1
|
Gillingham MAF, Prüter H, Montero BK, Kempenaers B. The costs and benefits of a dynamic host microbiome. Trends Ecol Evol 2024:S0169-5347(24)00281-7. [PMID: 39690056 DOI: 10.1016/j.tree.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024]
Abstract
All species host a rich community of microbes. This microbiome is dynamic, and displays seasonal, daily, and even hourly changes, but also needs to be resilient to fulfill important roles for the host. In evolutionary ecology, the focus of microbiome dynamism has been on how it can facilitate host adaptation to novel environments. However, an hitherto largely overlooked issue is that the host needs to keep its microbiome in check, which is costly and leads to trade-offs with investing in other fitness-related traits. Investigating these trade-offs in natural vertebrate systems by collecting longitudinal data will lead to deeper insight into the evolutionary mechanisms that shape host-microbiome interactions.
Collapse
Affiliation(s)
- Mark A F Gillingham
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany.
| | - Hanna Prüter
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany
| | - B Karina Montero
- Biodiversity Research Institute, Consejo Superior de Investigaciones Científicas (CSIC) and Oviedo University-Principality of Asturias, University of Oviedo, Campus of Mieres, Mieres E-33600, Spain
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany
| |
Collapse
|
2
|
Leclaire S, Bandekar M, Rowe M, Ritari J, Jokiniemi A, Partanen J, Allinen P, Kuusipalo L, Kekäläinen J. Female reproductive tract microbiota varies with MHC profile. Proc Biol Sci 2024; 291:20241334. [PMID: 39471862 PMCID: PMC11521592 DOI: 10.1098/rspb.2024.1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Numerous studies have shown that a healthy reproductive tract microbiota is crucial for successful reproduction and that its composition is influenced by various environmental and host factors. However, it is not known whether the reproductive microbiota is also shaped by the major histocompatibility complex (MHC), a family of genes essential to differentiate 'self' from 'non-self' peptides to initiate an adaptive immune response. We tested the association between the follicular fluid microbiome and MHC genes in 27 women. Women with higher MHC diversity had a higher microbiome diversity, characterized by bacteria commonly associated with vaginal dysbiosis. Women with similar MHC genes were also similar in their microbiome composition, indicating that MHC composition may be a key factor in determining the bacterial assemblage in the reproductive tract. Finally, the composition of the follicular fluid microbiome was similar to the vaginal microbiome, suggesting that numerous bacteria of the vagina are true inhabitants of the follicular fluid or that vaginal microbiota contaminated the follicular fluid microbiota during transvaginal collection. Collectively, our results demonstrate the importance of host genetic factors in shaping women's reproductive microbiota and they open the door for further research on the role of microbiota in mediating MHC-related variation in reproductive success.
Collapse
Affiliation(s)
- Sarah Leclaire
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), UMR5300, Université Toulouse, CNRS, IRD, Toulouse INP, 118 rte de Narbonne, Toulouse31062, France
| | - Mandar Bandekar
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Joensuu80101, Finland
| | - Melissah Rowe
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen6700 AB, The Netherlands
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Research and Development, Haartmaninkatu 8, Helsinki00290, Finland
| | - Annalaura Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Joensuu80101, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Haartmaninkatu 8, Helsinki00290, Finland
| | - Pia Allinen
- Ovumia Kuopio, Ajurinkatu 16, Kuopio70110, Finland
| | - Liisa Kuusipalo
- North Karelia Central Hospital, Tikkamäentie 16, Joensuu80210, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Joensuu80101, Finland
| |
Collapse
|
3
|
Motlhatlhedi K, Pilusa NB, Ndaba T, George M, Masamba P, Kappo AP. Therapeutic and vaccinomic potential of moonlighting proteins for the discovery and design of drugs and vaccines against schistosomiasis. Am J Transl Res 2024; 16:4279-4300. [PMID: 39398578 PMCID: PMC11470331 DOI: 10.62347/bxrt7210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024]
Abstract
Despite significant and coordinated efforts to combat schistosomiasis, such as providing clean water, sanitation, hygiene, and snail control, these strategies still fall short, as regions previously thought to be disease-free have shown active schistosomiasis transmission. Therefore, it is necessary to implement integrated control methods, emphasizing vaccine development for sustainable control of schistosomiasis. Vaccination has significantly contributed to global healthcare and has been the most economically friendly method for avoiding pathogenic infections. Over the years, different vaccine candidates for schistosomiasis have been investigated with varying degrees of success in clinical trials with many not proceeding past the early clinical phase. Recently, proteins have been mentioned as targets for drug discovery and vaccine development, especially those with multiple functions in schistosomes. Moonlighting proteins are a class of proteins that can perform several functions besides their known functions. This multifunctional property is believed to have been expressed through evolution, where the polypeptide chain gained the ability to perform other tasks without undergoing any structural changes. Since proteins have gained more traction as drug targets, multifunctional proteins have thus become attractive for discovering and developing novel drugs since the drug can target more than one function. Moonlighting proteins are promising drug and vaccine candidates for diseases such as schistosomiasis, since they aid in disease promotion in the human host. This manuscript elucidates vital moonlighting proteins used by schistosomes to drive their life cycle and to ensure their survival in the human host, which can be used to develop anti-schistosomal therapeutics and vaccinomics.
