1
|
Wang X, Nyenhuis SB, Bernstein HD. The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro. Nat Commun 2024; 15:7246. [PMID: 39174534 PMCID: PMC11341756 DOI: 10.1038/s41467-024-51628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The translocation and assembly module (TAM) has been proposed to play a crucial role in the assembly of a small subset of outer membrane proteins (OMPs) in Proteobacteria based on experiments conducted in vivo using tamA and tamB mutant strains and in vitro using biophysical methods. TAM consists of an OMP (TamA) and a periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). Here we examine the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. We find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machine (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our study provides direct evidence that TAM can function as an independent OMP insertase and describes a new method to gain insights into TAM function.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah B Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Mellouk A, Jaouen P, Ruel LJ, Lê M, Martini C, Moraes TF, El Bakkouri M, Lagüe P, Boisselier E, Calmettes C. POTRA domains of the TamA insertase interact with the outer membrane and modulate membrane properties. Proc Natl Acad Sci U S A 2024; 121:e2402543121. [PMID: 38959031 PMCID: PMC11252910 DOI: 10.1073/pnas.2402543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
The outer membrane (OM) of gram-negative bacteria serves as a vital organelle that is densely populated with OM proteins (OMPs) and plays pivotal roles in cellular functions and virulence. The assembly and insertion of these OMPs into the OM represent a fundamental process requiring specialized molecular chaperones. One example is the translocation and assembly module (TAM), which functions as a transenvelope chaperone promoting the folding of specific autotransporters, adhesins, and secretion systems. The catalytic unit of TAM, TamA, comprises a catalytic β-barrel domain anchored within the OM and three periplasmic polypeptide-transport-associated (POTRA) domains that recruit the TamB subunit. The latter acts as a periplasmic ladder that facilitates the transport of unfolded OMPs across the periplasm. In addition to their role in recruiting the auxiliary protein TamB, our data demonstrate that the POTRA domains mediate interactions with the inner surface of the OM, ultimately modulating the membrane properties. Through the integration of X-ray crystallography, molecular dynamic simulations, and biomolecular interaction methodologies, we located the membrane-binding site on the first and second POTRA domains. Our data highlight a binding preference for phosphatidylglycerol, a minor lipid constituent present in the OM, which has been previously reported to facilitate OMP assembly. In the context of the densely OMP-populated membrane, this association may serve as a mechanism to secure lipid accessibility for nascent OMPs through steric interactions with existing OMPs, in addition to creating favorable conditions for OMP biogenesis.
Collapse
Affiliation(s)
- Abdelkader Mellouk
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Paul Jaouen
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, centre hospitalier universitaire de Québec, Université Laval, Québec City, QCG1S 4L8, Canada
| | - Louis-Jacques Ruel
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec City, QCG1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Michel Lê
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Cyrielle Martini
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Majida El Bakkouri
- National Research Council Canada, Human Health Therapeutics, Montréal, QCH4P 2R2, Canada
| | - Patrick Lagüe
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec City, QCG1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Elodie Boisselier
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, centre hospitalier universitaire de Québec, Université Laval, Québec City, QCG1S 4L8, Canada
| | - Charles Calmettes
- Institut National de la Rechyuerche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QCH7V 1B7, Canada
- Regroupement Québécois de recherche sur la fonction, la structure et l’ingénierie des protéines (PROTEO), Université du Québec à Montréal, Montréal, QCH2X 3Y7, Canada
| |
Collapse
|
3
|
Wang X, Nyenhuis SB, Bernstein HD. The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599893. [PMID: 39372782 PMCID: PMC11451606 DOI: 10.1101/2024.06.20.599893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The bacterial translocation assembly module (TAM) contains an outer membrane protein (OMP) (TamA) and an elongated periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). TAM has been proposed to play a critical role in the assembly of a small subset of OMPs produced by Proteobacteria based on experiments conducted in vivo using tamA and/or tamB deletion or mutant strains and in vitro using biophysical methods. Recent genetic experiments, however, have strongly suggested that TAM promotes phospholipid homeostasis. To test the idea that TAM catalyzes OMP assembly directly, we examined the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. Remarkably, we find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machinery (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our results provide strong evidence that although their peripheral subunits are unrelated, both BAM and TAM function as independent OMP insertases. Furthermore, our study describes a new method to gain insights into TAM function.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sarah B. Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
4
|
Goh KJ, Stubenrauch CJ, Lithgow T. The TAM, a Translocation and Assembly Module for protein assembly and potential conduit for phospholipid transfer. EMBO Rep 2024; 25:1711-1720. [PMID: 38467907 PMCID: PMC11014939 DOI: 10.1038/s44319-024-00111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The assembly of β-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the β-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of β-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher J Stubenrauch
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia.
