew YorkNew YorkUSA
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Zhiyou Du
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Institute of BioengineeringZhejiang Sci‐Tech UniversityHangzhouChina
| | | | - Jack H. Westwood
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Walder FoundationSkokieIllinoisUSA
| | - Thea G. Fennell
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
11
|
Nigam D. Genomic Variation and Diversification in Begomovirus Genome in Implication to Host and Vector Adaptation. PLANTS (BASEL, SWITZERLAND) 2021; 10:1706. [PMID: 34451752 PMCID: PMC8398267 DOI: 10.3390/plants10081706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
Begomoviruses (family Geminiviridae, genus Begomovirus) are DNA viruses transmitted in a circulative, persistent manner by the whitefly Bemisia tabaci (Gennadius). As revealed by their wide host range (more than 420 plant species), worldwide distribution, and effective vector transmission, begomoviruses are highly adaptive. Still, the genetic factors that facilitate their adaptation to a diverse array of hosts and vectors remain poorly understood. Mutations in the virus genome may confer a selective advantage for essential functions, such as transmission, replication, evading host responses, and movement within the host. Therefore, genetic variation is vital to virus evolution and, in response to selection pressure, is demonstrated as the emergence of new strains and species adapted to diverse hosts or with unique pathogenicity. The combination of variation and selection forms a genetic imprint on the genome. This review focuses on factors that contribute to the evolution of Begomovirus and their global spread, for which an unforeseen diversity and dispersal has been recognized and continues to expand.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Yoon JY, Palukaitis P. Cucumber Mosaic Virus 1a Protein Interacts with the Tobacco SHE1 Transcription Factor and Partitions between the Nucleus and the Tonoplast Membrane. THE PLANT PATHOLOGY JOURNAL 2021; 37:182-193. [PMID: 33866760 PMCID: PMC8053847 DOI: 10.5423/ppj.ft.03.2021.0045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor SHE1 was identified as an interacting partner with the cucumber mosaic virus (CMV) 1a protein in the yeast two-hybrid system, by a pull-down assay, and via bimolecular fluorescent complementation. Using fluorescent-tagged proteins and confocal microscopy, the CMV 1a protein itself was found distributed predominantly between the nucleus and the tonoplast membrane, although it was also found in speckles in the cytoplasm. The SHE1 protein was localized in the nucleus, but in the presence of the CMV 1a protein was partitioned between the nucleus and the tonoplast membrane. SHE1 expression was induced by infection of tobacco with four tested viruses: CMV, tobacco mosaic virus, potato virus X and potato virus Y. Transgenic tobacco expressing the CMV 1a protein showed constitutive expression of SHE1, indicating that the CMV 1a protein may be responsible for its induction. However, previously, such plants also were shown to have less resistance to local and systemic movement of tobacco mosaic virus (TMV) expressing the green fluorescent protein, suggesting that the CMV 1a protein may act to prevent the function of the SHE1 protein. SHE1 is a member of the AP2/ERF class of transcription factors and is conserved in sequence in several Nicotiana species, although two clades of SHE1 could be discerned, including both different Nicotiana species and cultivars of tobacco, varying by the presence of particular insertions or deletions.
Collapse
Affiliation(s)
- Ju-Yeon Yoon
- Virology Unit, Division of Horticultural and Herbal Crop Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Peter Palukaitis
- Department of Horticulture Sciences, Seoul Women's University, Seoul 01797,
Korea
| |
Collapse
|