Collapse
Affiliation(s)
- Kagiso Motlhatlhedi
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Naledi Beatrice Pilusa
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Tshepang Ndaba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Mary George
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| |
Collapse
|
4
|
Tingga RCT, Gani M, Mohd-Ridwan AR, Aifat NR, Matsuda I, Md-Zain BM. Gut microbial assessment among Hylobatidae at the National Wildlife Rescue Centre, Peninsular Malaysia. J Vet Sci 2024; 25:e65. [PMID: 39231790 PMCID: PMC11450390 DOI: 10.4142/jvs.23312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
IMPORTANCE Recent developments in genetic analytical techniques have enabled the comprehensive analysis of gastrointestinal symbiotic bacteria as a screening tool for animal health conditions, especially the endangered gibbons at the National Wildlife Rescue Centre (NWRC). OBJECTIVE High-throughput sequencing based on 16S ribosomal RNA genes was used to determine the baseline gut bacterial composition and identify potential pathogenic bacteria among three endangered gibbons housed in the NWRC. METHODS Feces were collected from 14 individuals (Hylobates lar, n = 9; Hylobates agilis, n = 4; and Symphalangus syndactylus, n = 1) from March to November 2022. Amplicon sequencing were conducted by targeting V3-V4 region. RESULTS The fecal microbial community of the study gibbons was dominated by Bacteroidetes and Firmicutes (phylum level), Prevotellaceae and Lachnospiraceae/Muribaculaceae (family level), and Prevotella (and its subgroups) (genera level). This trend suggests that the microbial community composition of the study gibbons differed insignificantly from previously reported conspecific or closely related gibbon species. CONCLUSIONS AND RELEVANCE This study showed no serious health problems that require immediate attention. However, relatively low alpha diversity and few potential bacteria related to gastrointestinal diseases and streptococcal infections were detected. Information on microbial composition is essential as a guideline to sustain a healthy gut condition of captive gibbons in NWRC, especially before releasing this primate back into the wild or semi-wild environment. Further enhanced husbandry environments in the NWRC are expected through continuous health monitoring and increase diversity of the gut microbiota through diet diversification.
Collapse
Affiliation(s)
- Roberta Chaya Tawie Tingga
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
| | - Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks Peninsular Malaysia (PERHILITAN), Kuala Lumpur 56100, Malaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
| | - Nor Rahman Aifat
- Faculty of Tropical Forestry, Universiti Malaysia Sabah (UMS), Kota Kinabalu 88400, Malaysia
| | - Ikki Matsuda
- Wildlife Research Center of Kyoto University, Kyoto 606-8203, Japan
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 4878501, Japan
- Chubu University Academy of Emerging Sciences, Kasugai 4878501, Japan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah (UMS), Kota Kinabalu 88400, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.
| |
Collapse
|
5
|
Kim M, Ediriweera TK, Cho E, Chung Y, Manjula P, Yu M, Macharia JK, Nam S, Lee JH. Major histocompatibility complex genes exhibit a potential immunological role in mixed Eimeria-infected broiler cecum analyzed using RNA sequencing. Anim Biosci 2024; 37:993-1000. [PMID: 38271966 PMCID: PMC11065961 DOI: 10.5713/ab.23.0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE This study was conducted to investigate the differential expression of the major histocompatibility complex (MHC) gene region in Eimeria-infected broiler. METHODS We profiled gene expression of Eimeria-infected and uninfected ceca of broilers sampled at 4, 7, and 21 days post-infection (dpi) using RNA sequencing. Differentially expressed genes (DEGs) between two sample groups were identified at each time point. DEGs located on chicken chromosome 16 were used for further analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis was conducted for the functional annotation of DEGs. RESULTS Fourteen significant (false discovery rate <0.1) DEGs were identified at 4 and 7 dpi and categorized into three groups: MHC-Y class I genes, MHC-B region genes, and non-MHC genes. In Eimeria-infected broilers, MHC-Y class I genes were upregulated at 4 dpi but downregulated at 7 dpi. This result implies that MHC-Y class I genes initially activated an immune response, which was then suppressed by Eimeria. Of the MHC-B region genes, the DMB1 gene was upregulated, and TAP-related genes significantly implemented antigen processing for MHC class I at 4 dpi, which was supported by KEGG pathway analysis. CONCLUSION This study is the first to investigate MHC gene responses to coccidia infection in chickens using RNA sequencing. MHC-B and MHC-Y genes showed their immune responses in reaction to Eimeria infection. These findings are valuable for understanding chicken MHC gene function.
