1
|
McConville R, Krol JMM, Steel RWJ, O’Neill MT, Davey BK, Hodder AN, Nebl T, Cowman AF, Kneteman N, Boddey JA. Flp/ FRT-mediated disruption of ptex150 and exp2 in Plasmodium falciparum sporozoites inhibits liver-stage development. Proc Natl Acad Sci U S A 2024; 121:e2403442121. [PMID: 38968107 PMCID: PMC11252984 DOI: 10.1073/pnas.2403442121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.
Collapse
Affiliation(s)
- Robyn McConville
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jelte M. M. Krol
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Ryan W. J. Steel
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Matthew T. O’Neill
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
| | - Bethany K. Davey
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Anthony N. Hodder
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Thomas Nebl
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Alan F. Cowman
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Norman Kneteman
- Departments of Surgery, University of Alberta, Edmonton, ABT6G 2E1, Canada
| | - Justin A. Boddey
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| |
Collapse
|
2
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
3
|
Fierro MA, Muheljic A, Sha J, Wohlschlegel J, Beck JR. PEXEL is a proteolytic maturation site for both exported and non-exported Plasmodium proteins. mSphere 2024; 9:e0039323. [PMID: 38334391 PMCID: PMC10900883 DOI: 10.1128/msphere.00393-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Obligate intracellular malaria parasites dramatically remodel their erythrocyte host through effector protein export to create a niche for survival. Most exported proteins contain a pentameric Plasmodium export element (PEXEL)/host-targeting motif that is cleaved in the parasite ER by the aspartic protease Plasmepsin V (PMV). This processing event exposes a mature N terminus required for translocation into the host cell and is not known to occur in non-exported proteins. Here, we report that the non-exported parasitophorous vacuole protein UIS2 contains a bona fide PEXEL motif that is processed in the P. falciparum blood stage. While the N termini of exported proteins containing the PEXEL and immediately downstream ~10 residues are sufficient to mediate translocation into the RBC, the equivalent UIS2 N terminus does not promote the export of a reporter. Curiously, the UIS2 PEXEL contains an unusual aspartic acid at the fourth position, which constitutes the extreme N-terminal residue following PEXEL cleavage (P1', RIL↓DE). Using a series of chimeric reporter fusions, we show that Asp at P1' is permissive for PMV processing but abrogates export. Moreover, mutation of this single UIS2 residue to alanine enables export, reinforcing that the mature N terminus mediates export, not PEXEL processing per se. Prompted by this observation, we further show that PEXEL sequences in the N termini of other non-exported rhoptry proteins are also processed, suggesting that PMV may be a more general secretory maturase than previously appreciated, similar to orthologs in related apicomplexans. Our findings provide new insight into the unique N-terminal constraints that mark proteins for export.IMPORTANCEHost erythrocyte remodeling by malaria parasite-exported effector proteins is critical to parasite survival and disease pathogenesis. In the deadliest malaria parasite Plasmodium falciparum, most exported proteins undergo proteolytic maturation via recognition of the pentameric Plasmodium export element (PEXEL)/host-targeting motif by the aspartic protease Plasmepsin V, which exposes a mature N terminus that is conducive for export into the erythrocyte host cell. While PEXEL processing is considered a unique mark of exported proteins, we demonstrate that PEXEL motifs are present and processed in non-exported proteins. Importantly, we show that specific residues at the variable fourth position of the PEXEL motif inhibit export despite being permissive for processing, reinforcing that features of the mature N terminus, and not PEXEL cleavage, identify cargo for export. This opens the door to further inquiry into the nature and evolution of the PEXEL motif.