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
5
|
McQuail J, Matera G, Gräfenhan T, Bischler T, Haberkant P, Stein F, Vogel J, Wigneshweraraj S. Global Hfq-mediated RNA interactome of nitrogen starved Escherichia coli uncovers a conserved post-transcriptional regulatory axis required for optimal growth recovery. Nucleic Acids Res 2024; 52:2323-2339. [PMID: 38142457 PMCID: PMC10954441 DOI: 10.1093/nar/gkad1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
The RNA binding protein Hfq has a central role in the post-transcription control of gene expression in many bacteria. Numerous studies have mapped the transcriptome-wide Hfq-mediated RNA-RNA interactions in growing bacteria or bacteria that have entered short-term growth-arrest. To what extent post-transcriptional regulation underpins gene expression in growth-arrested bacteria remains unknown. Here, we used nitrogen (N) starvation as a model to study the Hfq-mediated RNA interactome as Escherichia coli enter, experience, and exit long-term growth arrest. We observe that the Hfq-mediated RNA interactome undergoes extensive changes during N starvation, with the conserved SdsR sRNA making the most interactions with different mRNA targets exclusively in long-term N-starved E. coli. Taking a proteomics approach, we reveal that in growth-arrested cells SdsR influences gene expression far beyond its direct mRNA targets. We demonstrate that the absence of SdsR significantly compromises the ability of the mutant bacteria to recover growth competitively from the long-term N-starved state and uncover a conserved post-transcriptional regulatory axis which underpins this process.
Collapse
Affiliation(s)
- Josh McQuail
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Faculty of Medicine, Imperial College London, UK
| | - Gianluca Matera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Tom Gräfenhan
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, D-69117,Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, D-69117,Heidelberg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Sivaramesh Wigneshweraraj
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
6
|
David C, Czauderna A, Cheng L, Lagune M, Jung HJ, Kim SG, Pamer EG, Prados J, Chen L, Becattini S. Intestinal carbapenem-resistant Klebsiella pneumoniae undergoes complex transcriptional reprogramming following immune activation. Gut Microbes 2024; 16:2340486. [PMID: 38659243 PMCID: PMC11057644 DOI: 10.1080/19490976.2024.2340486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is a significant threat to public health worldwide. The primary reservoir for CR-Kp is the intestinal tract. There, the bacterium is usually present at low density but can bloom following antibiotic treatment, mostly in hospital settings. The impact of disturbances in the intestinal environment on the fitness, survival, expansion, and drug susceptibility of this pathogen is not well-understood, yet it may be relevant to devise strategies to tackle CR-Kp colonization and infection. Here, we adopted an in vivo model to examine the transcriptional adaptation of a CR-Kp clinical isolate to immune activation in the intestine. We report that as early as 6 hours following host treatment with anti-CD3 antibody, CR-Kp underwent rapid transcriptional changes including downregulation of genes involved in sugar utilization and amino acid biosynthesis and upregulation of genes involved in amino acid uptake and catabolism, antibiotic resistance, and stress response. In agreement with these findings, treatment increased the concentration of oxidative species and amino acids in the mouse intestine. Genes encoding for proteins containing the domain of unknown function (DUF) 1471 were strongly upregulated, however their deletion did not impair CR-Kp fitness in vivo upon immune activation. Transcription factor enrichment analysis identified the global regulator cAMP-Receptor Protein, CRP, as a potential orchestrator of the observed transcriptional signature. In keeping with the recognized role of CRP in regulating utilization of alternative carbon sources, crp deletion in CR-Kp resulted in strongly impaired gut colonization, although this effect was not amplified by immune activation. Thus, following intestinal colonization, which occurs in a CRP-dependent manner, CR-Kp can rapidly respond to immune cues by implementing a well-defined and complex transcriptional program whose direct relevance toward bacterial fitness warrants further investigation. Additional analyses utilizing this model may identify key factors to tackle CR-Kp colonization of the intestine.