Collapse
Affiliation(s)
- Minjun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | | | - Eunjin Cho
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134,
Korea
| | - Yoonji Chung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Prabuddha Manjula
- Department of Animal Science, Uva Wellassa University, Badulla 90000,
Sri Lanka
| | - Myunghwan Yu
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - John Kariuki Macharia
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Seonju Nam
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134,
Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
6
|
Neely WJ, Souza KMC, Martins RA, Marshall VM, Buttimer SM, Brito de Assis A, Medina D, Whetstone RD, Lyra ML, Ribeiro JW, Greenspan SE, Haddad CFB, Alves dos Anjos L, Becker CG. Host-associated helminth diversity and microbiome composition contribute to anti-pathogen defences in tropical frogs impacted by forest fragmentation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240530. [PMID: 39100162 PMCID: PMC11296196 DOI: 10.1098/rsos.240530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Habitat fragmentation can negatively impact wildlife populations by simplification of ecological interactions, but little is known about how these impacts extend to host-associated symbiotic communities. The symbiotic communities of amphibians play important roles in anti-pathogen defences, particularly against the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). In this study, we analyse the role of macroparasitic helminth communities in concert with microbial communities in defending the host against Bd infection within the context of forest fragmentation. We found that skin microbial and helminth communities are disrupted at fragmented habitats, while gut microbiomes appear more resilient to environmental change. We also detected potential protective roles of helminth diversity and anti-pathogen microbial function in limiting Bd infection. Microbial network analysis revealed strong patterns of structure in both skin and gut communities, with helminths playing central roles in these networks. We reveal consistent roles of microbial and helminth diversity in driving host-pathogen interactions and the potential implications of fragmentation on host fitness.
Collapse
Affiliation(s)
- Wesley J. Neely
- Department of Biology, The University of Alabama, Tuscaloosa, AL35487, USA
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Kassia M. C. Souza
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil
| | - Renato A. Martins
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
| | | | - Shannon M. Buttimer
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
| | - Ananda Brito de Assis
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Daniel Medina
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
- Sistema Nacional de Investigación, SENACYT, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Ross D. Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mariana L. Lyra
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
- New York University Abu Dhabi, Abu Dhabi, UAE
| | - José Wagner Ribeiro
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Sasha E. Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, AL35487, USA
| | - Célio F. B. Haddad
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Luciano Alves dos Anjos
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil
| | - C. Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, Huch Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16803, USA
| |
Collapse
|
7
|
Cortazar-Chinarro M, Richter-Boix A, Rödin-Mörch P, Halvarsson P, Logue JB, Laurila A, Höglund J. Association between the skin microbiome and MHC class II diversity in an amphibian. Mol Ecol 2024; 33:e17198. [PMID: 37933583 DOI: 10.1111/mec.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Microbiomes play an important role in determining the ecology and behaviour of their hosts. However, questions remain pertaining to how host genetics shape microbiomes, and how microbiome composition influences host fitness. We explored the effects of geography, evolutionary history and host genetics on the skin microbiome diversity and structure in a widespread amphibian. More specifically, we examined the association between bacterial diversity and composition and the major histocompatibility complex class II exon 2 diversity in 12 moor frog (Rana arvalis) populations belonging to two geographical clusters that show signatures of past and ongoing differential selection. We found that while bacterial alpha diversity did not differ between the two clusters, MHC alleles/supertypes and genetic diversity varied considerably depending on geography and evolutionary history. Bacterial alpha diversity was positively correlated with expected MHC heterozygosity and negatively with MHC nucleotide diversity. Furthermore, bacterial community composition showed significant variation between the two geographical clusters and between specific MHC alleles/supertypes. Our findings emphasize the importance of historical demographic events on hologenomic variation and provide new insights into how immunogenetic host variability and microbial diversity may jointly influence host fitness with consequences for disease susceptibility and population persistence.
Collapse
Affiliation(s)
- M Cortazar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Lund University, Lund, Sweden
- Department of Earth Ocean and Atmospheric Sciences, Faculty of Science 2020-2207, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Richter-Boix
- Department of Political and Social Science, Pompeu Fabra University, Barcelona, Spain
| | - P Rödin-Mörch
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - P Halvarsson
- Parasitology/Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J B Logue
- Aquatic Ecology/Department of Biology, Lund University, Lund, Sweden
- SLU University Library, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - J Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Napolitano C, Sacristán I, Acuña F, Aguilar E, García S, López-Jara MJ, Cabello J, Hidalgo-Hermoso E, Poulin E, Grueber CE. Assessing micro-macroparasite selective pressures and anthropogenic disturbance as drivers of immune gene diversity in a Neotropical wild cat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166289. [PMID: 37591403 DOI: 10.1016/j.scitotenv.2023.166289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Anthropogenic environmental change is reducing available habitat for wild species, providing novel selection pressures such as infectious diseases and causing species to interact in new ways. The potential for emerging infectious diseases and zoonoses at the interface between humans, domestic animals, and wild species is a key global concern. In vertebrates, diversity at the major histocompatibility complex MHC is critical to disease resilience, and its study in wild populations provides insights into eco-evolutionary dynamics that human activities alter. In natural populations, variation at MHC loci is partly maintained by balancing selection, driven by pathogenic selective pressures. We hypothesize that MHC genetic diversity differs between guigna populations inhabiting human-dominated landscapes (higher pathogen pressures) versus more natural habitats (lower pathogen pressures). We predict that MHC diversity in guignas would be highest in human-dominated landscapes compared with continuous forest habitats. We also expected to find higher MHC diversity in guignas infected with micro and macro parasites (higher parasite load) versus non infected guignas. We characterized for the first time the genetic diversity at three MHC class I and II exons in 128 wild guignas (Leopardus guigna) across their distribution range in Chile (32-46° S) and Argentina, representing landscapes with varying levels of human disturbance. We integrated MHC sequence diversity with multiple measures of anthropogenic disturbance and both micro and macro parasite infection data. We also assessed signatures of positive selection acting on MHC genes. We found significantly higher MHC class I diversity in guignas inhabiting landscapes where houses were present, and with lower percentage of vegetation cover, and also in animals with more severe cardiorespiratory helminth infection (richness and intensity) and micro-macroparasite co-infection. This comprehensive, landscape-level assessment further enhances our knowledge on the evolutionary dynamics and adaptive potential of vertebrates in the face of emerging infectious disease threats and increasing anthropogenic impacts.