Collapse
Affiliation(s)
- Manuel A. Fierro
- Department of Biomedical Sciences, Iowa State University, Ames, lowa, USA
| | - Ajla Muheljic
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California, Los Angeles, California, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, California, USA
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, lowa, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Fréville A, Ressurreição M, van Ooij C. Identification of a non-exported Plasmepsin V substrate that functions in the parasitophorous vacuole of malaria parasites. mBio 2024; 15:e0122323. [PMID: 38078758 PMCID: PMC10790765 DOI: 10.1128/mbio.01223-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE In the manuscript, the authors investigate the role of the protease Plasmepsin V in the parasite-host interaction. Whereas processing by Plasmepsin V was previously thought to target a protein for export into the host cell, the authors now show that there are proteins cleaved by this protease that are not exported but instead function at the host-parasite interface. This changes the view of this protease, which turns out to have a much broader role than anticipated. The result shows that the protease may have a function much more similar to that of related organisms. The authors also investigate the requirements for protein export by analyzing exported and non-exported proteins and find commonalities between the proteins of each set that further our understanding of the requirements for protein export.
Collapse
Affiliation(s)
- Aline Fréville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Margarida Ressurreição
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
5
|
Gabriela M, Barnes CBG, Leong D, Sleebs BE, Schneider MP, Littler DR, Crabb BS, de Koning‐Ward TF, Gilson PR. Sequence elements within the PEXEL motif and its downstream region modulate PTEX-dependent protein export in Plasmodium falciparum. Traffic 2024; 25:e12922. [PMID: 37926971 PMCID: PMC10952997 DOI: 10.1111/tra.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/23/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
The parasite Plasmodium falciparum causes the most severe form of malaria and to invade and replicate in red blood cells (RBCs), it exports hundreds of proteins across the encasing parasitophorous vacuole membrane (PVM) into this host cell. The exported proteins help modify the RBC to support rapid parasite growth and avoidance of the human immune system. Most exported proteins possess a conserved Plasmodium export element (PEXEL) motif with the consensus RxLxE/D/Q amino acid sequence, which acts as a proteolytic cleavage recognition site within the parasite's endoplasmic reticulum (ER). Cleavage occurs after the P1 L residue and is thought to help release the protein from the ER so it can be putatively escorted by the HSP101 chaperone to the parasitophorous vacuole space surrounding the intraerythrocytic parasite. HSP101 and its cargo are then thought to assemble with the rest of a Plasmodium translocon for exported proteins (PTEX) complex, that then recognises the xE/D/Q capped N-terminus of the exported protein and translocates it across the vacuole membrane into the RBC compartment. Here, we present evidence that supports a dual role for the PEXEL's conserved P2 ' position E/Q/D residue, first, for plasmepsin V cleavage in the ER, and second, for efficient PTEX mediated export across the PVM into the RBC. We also present evidence that the downstream 'spacer' region separating the PEXEL motif from the folded functional region of the exported protein controls cargo interaction with PTEX as well. The spacer must be of a sufficient length and permissive amino acid composition to engage the HSP101 unfoldase component of PTEX to be efficiently translocated into the RBC compartment.
Collapse
Affiliation(s)
- Mikha Gabriela
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
| | - Claudia B. G. Barnes
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
| | - Dickson Leong
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Dene R. Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Brendan S. Crabb
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of ImmunologyMonash UniversityMelbourneVictoriaAustralia
| | - Tania F. de Koning‐Ward
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT)Deakin UniversityGeelongVictoriaAustralia
| | - Paul R. Gilson
- Malaria Virulence and Drug Discovery GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
6
|
Hasan MM, Polino AJ, Mukherjee S, Vaupel B, Goldberg DE. The mature N-termini of Plasmodium effector proteins confer specificity of export. mBio 2023; 14:e0121523. [PMID: 37646514 PMCID: PMC10653839 DOI: 10.1128/mbio.01215-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Malaria parasites export hundreds of proteins to the cytoplasm of the host red blood cells for their survival. A five amino acid sequence, called the PEXEL motif, is conserved among many exported proteins and is thought to be a signal for export. However, the motif is cleaved inside the endoplasmic reticulum of the parasite, and mature proteins starting from the fourth PEXEL residue travel to the parasite periphery for export. We showed that the PEXEL motif is dispensable for export as long as identical mature proteins can be efficiently produced via alternative means in the ER. We also showed that the exported and non-exported proteins are differentiated at the parasite periphery based on their mature N-termini; however, any discernible export signal within that region remained cryptic. Our study resolves a longstanding paradox in PEXEL protein trafficking.