Collapse
Affiliation(s)
- Clement David
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aleksander Czauderna
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Liqing Cheng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marion Lagune
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hea-Jin Jung
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sohn G. Kim
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Eric G. Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Julien Prados
- Bioinformatics Support Platform for data analysis, Faculty of medicine, University of Geneva, Geneva, Switzerland
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Kalpana S, Lin WY, Wang YC, Fu Y, Lakshmi A, Wang HY. Antibiotic Resistance Diagnosis in ESKAPE Pathogens-A Review on Proteomic Perspective. Diagnostics (Basel) 2023; 13:1014. [PMID: 36980322 PMCID: PMC10047325 DOI: 10.3390/diagnostics13061014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Antibiotic resistance has emerged as an imminent pandemic. Rapid diagnostic assays distinguish bacterial infections from other diseases and aid antimicrobial stewardship, therapy optimization, and epidemiological surveillance. Traditional methods typically have longer turn-around times for definitive results. On the other hand, proteomic studies have progressed constantly and improved both in qualitative and quantitative analysis. With a wide range of data sets made available in the public domain, the ability to interpret the data has considerably reduced the error rates. This review gives an insight on state-of-the-art proteomic techniques in diagnosing antibiotic resistance in ESKAPE pathogens with a future outlook for evading the "imminent pandemic".
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | | | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA
| | - Amrutha Lakshmi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| |
Collapse
|
8
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
9
|
Choudhary E, Sharma R, Pal P, Agarwal N. Deciphering the Proteomic Landscape of Mycobacterium tuberculosis in Response to Acid and Oxidative Stresses. ACS OMEGA 2022; 7:26749-26766. [PMID: 35936415 PMCID: PMC9352160 DOI: 10.1021/acsomega.2c03092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The fundamental to the pathogenicity of Mycobacterium tuberculosis (Mtb) is the modulation in the control mechanisms that play a role in sensing and counteracting the microbicidal milieu encompassing various cellular stresses inside the human host. To understand such changes, we measured the cellular proteome of Mtb subjected to different stresses using a quantitative proteomics approach. We identified defined sets of Mtb proteins that are modulated in response to acid and a sublethal dose of diamide and H2O2 treatments. Notably, proteins involved in metabolic, catalytic, and binding functions are primarily affected under these stresses. Moreover, our analysis led to the observations that during acidic stress Mtb enters into energy-saving mode simultaneously modulating the acid tolerance system, whereas under diamide and H2O2 stresses, there were prominent changes in the biosynthesis and homeostasis pathways, primarily modifying the resistance mechanism in diamide-treated bacteria while causing metabolic arrest in H2O2-treated bacilli. Overall, we delineated the adaptive mechanisms that Mtb may utilize under physiological stresses and possible overlap between the responses to these stress conditions. In addition to offering important protein signatures that can be exploited for future mechanistic studies, our study highlights the importance of proteomics in understanding complex adjustments made by the human pathogen during infection.