Collapse
Affiliation(s)
- Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile; Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Cape Horn International Center (CHIC), Puerto Williams, Chile.
| | - Irene Sacristán
- Universidad Andres Bello, Santiago, Chile; Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA), Centro Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Francisca Acuña
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Emilio Aguilar
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sebastián García
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María José López-Jara
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Javier Cabello
- Chiloé Silvestre Center for the Conservation of Biodiversity, Ancud, Chile
| | | | - Elie Poulin
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems and Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Prüter H, Gillingham MAF, Krietsch J, Kuhn S, Kempenaers B. Sexual transmission may drive pair similarity of the cloacal microbiome in a polyandrous species. J Anim Ecol 2023. [PMID: 37230950 DOI: 10.1111/1365-2656.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
All animals host a microbial community within and on their reproductive organs, known as the reproductive microbiome. In free-living birds, studies on the sexual transmission of bacteria have typically focused on a few pathogens instead of the bacterial community as a whole, despite a potential link to reproductive function. Theory predicts higher sexual transmission of the reproductive microbiome in females via the males' ejaculates and higher rates of transmission in promiscuous systems. We studied the cloacal microbiome of breeding individuals of a socially polyandrous, sex-role-reversed shorebird, the red phalarope (Phalaropus fulicarius). We expected (i) higher microbial diversity in females compared to males; (ii) low compositional differentiation between sexes; (iii) lower variation in composition between individuals (i.e. microbiome dispersion) in females than in males; (iv) convergence in composition as the breeding season progresses as a consequence of sexual transmission and/or shared habitat use; and (v) higher similarity in microbial composition between social pair members than between two random opposite-sex individuals. We found no or small between-sex differences in cloacal microbiome diversity/richness and composition. Dispersion of predicted functional pathways was lower in females than in males. As predicted, microbiome dispersion decreased with sampling date relative to clutch initiation of the social pair. Microbiome composition was significantly more similar among social pair members than among two random opposite-sex individuals. Pair membership explained 21.5% of the variation in taxonomic composition and 10.1% of functional profiles, whereas temporal and sex effects explained only 0.6%-1.6%. Consistent with evidence of functional convergence of reproductive microbiomes within pairs, some select taxa and predicted functional pathways were less variable between social pair members than between random opposite-sex individuals. As predicted if sexual transmission of the reproductive microbiome is high, sex differences in microbiome composition were weak in a socially polyandrous system with frequent copulations. Moreover, high within-pair similarity in microbiome composition, particularly for a few taxa spanning the spectrum of the beneficial-pathogenic axis, demonstrates the link between mating behaviour and the reproductive microbiome. Our study is consistent with the hypothesis that sexual transmission plays an important role in driving reproductive microbiome ecology and evolution.