Collapse
Affiliation(s)
- Muhammad M. Hasan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander J. Polino
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sumit Mukherjee
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Barbara Vaupel
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Anaguano D, Dedkhad W, Brooks CF, Cobb DW, Muralidharan V. Time-resolved proximity biotinylation implicates a porin protein in export of transmembrane malaria parasite effectors. J Cell Sci 2023; 136:jcs260506. [PMID: 37772444 PMCID: PMC10651097 DOI: 10.1242/jcs.260506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2023] [Indexed: 09/30/2023] Open
Abstract
The malaria-causing parasite, Plasmodium falciparum completely remodels its host red blood cell (RBC) through the export of several hundred parasite proteins, including transmembrane proteins, across multiple membranes to the RBC. However, the process by which these exported membrane proteins are extracted from the parasite plasma membrane for export remains unknown. To address this question, we fused the exported membrane protein, skeleton binding protein 1 (SBP1), with TurboID, a rapid, efficient and promiscuous biotin ligase (SBP1TbID). Using time-resolved proximity biotinylation and label-free quantitative proteomics, we identified two groups of SBP1TbID interactors - early interactors (pre-export) and late interactors (post-export). Notably, two promising membrane-associated proteins were identified as pre-export interactors, one of which possesses a predicted translocon domain, that could facilitate the export of membrane proteins. Further investigation using conditional mutants of these candidate proteins showed that these proteins were essential for asexual growth and localize to the host-parasite interface during early stages of the intraerythrocytic cycle. These data suggest that they might play a role in ushering membrane proteins from the parasite plasma membrane for export to the host RBC.
Collapse
Affiliation(s)
- David Anaguano
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Watcharatip Dedkhad
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Carrie F. Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - David W. Cobb
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Fierro MA, Hussain T, Campin LJ, Beck JR. Knock-sideways by inducible ER retrieval enables a unique approach for studying Plasmodium-secreted proteins. Proc Natl Acad Sci U S A 2023; 120:e2308676120. [PMID: 37552754 PMCID: PMC10433460 DOI: 10.1073/pnas.2308676120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Malaria parasites uniquely depend on protein secretion for their obligate intracellular lifestyle but approaches for dissecting Plasmodium-secreted protein functions are limited. We report knockER, a unique DiCre-mediated knock-sideways approach to sequester secreted proteins in the ER by inducible fusion with a KDEL ER-retrieval sequence. We show conditional ER sequestration of diverse proteins is not generally toxic, enabling loss-of-function studies. We employed knockER in multiple Plasmodium species to interrogate the trafficking, topology, and function of an assortment of proteins that traverse the secretory pathway to diverse compartments including the apicoplast (ClpB1), rhoptries (RON6), dense granules, and parasitophorous vacuole (EXP2, PTEX150, HSP101). Taking advantage of the unique ability to redistribute secreted proteins from their terminal destination to the ER, we reveal that vacuolar levels of the PTEX translocon component HSP101 but not PTEX150 are maintained in excess of what is required to sustain effector protein export into the erythrocyte. Intriguingly, vacuole depletion of HSP101 hypersensitized parasites to a destabilization tag that inhibits HSP101-PTEX complex formation but not to translational knockdown of the entire HSP101 pool, illustrating how redistribution of a target protein by knockER can be used to query function in a compartment-specific manner. Collectively, our results establish knockER as a unique tool for dissecting secreted protein function with subcompartmental resolution that should be widely amenable to genetically tractable eukaryotes.