Collapse
Affiliation(s)
- Eira Choudhary
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
- Symbiosis
School of Biomedical Sciences, Symbiosis
International (Deemed University), Pune412115, Maharashtra, India
| | - Rishabh Sharma
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
| | - Pramila Pal
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
- Jawaharlal
Nehru University, New
Mehrauli Road, New Delhi110067, India
| | - Nisheeth Agarwal
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
| |
Collapse
|
10
|
Genomic and Immunological Characterization of Hypermucoviscous Carbapenem-Resistant Klebsiella pneumoniae ST25 Isolates from Northwest Argentina. Int J Mol Sci 2022; 23:ijms23137361. [PMID: 35806365 PMCID: PMC9266295 DOI: 10.3390/ijms23137361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, an increase in the prevalence hypermucoviscous carbapenem-resistant Klebsiella pneumoniae with sequence type 25 (ST25) was detected in hospitals of Tucuman (Northwest Argentina). In this work, the virulence and the innate immune response to two K. pneumoniae ST25 strains (LABACER 01 and LABACER 27) were evaluated in a murine model after a respiratory challenge. In addition, comparative genomics was performed with K. pneumoniae LABACER01 and LABACER27 to analyze genes associated with virulence. Both LABACER01 and LABACER27 were detected in the lungs of infected mice two days after the nasal challenge, with LABACER01 counts significantly higher than those of LABACER27. Only LABACER01 was detected in hemocultures. Lactate dehydrogenase (LDH) and albumin levels in bronchoalveolar lavage (BAL) samples were significantly higher in mice challenged with LABACER01 than in LABACER27-infected animals, indicating greater lung tissue damage. Both strains increased the levels of neutrophils, macrophages, TNF-α, IL-1β, IL-6, KC, MCP-1, IFN-γ, and IL-17 in the respiratory tract and blood, with the effect of LABACER01 more marked than that of LABACER27. In contrast, LABACER27 induced higher levels of IL-10 in the respiratory tract than LABACER01. Genomic analysis revealed that K. pneumoniae LABACER01 and LABACER27 possess virulence factors found in other strains that have been shown to be hypervirulent, including genes required for enterobactin (entABCDEF) and salmochelin (iroDE) biosynthesis. In both strains, the genes of toxin–antitoxin systems, as well as regulators of the expression of virulence factors and adhesion genes were also detected. Studies on the genetic potential of multiresistant K. pneumoniae strains as well as their cellular and molecular interactions with the host are of fundamental importance to assess the association of certain virulence factors with the intensity of the inflammatory response. In this sense, this work explored the virulence profile based on genomic and in vivo studies of hypermucoviscous carbapenem-resistant K. pneumoniae ST25 strains, expanding the knowledge of the biology of the emerging ST25 clone in Argentina.
Collapse
|
11
|
High Osmotic Stress Increases OmpK36 Expression through the Regulation of KbvR to Decrease the Antimicrobial Resistance of Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0050722. [PMID: 35658577 PMCID: PMC9241633 DOI: 10.1128/spectrum.00507-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a pathogen known for its high frequency of antimicrobial resistance. Responses to various environmental stresses during its life can influence the resistance to antibiotics. Here, we demonstrate the role and mechanism of KbvR regulator in the response to environmental osmotic stress and in the effect of osmotic stress on antimicrobial resistance. The kbvR mutant strain exhibited increasing tolerance to high osmotic stress and certain antibiotics, including β-lactams. The expression levels of KbvR and outer membrane porin OmpK36 were upregulated in response to high osmotic stress in the wild type (WT), and the deletion of kbvR decreased the expression level of ompK36. The membrane permeability of the kbvR mutant strain was decreased, which was partly restored through the upregulated expression of OmpK36. The DNA affinity purification sequencing (DAP-seq) and microscale thermophoresis (MST) assay disclosed the binding of KbvR to the promoter of the ompK36 gene, indicating that KbvR directly and positively regulated the expression of OmpK36. The high osmotic stress increased the susceptibility to β-lactams and the expression of ompK36 in the WT strain. However, the increased ompK36 expression and the susceptibility to β-lactams in the kbvR mutant strain under high osmotic stress were lower than those of WT. In conclusion, our study has identified that high osmotic stress in the environment influenced the resistance of K. pneumoniae to antibiotics and that the regulation of KbvR with OmpR on the expression of OmpK36 was involved in countering high osmotic stress to change the antimicrobial resistance. IMPORTANCEKlebsiella pneumoniae is considered a global threat because of the rising prevalence of multidrug-resistant strains and their optimal adaptation to clinical environments and the human host. The sensing and adaption abilities of bacteria to the environmental osmotic stress can change the expression of their outer membrane porins, membrane permeability, and resistance to antibiotics. This study reports that KbvR is a newly found regulator that can be upregulated under high osmotic stress and directly regulate the expression of OmpK36 to change the resistance of K. pneumoniae to β-lactam antibiotics. The results demonstrate how adaptation to high osmotic stress changes the sensitivity of K. pneumoniae to antibiotics. The mechanism can be used to sensitize bacteria to antibiotics and highlight new potential strategies for exploiting shared constraints in governing adaptation to diverse environmental challenges.