Collapse
Affiliation(s)
- Hanna Prüter
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Mark A F Gillingham
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Biodiversity Research Institute (CSIC, Oviedo University, Principality of Asturias), University of Oviedo, Mieres, Spain
| | - Johannes Krietsch
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Sylvia Kuhn
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
10
|
Worsley SF, Davies CS, Mannarelli ME, Komdeur J, Dugdale HL, Richardson DS. Assessing the causes and consequences of gut mycobiome variation in a wild population of the Seychelles warbler. MICROBIOME 2022; 10:242. [PMID: 36575553 PMCID: PMC9795730 DOI: 10.1186/s40168-022-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Considerable research has focussed on the importance of bacterial communities within the vertebrate gut microbiome (GM). However, studies investigating the significance of other microbial kingdoms, such as fungi, are notably lacking, despite their potential to influence host processes. Here, we characterise the fungal GM of individuals living in a natural population of Seychelles warblers (Acrocephalus sechellensis). We evaluate the extent to which fungal GM structure is shaped by environment and host factors, including genome-wide heterozygosity and variation at key immune genes (major histocompatibility complex (MHC) and Toll-like receptor (TLR)). Importantly, we also explore the relationship between fungal GM differences and subsequent host survival. To our knowledge, this is the first time that the genetic drivers and fitness consequences of fungal GM variation have been characterised for a wild vertebrate population. RESULTS Environmental factors, including season and territory quality, explain the largest proportion of variance in the fungal GM. In contrast, neither host age, sex, genome-wide heterozygosity, nor TLR3 genotype was associated with fungal GM differences in Seychelles warblers. However, the presence of four MHC-I alleles and one MHC-II allele was associated with changes in fungal GM alpha diversity. Changes in fungal richness ranged from between 1 and 10 sequencing variants lost or gained; in some cases, this accounted for 20% of the fungal variants carried by an individual. In addition to this, overall MHC-I allelic diversity was associated with small, but potentially important, changes in fungal GM composition. This is evidenced by the fact that fungal GM composition differed between individuals that survived or died within 7 months of being sampled. CONCLUSIONS Our results suggest that environmental factors play a primary role in shaping the fungal GM, but that components of the host immune system-specifically the MHC-may also contribute to the variation in fungal communities across individuals within wild populations. Furthermore, variation in the fungal GM can be associated with differential survival in the wild. Further work is needed to establish the causality of such relationships and, thus, the extent to which components of the GM may impact host evolution. Video Abstract.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Maria-Elena Mannarelli
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles.
| |
Collapse
|
11
|
Wen Z, Zhang Y, Feng J, Aimulajiang K, Aleem MT, Lu M, Xu L, Song X, Li X, Yan R. Excretory/secretory proteins inhibit host immune responses by downregulating the TLR4/NF-κB/MAPKs signaling pathway: A possible mechanism of immune evasion in parasitic nematode Haemonchus contortus. Front Immunol 2022; 13:1013159. [PMID: 36238295 PMCID: PMC9551057 DOI: 10.3389/fimmu.2022.1013159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Haemonchus contortus is an important parasitic nematode of ruminants. Previous studies showed that H. contortus escape the immunity through complex mechanisms, including releasing excretory/secretory proteins (ESPs) to modulate the host immune response. However, the detailed mechanism through which H. contortus excretory/secretory proteins (HcESPs) promote immune evasion remains unknown. In the present study, we demonstrated that HcESPs inhibit the adaptive immune response of goats including downregulation of immune cell antigen presentation, upregulation of immune checkpoint molecules, activation of the STAT3/PD-L1 pathway, and activation of immunosuppressive regulatory T (Treg) cells. Furthermore, HcESPs reversed the LPS-induced upregulation of pro-inflammatory mediators in PBMCs by inhibiting the TLR4/NF-κB/MAPKs/NLRP3 signaling pathway. Our study provides a better understanding of the evasion mechanisms for H. contortus, which could be helpful in providing an alternative way to prevent the infection of this parasite.
Collapse
Affiliation(s)
- Zhaohai Wen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yue Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiajun Feng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kalibixiati Aimulajiang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Muhammad Tahir Aleem
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingmin Lu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruofeng Yan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ruofeng Yan,
| |
Collapse
|
12
|
Risely A, Schmid DW, Müller-Klein N, Wilhelm K, Clutton-Brock TH, Manser MB, Sommer S. Gut microbiota individuality is contingent on temporal scale and age in wild meerkats. Proc Biol Sci 2022; 289:20220609. [PMID: 35975437 PMCID: PMC9382201 DOI: 10.1098/rspb.2022.0609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
Inter-individual differences in gut microbiota composition are hypothesized to generate variation in host fitness-a premise for the evolution of host-gut microbe symbioses. However, recent evidence suggests that gut microbial communities are highly dynamic, challenging the notion that individuals harbour unique gut microbial phenotypes. Leveraging a long-term dataset of wild meerkats, we reconcile these concepts by demonstrating that the relative importance of identity for shaping gut microbiota phenotypes depends on the temporal scale. Across meerkat lifespan, year-to-year variation overshadowed the effects of identity and social group in predicting gut microbiota composition, with identity explaining on average less than 2% of variation. However, identity was the strongest predictor of microbial phenotypes over short sampling intervals (less than two months), predicting on average 20% of variation. The effect of identity was also dependent on meerkat age, with the gut microbiota becoming more individualized and stable as meerkats aged. Nevertheless, while the predictive power of identity was negligible after two months, gut microbiota composition remained weakly individualized compared to that of other meerkats for up to 1 year. These findings illuminate the degree to which individualized gut microbial signatures can be expected, with important implications for the time frames over which gut microbial phenotypes may mediate host physiology, behaviour and fitness in natural populations.