Collapse
Affiliation(s)
- Manuel A. Fierro
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
| | - Tahir Hussain
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
| | - Liam J. Campin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
9
|
Aly NSM, Matsumori H, Dinh TQ, Sato A, Miyoshi SI, Chang KS, Yu HS, Kubota T, Kurosaki Y, Cao DT, Rashed GA, Kim HS. Evaluating the activity of N-89 as an oral antimalarial drug. PARASITES, HOSTS AND DISEASES 2023; 61:282-291. [PMID: 37648233 PMCID: PMC10471475 DOI: 10.3347/phd.23044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Despite the recent progress in public health measures, malaria remains a troublesome disease that needs to be eradicated. It is essential to develop new antimalarial medications that are reliable and secure. This report evaluated the pharmacokinetics and antimalarial activity of 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) using the rodent malaria parasite Plasmodium berghei in vivo. After a single oral dose (75 mg /kg) of N-89, its pharmacokinetic parameters were measured, and t1/2 was 0.97 h, Tmax was 0.75 h, and bioavailability was 7.01%. A plasma concentration of 8.1 ng/ml of N-89 was maintained for 8 h but could not be detected at 10 h. The dose inhibiting 50% of parasite growth (ED50) and ED90 values of oral N-89 obtained following a 4-day suppressive test were 20 and 40 mg/kg, respectively. Based on the plasma concentration of N-89, we evaluated the antimalarial activity and cure effects of oral N-89 at a dose of 75 mg/kg 3 times daily for 3 consecutive days in mice harboring more than 0.5% parasitemia. In all the N-89- treated groups, the parasites were eliminated on day 5 post-treatment, and all mice recovered without a parasite recurrence for 30 days. Additionally, administering oral N-89 at a low dose of 50 mg/kg was sufficient to cure mice from day 6 without parasite recurrence. This work was the first to investigate the pharmacokinetic characteristics and antimalarial activity of N-89 as an oral drug. In the future, the following steps should be focused on developing N-89 for malaria treatments; its administration schedule and metabolic pathways should be investigated.
Collapse
Affiliation(s)
- Nagwa S. M. Aly
- Department of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530,
Japan
- Department of Parasitology, Benha Faculty of Medicine, Benha University, Benha 13511,
Egypt
| | - Hiroaki Matsumori
- Department of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530,
Japan
| | - Thi Quyen Dinh
- Department of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530,
Japan
| | - Akira Sato
- Department of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530,
Japan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8530,
Japan
| | - Shin-ichi Miyoshi
- Department of Sanitary Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530,
Japan
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252,
Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan 626-870,
Republic of Korea
| | - Takaaki Kubota
- Department of Natural Products Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530,
Japan
| | - Yuji Kurosaki
- Department of Pharmaceutical Formulation Design, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530,
Japan
| | - Duc Tuan Cao
- Department of Pharmaceutical Chemistry and Quality Control, Faculty of Pharmacy, Hai Phong University of Medicine and Pharmacy, Hai Phong,
Vietnam
| | - Gehan A. Rashed
- Department of Parasitology, Benha Faculty of Medicine, Benha University, Benha 13511,
Egypt
| | - Hye-Sook Kim
- Department of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530,
Japan
| |
Collapse
|
10
|
Fierro MA, Muheljic A, Sha J, Wohlschlegel JA, Beck JR. PEXEL is a proteolytic maturation site for both exported and non-exported Plasmodium proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548774. [PMID: 37503245 PMCID: PMC10369990 DOI: 10.1101/2023.07.12.548774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Obligate intracellular malaria parasites dramatically remodel their erythrocyte host through effector protein export to create a niche for survival. Most exported proteins contain a pentameric P lasmodium ex port el ement (PEXEL)/Host Targeting Motif that is cleaved in the parasite ER by the aspartic protease Plasmepsin V (PMV). This processing event exposes a mature N-terminus required for translocation into the host cell and is not known to occur in non-exported proteins. Here we report that the non-exported parasitophorous vacuole protein UIS2 contains a bona fide PEXEL motif that is processed in the P. falciparum blood-stage. While the N-termini of exported proteins containing the PEXEL and immediately downstream ∼10 residues is sufficient to mediate translocation into the RBC, the equivalent UIS2 N-terminus does not promote export of a reporter. Curiously, the UIS2 PEXEL contains an unusual aspartic acid at the fourth position which constitutes the extreme N-terminal residue following PEXEL cleavage (P1', RILτDE). Using a series of chimeric reporter fusions, we show that Asp at P1' is permissive for PMV processing but abrogates export. Moreover, mutation of this single UIS2 residue to alanine enables export, reinforcing that the mature N-terminus mediates export, not PEXEL processing per se . Prompted by this observation, we further show that PEXEL sequences in the N-termini of other non-exported rhoptry proteins are also processed, suggesting that PMV may be a more general secretory maturase than previously appreciated, similar to orthologs in related apicomplexans. Our findings provide new insight into the unique N-terminal constraints that mark proteins for export. Importance Host erythrocyte remodeling by malaria parasite exported effector proteins is critical to parasite survival and disease pathogenesis. In the deadliest malaria parasite Plasmodium falciparum , most exported proteins undergo proteolytic maturation via recognition of the pentameric P lasmodium ex port el ement (PEXEL)/Host Targeting motif by the aspartic protease Plasmepsin V (PMV) which exposes a mature N-terminus that is conducive for export into the erythrocyte host cell. While PEXEL processing is considered a unique mark of exported proteins, we demonstrate PEXEL motifs are present and processed in non-exported proteins. Importantly, we show that specific residues at the variable fourth position of the PEXEL motif inhibit export despite being permissive for processing by PMV, reinforcing that features of the mature N-terminus, and not PEXEL cleavage, identify cargo for export cargo. This opens the door to further inquiry into the nature and evolution of the PEXEL motif.