Collapse
|
12
|
A noncanonical chaperone interacts with drug efflux pumps during their assembly into bacterial outer membranes. PLoS Biol 2022; 20:e3001523. [PMID: 35061668 PMCID: PMC8809574 DOI: 10.1371/journal.pbio.3001523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/02/2022] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteria have membrane-spanning efflux pumps to secrete toxic compounds ranging from heavy metal ions to organic chemicals, including antibiotic drugs. The overall architecture of these efflux pumps is highly conserved: with an inner membrane energy-transducing subunit coupled via an adaptor protein to an outer membrane conduit subunit that enables toxic compounds to be expelled into the environment. Here, we map the distribution of efflux pumps across bacterial lineages to show these proteins are more widespread than previously recognised. Complex phylogenetics support the concept that gene cassettes encoding the subunits for these pumps are commonly acquired by horizontal gene transfer. Using TolC as a model protein, we demonstrate that assembly of conduit subunits into the outer membrane uses the chaperone TAM to physically organise the membrane-embedded staves of the conduit subunit of the efflux pump. The characteristics of this assembly pathway have impact for the acquisition of efflux pumps across bacterial species and for the development of new antimicrobial compounds that inhibit efflux pump function. A crosslinking study reveals novel insights into how the chaperone TAM helps Gram-negative bacteria insert the drug efflux pump subunit TolC into their outer membrane. Bioinformatic analyses show that TolC-like proteins can be found in all LPS-containing bacteria, but also in some monodermic Firmicutes.
Collapse
|
13
|
Wang Z, Ding Z, Li Z, Ding Y, Jiang F, Liu J. Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential antibiofilm agent in Klebsiella pneumoniae strains isolated from hospitalized patients. Microb Pathog 2021; 159:105121. [PMID: 34343655 DOI: 10.1016/j.micpath.2021.105121] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The emergence of multidrug resistance (MDR) and extensive drug resistance (XDR) in Klebsiella pneumoniae strains has posed great threats to conventional antibiotics. Previous studies have shown that plant-derived flavonoids have inhibitory functions against pathogens. However, in K. pneumoniae, the antibacterial activity of different flavonoids against growth and biofilm formation remains a mystery. The aim of the present study was to evaluate the antioxidant abilities of different flavonoids, to screen active ingredients and to identify their inhibitory effects on K. pneumoniae growth and biofilm formation. In total, 10 flavonoids representing 4 major categories were screened and used in this study. The antioxidant capacity of each flavonoid was evaluated through a DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Rutin showed the highest level of free radical scavenging capacity, followed by kaempferol, luteolin, quercetin, apigenin, hesperidin, sinensetin, naringenin, naringin and 3,5,6,7,8,3',4'-heptamethoxyflavone. The inhibitory effects of rutin and naringin on bacterial growth were also compared. The lowest MICs of rutin were found against K. pneumoniae ATCC700603 (1024 μg/mL) and E. coli ATCC25922 (512 μg/mL). However, the MBICs were not found. Rutin showed strong inhibitory ability against both the growth curve and biofilm production. The expression profiles of 15 biofilm-related genes were analyzed in biofilm cells both with and without rutin treatment. The luxS gene and wabG gene were downregulated significantly by rutin treatment. Correlation analysis showed that mrkA gene expression was positively correlated with biofilm biomass accumulation. Our study indicated that biofilm production is correlated with the expression of several genes rather than one. MrkA gene expression was positively correlated with biofilm biomass accumulation. Our study screened rutin as a potential agent to inhibit K. pneumoniae biofilm formation.
Collapse
Affiliation(s)
- Zhibin Wang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Zixuan Ding
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Zhaoyinqian Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yinhuan Ding
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Fan Jiang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, 250012, China
| | - Jinbo Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|