Collapse
Affiliation(s)
- Alice Risely
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Dominik W. Schmid
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Nadine Müller-Klein
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Kerstin Wilhelm
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Tim H. Clutton-Brock
- Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa
| | - Marta B. Manser
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Simone Sommer
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
13
|
Schwensow NI, Heni AC, Schmid J, Montero BK, Brändel SD, Halczok TK, Mayer G, Fackelmann G, Wilhelm K, Schmid DW, Sommer S. Disentangling direct from indirect effects of habitat disturbance on multiple components of biodiversity. J Anim Ecol 2022; 91:2220-2234. [DOI: 10.1111/1365-2656.13802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Alexander Christoph Heni
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
- Smithsonian Tropical Research Institute Ancón Panama
| | - Julian Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
- Smithsonian Tropical Research Institute Ancón Panama
| | - B. Karina Montero
- Animal Ecology and Conservation Hamburg University Hamburg Germany
- Biodiversity Research Institute, Campus of Mieres, Universidad de Oviedo Mieres Spain
| | - Stefan Dominik Brändel
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
- Smithsonian Tropical Research Institute Ancón Panama
| | | | - Gerd Mayer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
| | - Gloria Fackelmann
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
| | - Dominik Werner Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University Ulm Germany
| |
Collapse
|
14
|
Schmid DW, Fackelmann G, Wasimuddin, Rakotondranary J, Ratovonamana YR, Montero BK, Ganzhorn JU, Sommer S. A framework for testing the impact of co-infections on host gut microbiomes. Anim Microbiome 2022; 4:48. [PMID: 35945629 PMCID: PMC9361228 DOI: 10.1186/s42523-022-00198-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parasitic infections disturb gut microbial communities beyond their natural range of variation, possibly leading to dysbiosis. Yet it remains underappreciated that most infections are accompanied by one or more co-infections and their collective impact is largely unexplored. Here we developed a framework illustrating changes to the host gut microbiome following single infections, and build on it by describing the neutral, synergistic or antagonistic impacts on microbial α- and ß-diversity expected from co-infections. We tested the framework on microbiome data from a non-human primate population co-infected with helminths and Adenovirus, and matched patterns reported in published studies to the introduced framework. In this case study, α-diversity of co-infected Malagasy mouse lemurs (Microcebus griseorufus) did not differ in comparison with that of singly infected or uninfected individuals, even though community composition captured with ß-diversity metrices changed significantly. Explicitly, we record stochastic changes in dispersion, a sign of dysbiosis, following the Anna-Karenina principle rather than deterministic shifts in the microbial gut community. From the literature review and our case study, neutral and synergistic impacts emerged as common outcomes from co-infections, wherein both shifts and dispersion of microbial communities following co-infections were often more severe than after a single infection alone, but microbial α-diversity was not universally altered. Important functions of the microbiome may also suffer from such heavily altered, though no less species-rich microbial community. Lastly, we pose the hypothesis that the reshuffling of host-associated microbial communities due to the impact of various, often coinciding parasitic infections may become a source of novel or zoonotic diseases.
Collapse
|
15
|
Malik H, Ratovonamana YR, Rakotondranary SJ, Ganzhorn JU, Sommer S. Anthropogenic Disturbance Impacts Gut Microbiome Homeostasis in a Malagasy Primate. Front Microbiol 2022; 13:911275. [PMID: 35801106 PMCID: PMC9253676 DOI: 10.3389/fmicb.2022.911275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/19/2022] [Indexed: 12/05/2022] Open
Abstract
Increasing anthropogenic disturbances in Madagascar are exerting constrains on endemic Malagasy lemurs and their habitats, with possible effects on their health and survival. An important component of health is the gut microbiome, which might be disrupted by various stressors associated with environmental change. We have studied the gut microbiome of gray-brown mouse lemurs (Microcebus griseorufus), one of the smallest Malagasy primates and an important model of the convergent evolution of diseases. We sampled two sites: one situated in a national park and the other consisting of a more disturbed site around human settlement. We found that more intense anthropogenic disturbances indeed disrupted the gut microbiome of this lemur species marked by a reduction in bacterial diversity and a shift in microbial community composition. Interestingly, we noted a decrease in beneficial bacteria (i.e., members of the Bacteroidaceae family) together with a slight increase in disease-associated bacteria (i.e., members of the Veillonellaceae family), and alterations in microbial metabolic functions. Because of the crucial services provided by the microbiome to pathogen resistance and host health, such negative alterations in the gut microbiome of mouse lemurs inhabiting anthropogenically disturbed habitats might render them susceptible to diseases and ultimately affecting their survival in the shrinking biodiversity seen in Madagascar. Gut microbiome analyses might thus serve as an early warning signal for pending threats to lemur populations.