Collapse
|
11
|
Jonsdottir TK, Elsworth B, Cobbold S, Gabriela M, Ploeger E, Parkyn Schneider M, Charnaud SC, Dans MG, McConville M, Bullen HE, Crabb BS, Gilson PR. PTEX helps efficiently traffic haemoglobinases to the food vacuole in Plasmodium falciparum. PLoS Pathog 2023; 19:e1011006. [PMID: 37523385 PMCID: PMC10414648 DOI: 10.1371/journal.ppat.1011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/10/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
A key element of Plasmodium biology and pathogenesis is the trafficking of ~10% of the parasite proteome into the host red blood cell (RBC) it infects. To cross the parasite-encasing parasitophorous vacuole membrane, exported proteins utilise a channel-forming protein complex termed the Plasmodium translocon of exported proteins (PTEX). PTEX is obligatory for parasite survival, both in vitro and in vivo, suggesting that at least some exported proteins have essential metabolic functions. However, to date only one essential PTEX-dependent process, the new permeability pathways, has been described. To identify other essential PTEX-dependant proteins/processes, we conditionally knocked down the expression of one of its core components, PTEX150, and examined which pathways were affected. Surprisingly, the food vacuole mediated process of haemoglobin (Hb) digestion was substantially perturbed by PTEX150 knockdown. Using a range of transgenic parasite lines and approaches, we show that two major Hb proteases; falcipain 2a and plasmepsin II, interact with PTEX core components, implicating the translocon in the trafficking of Hb proteases. We propose a model where these proteases are translocated into the PV via PTEX in order to reach the cytostome, located at the parasite periphery, prior to food vacuole entry. This work offers a second mechanistic explanation for why PTEX function is essential for growth of the parasite within its host RBC.
Collapse
Affiliation(s)
- Thorey K. Jonsdottir
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Brendan Elsworth
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Simon Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Mikha Gabriela
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Ellen Ploeger
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | | | - Sarah C. Charnaud
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Madeline G. Dans
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Malcolm McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Hayley E. Bullen
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Brendan S. Crabb
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Paul R. Gilson
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Almaazmi SY, Kaur RP, Singh H, Blatch GL. The Plasmodium falciparum exported J domain proteins fine-tune human and malarial Hsp70s: pathological exploitation of proteostasis machinery. Front Mol Biosci 2023; 10:1216192. [PMID: 37457831 PMCID: PMC10349383 DOI: 10.3389/fmolb.2023.1216192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular proteostasis requires a network of molecular chaperones and co-chaperones, which facilitate the correct folding and assembly of other proteins, or the degradation of proteins misfolded beyond repair. The function of the major chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90), is regulated by a cohort of co-chaperone proteins. The J domain protein (JDP) family is one of the most diverse co-chaperone families, playing an important role in functionalizing the Hsp70 chaperone system to form a powerful protein quality control network. The intracellular malaria parasite, Plasmodium falciparum, has evolved the capacity to invade and reboot mature human erythrocytes, turning them into a vehicles of pathology. This process appears to involve the harnessing of both the human and parasite chaperone machineries. It is well known that malaria parasite-infected erythrocytes are highly enriched in functional human Hsp70 (HsHsp70) and Hsp90 (HsHsp90), while recent proteomics studies have provided evidence that human JDPs (HsJDPs) may also be enriched, but at lower levels. Interestingly, P. falciparum JDPs (PfJDPs) are the most prominent and diverse family of proteins exported into the infected erythrocyte cytosol. We hypothesize that the exported PfJPDs may be an evolutionary consequence of the need to boost chaperone power for specific protein folding pathways that enable both survival and pathogenesis of the malaria parasite. The evidence suggests that there is an intricate network of PfJDP interactions with the exported malarial Hsp70 (PfHsp70-x) and HsHsp70, which appear to be important for the trafficking of key malarial virulence factors, and the proteostasis of protein complexes of human and parasite proteins associated with pathology. This review will critically evaluate the current understanding of the role of exported PfJDPs in pathological exploitation of the proteostasis machinery by fine-tuning the chaperone properties of both human and malarial Hsp70s.