Collapse
Affiliation(s)
- Hina Malik
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Yedidya R Ratovonamana
- Institute of Zoology, Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
- Département Biologie Animale, Faculté des Sciences, Université d' Antananarivo, Antananarivo, Madagascar
| | - Solofomalala Jacques Rakotondranary
- Institute of Zoology, Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
- Département Biologie Animale, Faculté des Sciences, Université d' Antananarivo, Antananarivo, Madagascar
| | - Jörg U Ganzhorn
- Institute of Zoology, Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
16
|
Carranco AS, Romo D, de Lourdes Torres M, Wilhelm K, Sommer S, Gillingham MAF. Egg microbiota is the starting point of hatchling gut microbiota in the endangered yellow-spotted Amazon river turtle. Mol Ecol 2022; 31:3917-3933. [PMID: 35621392 DOI: 10.1111/mec.16548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Establishment and development of gut microbiota during vertebrates' early life are likely to be important predictors of health and fitness. Host-parental and host-environment interactions are essential to these processes. In oviparous reptiles whose nests represent a source of the parent's microbial inocula, the relative role of host-selection and stochastic environmental factors during gut microbial assemblage remains unknown. We sampled eggs incubated in artificial nests as well as hatchlings and juveniles (up to 30 days old) of the yellow-spotted Amazon river turtle (Podocnemis unifilis) developing in tubs filled with river water. We examined the relative role of the internal egg microbiota and the abiotic environment on hatchling and juvenile turtle's cloacal microbiota assemblages during the first 30 days of development. A mean of 71% of ASVs in hatched eggs could be traced to the nest environmental microbiota and in turn a mean of 77% of hatchlings' cloacal ASVs were traced to hatched eggs. Between day 5 and 20 of juvenile turtle's development, the river water environment plays a key role in the establishment of the gut microbiota (accounting for a mean of 13%-34.6% of cloacal ASVs) and strongly influences shifts in microbial diversity and abundance. After day 20, shifts in gut microbiota composition were mainly driven by host-selection processes. Therefore, colonization by environmental microbiota is key in the initial stages of establishing the host's gut microbiota which is subsequently shaped by host-selection processes. Our study provides a novel quantitative understanding of the host-environment interactions during gut microbial assemblage of oviparous reptiles.
Collapse
Affiliation(s)
- Ana Sofia Carranco
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - David Romo
- Tiputini Biodiversity Station, Universidad San Francisco de Quito, Cumbaya-, Quito, Ecuador
| | - Maria de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito, Cumbaya-, Quito, Ecuador
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Mark A F Gillingham
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,Biodiversity Research Institute (CSIC, Oviedo University, Principality of Asturias), Campus of Mieres, University of Oviedo, 33600, Mieres, Spain
| |
Collapse
|
17
|
Fleischer R, Schmid DW, Uddin W, Brändel SD, Rasche A, Corman VM, Drosten C, Tschapka M, Sommer S. Interaction between MHC diversity and constitution, gut microbiota and Astrovirus infections in a neotropical bat. Mol Ecol 2022; 31:3342-3359. [PMID: 35510794 DOI: 10.1111/mec.16491] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Astroviruses (AstVs) infect numerous mammalian species including reservoirs such as bats. Peptides encoded by the genes of the highly polymorphic Major Histocompatibility Complex (MHC) form the first line of host defence against pathogens. Aside from direct involvement in mounting adaptive immune responses, MHC class II genes are hypothesized to regulate gut commensal diversity and shape the production of immune-modulatory substances by microbes, indirectly affecting host susceptibility. Despite initial empirical evidence for the link between host MHC and the microbiota, associations among these factors remain largely unknown. To fill this gap, we examined MHC allelic diversity and constitution, the gut bacterial community and abundance pattern of a wild population of the neotropical bat (Artibeus jamaicensis) challenged by AstV infections. First, we show an age-dependent relationship between the host MHC class II diversity and constitution and the gut microbiota in AstV uninfected bats. Crucially, these associations changed in AstV infected bats. Additionally, we identify changes in abundance of specific bacterial taxa linked to the presence of certain MHC supertypes and AstV infection. We suggest changes in the microbiota to be either a result of AstV infection or the MHC-mediated modulation of microbial communities. The latter could subsequently affect microbe-mediated immunity and resistance against AstV infection. Our results underscore that the reciprocal nature of host immune genetics, gut microbial diversity and pathogen infection requires attention, which is particularly important given its repercussions for disease susceptibility and severity in wild animal populations with a history of zoonotic spillover and frequent human contact.
Collapse
Affiliation(s)
- Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Dominik Werner Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Wasim Uddin
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Stefan Dominik Brändel
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,Smithsonian Tropical Research Institute, Ancon, Panama
| | - Andrea Rasche
- Smithsonian Tropical Research Institute, Ancon, Panama.,Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University, Humboldt-University and Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University, Humboldt-University and Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany.,German Centre for Infection Research (DZIF), associated partner Charité, Chariteplatz 1, 10117, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University, Humboldt-University and Berlin Institute of Health, Chariteplatz 1, 10117, Berlin, Germany.,German Centre for Infection Research (DZIF), associated partner Charité, Chariteplatz 1, 10117, Berlin, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,Smithsonian Tropical Research Institute, Ancon, Panama
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
18
|
Oyesola OO, Souza COS, Loke P. The Influence of Genetic and Environmental Factors and Their Interactions on Immune Response to Helminth Infections. Front Immunol 2022; 13:869163. [PMID: 35572520 PMCID: PMC9103684 DOI: 10.3389/fimmu.2022.869163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Helminth infection currently affect over 2 billion people worldwide, with those with the most pathologies and morbidities, living in regions with unequal and disproportionate access to effective healthcare solutions. Host genetics and environmental factors play critical roles in modulating and regulating immune responses following exposure to various pathogens and insults. However, the interplay of environment and genetic factors in influencing who gets infected and the establishment, persistence, and clearance of helminth parasites remains unclear. Inbred strains of mice have long been used to investigate the role of host genetic factors on pathogenesis and resistance to helminth infection in a laboratory setting. This review will discuss the use of ecological and environmental mouse models to study helminth infections and how this could be used in combination with host genetic variation to explore the relative contribution of these factors in influencing immune response to helminth infections. Improved understanding of interactions between genetics and the environment to helminth immune responses would be important for efforts to identify and develop new prophylactic and therapeutic options for the management of helminth infections and their pathogenesis.
Collapse
Affiliation(s)
- Oyebola O. Oyesola
- Laboratory of Parasitic Disease, National Institute of Allergy and Infectious Disease (NIAID), National Institute of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
19
|
Davies CS, Worsley SF, Maher KH, Komdeur J, Burke T, Dugdale HL, Richardson DS. Immunogenetic variation shapes the gut microbiome in a natural vertebrate population. MICROBIOME 2022; 10:41. [PMID: 35256003 PMCID: PMC8903650 DOI: 10.1186/s40168-022-01233-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The gut microbiome (GM) can influence many biological processes in the host, impacting its health and survival, but the GM can also be influenced by the host's traits. In vertebrates, Major Histocompatibility Complex (MHC) genes play a pivotal role in combatting pathogens and are thought to shape the host's GM. Despite this-and the documented importance of both GM and MHC variation to individual fitness-few studies have investigated the association between the GM and MHC in the wild. RESULTS We characterised MHC class I (MHC-I), MHC class II (MHC-II) and GM variation in individuals within a natural population of the Seychelles warbler (Acrocephalus sechellensis). We determined how the diversity and composition of the GM varied with MHC characteristics, in addition to environmental factors and other host traits. Our results show that the presence of specific MHC alleles, but not MHC diversity, influences both the diversity and composition of the GM in this population. MHC-I alleles, rather than MHC-II alleles, had the greatest impact on the GM. GM diversity was negatively associated with the presence of three MHC-I alleles (Ase-ua3, Ase-ua4, Ase-ua5), and one MHC-II allele (Ase-dab4), while changes in GM composition were associated with the presence of four different MHC-I alleles (Ase-ua1, Ase-ua7, Ase-ua10, Ase-ua11). There were no associations between GM diversity and TLR3 genotype, but GM diversity was positively correlated with genome-wide heterozygosity and varied with host age and field period. CONCLUSIONS These results suggest that components of the host's immune system play a role in shaping the GM of wild animals. Host genotype-specifically MHC-I and to a lesser degree MHC-II variation-can modulate the GM, although whether this occurs directly, or indirectly through effects on host health, is unclear. Importantly, if immune genes can regulate host health through modulation of the microbiome, then it is plausible that the microbiome could also influence selection on immune genes. As such, host-microbiome coevolution may play a role in maintaining functional immunogenetic variation within natural vertebrate populations. Video abstract.
Collapse
Affiliation(s)
- Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Kathryn H Maher
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
- Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles
| |
Collapse
|
20
|
Couch CE, Epps CW. Host, microbiome, and complex space: applying population and landscape genetic approaches to gut microbiome research in wild populations. J Hered 2022; 113:221-234. [PMID: 34983061 DOI: 10.1093/jhered/esab078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/03/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, emerging sequencing technologies and computational tools have driven a tidal wave of research on host-associated microbiomes, particularly the gut microbiome. These studies demonstrate numerous connections between the gut microbiome and vital host functions, primarily in humans, model organisms, and domestic animals. As the adaptive importance of the gut microbiome becomes clearer, interest in studying the gut microbiomes of wild populations has increased, in part due to the potential for discovering conservation applications. The study of wildlife gut microbiomes holds many new challenges and opportunities due to the complex genetic, spatial, and environmental structure of wild host populations, and the potential for these factors to interact with the microbiome. The emerging picture of adaptive coevolution in host-microbiome relationships highlights the importance of understanding microbiome variation in the context of host population genetics and landscape heterogeneity across a wide range of host populations. We propose a conceptual framework for understanding wildlife gut microbiomes in relation to landscape variables and host population genetics, including the potential of approaches derived from landscape genetics. We use this framework to review current research, synthesize important trends, highlight implications for conservation, and recommend future directions for research. Specifically, we focus on how spatial structure and environmental variation interact with host population genetics and microbiome variation in natural populations, and what we can learn from how these patterns of covariation differ depending on host ecological and evolutionary traits.
Collapse
Affiliation(s)
- Claire E Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Clinton W Epps
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|