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Rupinder P. Kaur
- The Department of Chemistry, Guru Nanak Dev University College Verka, Amritsar, Punjab, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
13
|
Levray YS, Bana B, Tarr SJ, McLaughlin EJ, Rossi-Smith P, Waltho A, Charlton GH, Chiozzi RZ, Straton CR, Thalassinos K, Osborne AR. Formation of ER-lumenal intermediates during export of Plasmodium proteins containing transmembrane-like hydrophobic sequences. PLoS Pathog 2023; 19:e1011281. [PMID: 37000891 PMCID: PMC10096305 DOI: 10.1371/journal.ppat.1011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/12/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER-lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway.
Collapse
|
14
|
Correction: A revised mechanism for how Plasmodium falciparum recruits and exports proteins into its erythrocytic host cell. PLoS Pathog 2022; 18:e1010757. [PMID: 35930522 PMCID: PMC9355183 DOI: 10.1371/journal.ppat.1010757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Looker O, Dans MG, Bullen HE, Sleebs BE, Crabb BS, Gilson PR. The Medicines for Malaria Venture Malaria Box contains inhibitors of protein secretion in
Plasmodium falciparum
blood stage parasites. Traffic 2022; 23:442-461. [PMID: 36040075 PMCID: PMC9543830 DOI: 10.1111/tra.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current antimalarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria Box of 400 antimalarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs—modifications which are both mediated by parasite‐derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future antimalarial that rapidly inhibits parasite virulence before eliminating parasites from the host.
Collapse
Affiliation(s)
| | - Madeline G. Dans
- Burnet Institute Melbourne Australia
- School of Medicine Deakin University Geelong Australia
| | - Hayley E. Bullen
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology The University of Melbourne Parkville Victoria Australia
| | - Brendan S. Crabb
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
- Department of Immunology and Pathology Monash University Melbourne Australia
| | - Paul R. Gilson
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| |
Collapse
|
16
|
Blatch GL. Plasmodium falciparum Molecular Chaperones: Guardians of the Malaria Parasite Proteome and Renovators of the Host Proteome. Front Cell Dev Biol 2022; 10:921739. [PMID: 35652103 PMCID: PMC9149364 DOI: 10.3389/fcell.2022.921739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of the most severe form of malaria in humans. The malaria parasite has had to develop sophisticated mechanisms to preserve its proteome under the changing stressful conditions it confronts, particularly when it invades host erythrocytes. Heat shock proteins, especially those that function as molecular chaperones, play a key role in protein homeostasis (proteostasis) of P. falciparum. Soon after invading erythrocytes, the malaria parasite exports a large number of proteins including chaperones, which are responsible for remodeling the infected erythrocyte to enable its survival and pathogenesis. The infected host cell has parasite-resident and erythrocyte-resident chaperones, which appear to play a vital role in the folding and functioning of P. falciparum proteins and potentially host proteins. This review critiques the current understanding of how the major chaperones, particularly the Hsp70 and Hsp40 (or J domain proteins, JDPs) families, contribute to proteostasis of the malaria parasite-infected erythrocytes.
Collapse
Affiliation(s)
- Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia.,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.,Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| |
Collapse
|